CALCULATION OF AUGMENTED JACOBI POLYNOMIALS
BY MEANS OF A RECURRANCE RELATION

ZHI-DE LIANG, JIA-ZHENG XU and FU WANG
Northeast Institute of Technology
Shenyang, China

(Received February 16, 1980)

Abstract: A recurrence relation for $Z_{lmn}(\xi)$ is deduced from the
recurrence relations for Jacobi polynomials. Based on this re-
currence relation an ALGOL-60 program has been written for efficiently cal-
culating the $Z_{lmn}(\xi)$ required in ODF analysis.

In the program of three-dimensional texture analysis it
is necessary to calculate numerical values of the augmented
Jacobi polynomials $Z_{lmn}(\xi)$ or the generalized Legendre poly-
nomials $P_{m}^{\alpha}(\phi)$. Bunge,1,2 Morris and Heckler,3,4 Morris,5
Pospiech and Jura6 have developed methods for numerical cal-
culations of these polynomials by expanding in Fourier ser-
ries. These methods have been universally adopted in the
computer program for ODF analysis.

In this paper a recurrence relation for $Z_{lmn}(\xi)$ has
been deduced. Using this relation, for any l the elements
of the whole array $Z_{lmn}(\xi)$ may be calculated easily. The
computer program to be used is written in ALGOL-60.

DEDUCTION OF RECURRANCE RELATION

The augmented Jacobi polynomials, designated $Z_{lmn}(\xi)$
by Roe,7 have the form

$$Z_{lmn}(\xi) = N t^{(m-n)/2}(1-t)^{(m+n)/2}f(t),$$

where

$$t = \frac{1 - \xi}{2};$$

$$N = \left[\frac{(2l+1)(l+m)!(l-n)!}{(l-m)!(l+n)!} \right]^{1/2} \cdot \frac{1}{(m-n)!};$$

$$f(t) = {}_2F_1(\alpha, \beta; \gamma; t).$$
$\,_{2}F_{1}(\alpha, \beta; \gamma; t)$ is the hypergeometric function defined by

$$\,_{2}F_{1}(\alpha, \beta; \gamma; t) = 1 + \frac{\alpha \cdot \beta}{\gamma} t + \frac{\alpha(\alpha+1) \beta(\beta+1)}{2! \gamma(\gamma+1)} t^2 + \ldots \quad (1)$$

When α is a negative integer, the series terminates after a finite number of terms, and the resulting polynomial is called a Jacobi polynomial. Following Roe,7 we set $\alpha = -\ell + m$, $\beta = \ell + m + 1$ and $\gamma = m - n + 1$.

Jacobi polynomials have the following recurrence relations$^8:$

$$\,_{2}F_{1}(\alpha, \beta+1; \gamma+1; t) - \,_{2}F_{1}(\alpha, \beta; \gamma; t) = \frac{\alpha(\gamma - \beta)}{\gamma(\gamma+1)} \cdot \,_{2}F_{1}(\alpha+1, \beta+1; \gamma+2; t), \quad (2)$$

$$(\alpha - \beta) \,_{2}F_{1}(\alpha, \beta; \gamma; t) = \alpha \,_{2}F_{1}(\alpha+1, \beta; \gamma; t) - \beta \,_{2}F_{1}(\alpha, \beta+1; \gamma; t) \quad (3)$$

and

$$\alpha \,_{2}F_{1}(\alpha+1, \beta; \gamma; t) - (\gamma - 1) \,_{2}F_{1}(\alpha, \beta; \gamma-1; t) = (\alpha+1 - \gamma) \,_{2}F_{1}(\alpha, \beta; \gamma-1; t). \quad (4)$$

From these relations another one can be obtained

$$\,_{2}F_{1}(\alpha, \beta; \gamma-1; t) = \,_{2}F_{1}(\alpha, \beta; \gamma; t)$$

$$+ \frac{\alpha \beta}{\gamma(\gamma-1)} t \,_{2}F_{1}(\alpha+1, \beta+1; \gamma+1; t). \quad (5)$$

By substituting equation (1) into equation (5) the following recurrence relation for $Z_{\ell mn}(\xi)$ is deduced:

$$Z_{\ell m(n+1)}(\xi) = \frac{(m-n)}{[(\ell-n)(\ell+n+1)]^{\frac{1}{2}}} \cdot \left(\frac{1+\xi}{1-\xi}\right)^{\frac{1}{2}} \cdot Z_{\ell mn}(\xi)$$

$$- \left[\frac{(\ell-m)(\ell+m+1)}{(\ell-n)(\ell+n+1)}\right]^{\frac{1}{2}} \cdot Z_{\ell(m+1)n}(\xi). \quad (6)$$

Equation (6) is valid for $\xi \neq 1$.

CALCULATION OF ARRAY $Z_{\ell mn}(\xi)$ BY THE RECURRENCE RELATION

Roe7 has derived the equation

$$Z_{\ell mn}(\xi) = Z_{\ell, m-n}(\xi), \quad (7)$$

and adopted the convention that

$$Z_{\ell mn}(\xi) = (-1)^{m+n} Z_{\ell mn}(\xi) \quad (8)$$

to provide a unique determination of the sign of $Z_{\ell mn}(\xi)$ when m is less than n. Owing to equations (7) and (8), it
is found that for any λ the numberical values of $Z_{\lambda mn}(\xi)$ necessary to be calculated are tabulated in Table I.

TABLE I

$Z_{\lambda mn}(\xi)$ to Be Calculated

<table>
<thead>
<tr>
<th>$Z_{\lambda m}(\xi)$</th>
<th>$Z_{\lambda m}(\xi-1)$</th>
<th>$Z_{\lambda m}(\xi-2)$</th>
<th>$Z_{\lambda m}(\xi-3)$</th>
<th>$Z_{\lambda m}(\xi-4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{\lambda m}(\xi)$</td>
<td>$Z_{\lambda m}(\xi-1)$</td>
<td>$Z_{\lambda m}(\xi-2)$</td>
<td>$Z_{\lambda m}(\xi-3)$</td>
<td>$Z_{\lambda m}(\xi-4)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Equation (1), the first element of Table I takes the form

$$Z_{\lambda m}(\xi) = \left(\frac{2\lambda+1}{2}\right)^{\lambda} \cdot \left(1-\xi\right)^{\lambda}.$$ \(\text{(9)}\)

Putting $m = \lambda$ [hence, the second term of the right side of equation (6) equals zero], $n = -\lambda$ and substituting the value of $Z_{\lambda m}(\xi)$ into equation (6) the value of $Z_{\lambda m}(\xi-1)$ is obtained. In a similar manner the remaining elements of the first column in Table I are obtained one by one. As for the second column, according to equation (7), $Z_{\lambda m}(\xi-1)$ equals

$Z_{\lambda m}(\xi-1)(\xi)$, putting $m = (\lambda-1)$, $n = -\lambda$ and substituting $Z_{\lambda m}(\xi)$ of the first column and $Z_{\lambda m}(\xi-1)(\xi)$ into equation (6) the value of $Z_{\lambda m}(\xi-1)(\xi-1)$ is then derived and the remaining elements of this column are derived similarly. This process is repeated for the remaining elements of Table I.
For the exceptional case $\xi = 1$, $Z_{l m n}(l)$ deduced from equation (1) has the form

$$Z_{l m n}(\xi) = \begin{cases} \left(\frac{2l+1}{2} \right)^{\frac{1}{2}}, & m = n = 0, 1, 2, \ldots, l; \\ 0, & m \neq n. \end{cases} \quad (10)$$

Hence, the values of the whole $Z_{l m n}(l)$ are obtained readily by equation (10) without using the recurrence relation.

Finally, it should be noted that errors of $Z_{l m n}(\xi)$ generated by successive application of the recurrence relation would be greater than by Fourier series expansion; especially for large value of l. However, in texture analysis the accuracy of measured pole figure data would be much lower than the accuracy of $Z_{l m n}(\xi)$ obtained by either method. So, errors of $Z_{l m n}(\xi)$ have no significant influence on ODF computation.

CONCLUSION

An ALGOL-60 program has been written for the calculation of an array of $Z_{l m n}(\xi)$ by means of a recurrence relation. The calculation is simpler, the program shorter, and the running time less in comparison with previously available algorithms.

Use of a recurrence relation requires the generation of values of the complete array of $Z_{l m n}(\xi)$. The program is therefore most suitable for the three-dimensional analysis of materials of low symmetry systems.

ACKNOWLEDGEMENTS

We acknowledge our gratitude to Dr. H. Hu of the U.S. Steel Corp., and Dr. P. R. Morris of Armco, Inc. They have read our manuscript and offered helpful advice. Dr. P. R. Morris proposed these equations

$$Z_{l m n}(\xi) = (-1)^{l+m} \cdot Z_{l m n}(-\xi)$$

and

$$Z_{l m n}(\xi) = (-1)^{l+n} \cdot Z_{l m n}(-\xi)$$

to improve our computing program, and we shall try to test this idea with great pleasure in the near future.

REFERENCES