Nonlinear Second Order System of Neumann Boundary Value Problems at Resonance*

Chaitan P. Gupta†
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439-4801

Abstract
Let \(f : [0, \pi] \times \mathbb{R}^N \to \mathbb{R}^N \), \((N \geq 1) \) satisfy Caratheodory conditions, \(g(x) \in \mathcal{L}^1([0, \pi]; \mathbb{R}^N) \). This paper studies the system of nonlinear Neumann boundary value problems
\[
\begin{align*}
 x''(t) + f(t, x(t)) &= g(t), & 0 < t < \pi, \\
 x'(0) &= x'(\pi) = 0.
\end{align*}
\]
This problem is at resonance since the associated linear boundary value problem
\[
\begin{align*}
 x''(t) = g(t), & \quad 0 < t < \pi, \\
 x'(0) &= x'(\pi) = 0,
\end{align*}
\]
has \(\lambda = 0 \) as an eigenvalue. Asymptotic conditions on the nonlinearity \(f(t, x(t)) \) are offered to give existence of solutions for the nonlinear systems. The methods apply to the corresponding system of Lienard-type periodic boundary value problems.

Key words and phrases: Second-order system of Neumann boundary value problems, resonance at infinitely many eigenvalues, absence of \(L_\infty \)-resonance, asymptotic resonance conditions, Fredholm operator

AMS (MOS) Subject Classification: 34B15, 34B99

1 Introduction

Let \(\mathbb{R}^N \) denote the \(N \)-dimensional Euclidean space. For \(x = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^N \), and \(y = (y_1, y_2, \ldots, y_N) \in \mathbb{R}^N \), let \(|x| = \sqrt{x_1^2 + x_2^2 + \ldots + x_N^2} \), and \(<x, y> = x_1y_1 + x_2y_2 + \ldots + x_Ny_N \) denote the Euclidean norm of \(x \) and the inner product of \(x \) and \(y \) in \(\mathbb{R}^N \), respectively. Let

*This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.
†Permanent address: Department of Mathematical Science, Northern Illinois University, DeKalb, IL 60115.
$f = (f_1, f_2, \ldots, f_N) : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N$ be a function satisfying Caratheodory’s conditions, and let $e : [0, \pi] \rightarrow \mathbb{R}^N$ be a Lebesgue integrable function.

This paper is devoted to the study of systems of Neumann boundary value problems

$$-x''(t) + f(t, x(t)) = e(t), \quad 0 < t < \pi,$$
$$x'(0) = x' (\pi) = 0, \quad (1.1)$$

and

$$x''(t) + f(t, x(t)) = e(t), \quad 0 < t < \pi,$$
$$x'(0) = x' (\pi) = 0. \quad (1.2)$$

We obtain the existence of a solution for (1.1)-(1.2) when $\int_0^\pi e(t) dt = 0$ and when, for each $i = 1, 2, \ldots, N$, there exists a real number $r_i > 0$ such that

$$i. \quad f_i(t, x)x_i \geq 0,$$

for a.e. $t \in [0, \pi]$ and all $x \in \mathbb{R}^N$ with $|x_i| \geq r_i$, and

$$ii. \quad |f_i(t, x)| \leq \alpha_i(t), \quad (1.5)$$

for a.e. $t \in [0, \pi]$ and all $x \in \mathbb{R}^N$ with $|x_i| \leq r_i$. We give asymptotic conditions on the behavior of $x_i^{-1} f_i(t, x), i = 1, 2, \ldots, N,$ at the first two eigenvalues 0 and 1 of the linear problem

$$x''(t) + \lambda x(t) = 0, \quad 0 < t < \pi,$$
$$x'(0) = x'(\pi) = 0, \quad (1.6)$$

for the problem (1.3)-(1.4).

Our methods can be adapted and similar results obtained for Lienard’s system of equations

$$\pm x''(t) + \left[\frac{d}{dt} \text{grad} F(x(t)) \right] + f(t, x(t)) = e(t), \quad 0 < t < \pi,$$
$$x(0) - x(2\pi) = x'(0) - x'(2\pi) = 0, \quad (1.8)$$

where $F : \mathbb{R}^N \rightarrow \mathbb{R}$ is in $C^2(\mathbb{R}^N, \mathbb{R}), f : [0, 2\pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N$ satisfies Caratheodory’s conditions, and $e : [0, 2\pi] \rightarrow \mathbb{R}^N$ is Lebesgue integrable. The problem (1.9)-(1.10) was studied by Ianacci and Nkashama in [3], where they give sufficient non-resonance conditions for the existence of a solution. We provide in this paper sufficient resonance conditions for the existence of a solution for the problems (1.1)-(1.2) and (1.3)-(1.4) and accordingly for (1.9)-(1.10) in line with our remark above.

Our results and methods are inspired by the results of Gupta and Mawhin [2] for the problem (1.9)-(1.10) when $N = 1$. We present in Section 2 notations and definitions that we need in this paper. In Section 3 we present some lemmas that are extensions to systems of corresponding lemmas in [3]. We present in Section 4 our theorems giving the existence of solutions for the problems (1.1)-(1.2) and (1.3)-(1.4). Our conditions for the existence of solutions for (1.3)-(1.4) allow resonance at infinitely many eigenvalues of the linear problem (1.7)-(1.8). Finally, in Section 5 we present a theorem for the problem (1.3)-(1.4) sharpening the condition for resonance at infinitely many eigenvalues of the linear problem (1.7)-(1.8) in the absence of L^∞-resonance at the second eigenvalue $\lambda = 1$ of (1.7)-(1.8).
2 Notations and Definitions

Let $\mathbb{R}^N, N \geq 1$, denote the N-dimensional Euclidean space. For $x = (x_1, x_2, ..., x_n)$, let

$$|x| = (x_1^2 + x_2^2 + ... + x_N)^{1/2} \quad (2.1)$$

denote the Euclidean norm of x in \mathbb{R}^N; and for $x = (x_1, x_2, ..., x_N)$ and $y = (y_1, y_2, ..., y_N)$ in \mathbb{R}^N, let

$$< x, y > = \sum_{i=1}^{N} x_i y_i \quad (2.2)$$

denote the inner product of x and y in \mathbb{R}^N.

We shall use the following spaces:

(i) the Lebesgue spaces $L^p([0, \pi], \mathbb{R}^N), 1 \leq p \leq \infty$, with the norms defined by

$$||f||_{L^p_N} = \left[\sum_{i=1}^{N} \left(\frac{1}{\pi} \int_0^\pi |f_i|^p dt \right)^{2/p} \right]^{1/2}, \text{ for } 1 \leq p < \infty,$$

and

$$||f||_{L^\infty_N} = \left(\sum_{i=1}^{N} |f_i|_{L^\infty}^2 \right)^{1/2}, \text{ for } p = \infty;$$

(ii) the space of $C([0, \pi], \mathbb{R}^N)$ of continuous functions with its usual norm, the norm induced by the Lebesgue space $L^\infty([0, \pi], \mathbb{R}^N)$;

(iii) the Sobolev space $H^1([0, \pi], \mathbb{R}^N)$ defined by

$$H^1([0, \pi], \mathbb{R}^N) = \{ x : [0, \pi] \to \mathbb{R}^N | x \text{ is absolutely continuous and } x' \in L^2([0, \pi], \mathbb{R}^N) \},$$

with the inner product defined by

$$(x, y)_{H^1_N} = \left< \frac{1}{\pi} \int_0^\pi x(t) dt, \frac{1}{\pi} \int_0^\pi y(t) dt \right> + \frac{1}{\pi} \int_0^\pi <x'(t), y'(t)> dt,$$

and the corresponding norm $|| \cdot ||_{H^1_N}$ defined by

$$||x||_{H^1_N} = \left(\frac{1}{\pi} \int_0^\pi |x'(t)|^2 dt + \frac{1}{\pi} \int_0^\pi |x(t)|^2 dt \right)^{1/2};$$

(iv) the Sobolev space $\tilde{H}^1([0, \pi], \mathbb{R}^N)$ defined by

$$\tilde{H}^1([0, \pi], \mathbb{R}^N) = \{ x \in H^1([0, \pi], \mathbb{R}^N) | \int_0^\pi x(t) dt = 0 \}$$

with the norm induced by $H^1([0, \pi], \mathbb{R}^N)$; and

(v) the Sobolev space $W^{2,1}([0, \pi], \mathbb{R}^N)$ defined by

$$W^{2,1}([0, \pi], \mathbb{R}^N) = \{ x : [0, \pi] \to \mathbb{R}^N | x \text{ and } x' \text{ absolutely continuous} \}$$
with the norm defined by
\[\|x\|_{W^{2,1}_N} = \sum_{j=0}^{2} \|x^{(j)}\|_{L^1_N}, \]
where \(x^{(0)} = x, x^{(1)} = x', x^{(2)} = x''\).

For the sake of simplicity in the notation of the space, we shall omit \(\mathbb{R}^N\) when \(N = 1\).

We note that for \(x \in H^1([0, \pi]; \mathbb{R}^N), x = (x_1, x_2, ..., x_N)\) if and only if \(x_i \in H^1[0, \pi]\), for \(i = 1, 2, ..., N\). Also, every \(x_i \in H^1[0, \pi]\) can be written in the form
\[x_i(t) = \bar{x}_i + \bar{\xi}_i(t) \]
with \(\bar{x}_i \in \dot{H}^1[0, \pi]\) and \(\bar{\xi}_i = \frac{1}{\pi} \int_0^\pi x_i(t) dt\). Moreover,
\[\|x_i\|_{H^1} = (\bar{x}_i^2 + \frac{1}{\pi} \int_0^\pi (\bar{\xi}_i'(t))^2 dt)^{1/2}, \]
so that we have
\[\|x\|_{H^1_N} = (\sum_{i=1}^{N} \|x_i\|_{H^1})^{1/2}. \]

For \(x = (x_1, x_2, ..., x_N) \in L^1([0, \pi], \mathbb{R}^N)\), we write \(\bar{x} = (\bar{x}_1, ..., \bar{x}_N)\), where \(\bar{x}_i = \frac{1}{\pi} \int_0^\pi x_i(t) dt, i = 1, 2, ..., N\) and \(\bar{x} = x - \bar{x}\).

3 Technical Lemmas

Lemma 1 Let \(\Gamma = (\Gamma_1, \Gamma_2, ..., \Gamma_N) \in L^1([0, \pi], \mathbb{R}^N)\) be such that for a.e. \(t \in [0, \pi]\),
\[\Gamma_i(t) \leq 1, \tag{3.1} \]
for \(i = 1, 2, ..., N\) with strict inequality holding on a subset of \([0, \pi]\) of positive measure. Then there exists a \(\delta = \delta(\Gamma) > 0\) such that for all \(\bar{x} \in \dot{H}^1([0, \pi], \mathbb{R}^N)\) with \(\bar{x}'(0) = \bar{x}'(\pi) = 0, \tag{3.2} \]
\[B_{\Gamma}(\bar{x}) = \frac{1}{\pi} \int_0^\pi [||\bar{z}'(t)||^2 - \sum_{i=1}^{N} \Gamma_i(t)\bar{z}_i^2(t)] dt \]
\[\geq \delta \|\bar{z}\|_{H^1_N}^2. \]

Proof. Using (3.1), the method of expanding a scalar function \(\bar{x}_i \in \dot{H}^1[0, \pi]\), with \(\bar{x}_i'(0) = 0\) and \(\bar{x}_i'(\pi) = 0\), into a cosine Fourier series, and Parseval's identities for \(\bar{x}_i\) and \(\bar{x}_i'\), we see that
\[B_{\Gamma}(\bar{x}) = \frac{1}{\pi} \int_0^\pi [||\bar{z}'(t)||^2 - \sum_{i=1}^{N} \Gamma_i(t)\bar{z}_i^2(t)] dt \]
\[= \sum_{i=1}^{N} \frac{1}{\pi} \int_0^\pi [(\bar{x}_i'(t))^2 - \Gamma_i(t)\bar{z}_i^2(t)] dt \]
\[\geq 0, \tag{3.3} \]
for all \(\tilde{x} \in \tilde{H}^1([0, \pi], \mathbb{R}^N) \) with \(\tilde{x}'(0) = \tilde{x}'(\pi) = 0 \). Moreover,

\[
B_\Gamma(\tilde{x}) = 0,
\]

if and only if

\[
\tilde{x}(t) = A \cos t,
\]

for some \(A = (A_1, A_2, \ldots, A_N) \in \mathbb{R}^N \). But we then get from (3.4) and (3.5) that

\[
0 = B_\Gamma(\tilde{x}) = \sum_{i=1}^{N} \frac{A_i^2}{\pi} \int_0^{\pi} (1 - \Gamma_i(t)) \cos^2 t dt;
\]

so that by our assumption (3.1) on \(\Gamma_i \) we have \(A_i = 0 \) for every \(i = 1, 2, \ldots, N \), and hence \(\tilde{x} = 0 \).

Let us next assume that the conclusion of the lemma is false. Then there exists a sequence \(\{\tilde{x}_n\}, \tilde{x}_n \in \tilde{H}^1([0, \pi], \mathbb{R}^N) \), such that

\[
B_\Gamma(\tilde{x}_n) \to 0 \quad \text{as} \quad n \to \infty,
\]

\[
||\tilde{x}_n||_{H^1_N} = 1, \quad \text{for every} \quad n = 1, 2, \ldots. \tag{3.6}
\]

We may also assume, by going to a subsequence if necessary, that there exists an \(\tilde{x} \in \tilde{H}^1([0, \pi], \mathbb{R}^N) \) such that

\[
\tilde{x}_n \to \tilde{x} \quad \text{weakly in} \quad H^1([0, \pi], \mathbb{R}^N),
\]

\[
\tilde{x}_n \to \tilde{x} \quad \text{in} \quad C([0, \pi], \mathbb{R}^N). \tag{3.7}
\]

Using Theorem 5.2 in [4], we have that \(B_\Gamma(\tilde{x}) \geq 0 \), even though \(\tilde{x}'(0) \) and \(\tilde{x}'(\pi) \) may not be zero. Also, from (3.7) and the weak lower semicontinuity of the norm in \(H^1([0, \pi], \mathbb{R}^N) \), we have that

\[
||\tilde{x}||_{H^1_N} \leq \liminf_{n \to \infty} ||\tilde{x}_n||_{H^1_N} = 1,
\]

and hence

\[
0 \leq B_\Gamma(\tilde{x}) \leq \liminf_{n \to \infty} B_\Gamma(\tilde{x}_n) = 0.
\]

Thus \(\tilde{x} = 0 \), from the first part of the proof. We next see that

\[
\frac{1}{\pi} \int_0^{\pi} |\tilde{x}_n'|^2 dt = B_\Gamma(\tilde{x}_n) + \frac{1}{\pi} \sum_{i=1}^{N} \int_0^{\pi} \Gamma_i(t)|\tilde{x}_n(t)|^2 dt
\]

\[
\to \quad \frac{1}{\pi} \sum_{i=1}^{N} \int_0^{\pi} \Gamma_i(t)|\tilde{x}_i(t)|^2 dt = \frac{1}{\pi} \int_0^{\pi} |\tilde{x}'(t)|^2 dt.
\]

Thus, \(\tilde{x}_n \to \tilde{x} \) in \(H^1([0, \pi], \mathbb{R}^N) \) and \(||\tilde{x}||_{H^1_N} = 1 \), which forms a contradiction. Hence the lemma.

\(\square \)

\textbf{Lemma 2} Let \(\Gamma = (\Gamma_1, \Gamma_2, \ldots, \Gamma_N) \in L^1([0, \pi], \mathbb{R}^N) \) and \(\Gamma_\alpha = (\Gamma_{\alpha_1}, \ldots, \Gamma_{\alpha_N}) \in L^1([0, \pi], \mathbb{R}^N) \). Let \(\Gamma_\beta = (\Gamma_{\beta_1}, \ldots, \Gamma_{\beta_N}) \in L^1([0, \pi], \mathbb{R}^N) \) and \(\Gamma_\infty = (\Gamma_{\infty_1}, \ldots, \Gamma_{\infty_N}) \in L^\infty([0, \pi], \mathbb{R}^N) \) be such that

\[
(i) \quad \Gamma = \Gamma_\alpha + \Gamma_\beta + \Gamma_\infty,
\]

\[
(ii) \quad \text{for a.e. } t \in [0, \pi] \text{ and every } i = 1, 2, \ldots, N, \Gamma_{\alpha_i}(t) \leq 1, \tag{3.8}
\]

for all \(\tilde{x} \in \tilde{H}^1([0, \pi], \mathbb{R}^N) \) with \(\tilde{x}'(0) = \tilde{x}'(\pi) = 0 \). Moreover,
with strict inequality holding on a subset of \([0, \pi]\) of positive measure,

\[
(iii) \quad \frac{\pi^2}{3} ||\Gamma_\beta||_{L_N^\infty} + ||\Gamma_\infty||_{L_N^\infty} < \delta(\Gamma_\alpha),
\]

where \(\delta(\Gamma_\alpha) > 0\) is given by Lemma 1.

Then for every \(\tilde{x} \in \tilde{H}^1([0, \pi], \mathbb{R}^N)\) with \(\tilde{x}'(0) = \tilde{x}'(\pi) = 0\),

\[
B_{\Gamma}(\tilde{x}) \geq \left[\delta(\Gamma_\alpha) - \frac{\pi^2}{3} ||\Gamma_\beta||_{L_N^\infty} - ||\Gamma_\infty||_{L_N^\infty} \right] ||\tilde{x}||_{H_N^1}^2.
\]

Proof. Using the fact that \(H^1([0, \pi], \mathbb{R}^N) \subset C([0, \pi], \mathbb{R}^N)\) and the inequalities (see [8])

\[
||\tilde{x}||_{L_N^2} \leq ||\tilde{x}'||_{L_N^2} \leq ||\tilde{x}||_{H_N^1},
\]

\[
||\tilde{x}||_{L_N^\infty} \leq \frac{\pi}{\sqrt{3}} ||\tilde{x}'||_{L_N^2} \leq \frac{\pi}{\sqrt{3}} ||\tilde{x}||_{H_N^1},
\]

for all \(\tilde{x} \in \tilde{H}^1([0, \pi]; \mathbb{R}^N)\), as well as Lemma 1, we see that

\[
B_{\Gamma}(\tilde{x}) = \frac{1}{\pi} \int_0^\pi ||\tilde{x}'(t)||^2 - \sum_{i=1}^N \Gamma_{\alpha,i}(t)\tilde{x}_i^2(t) dt
\]

\[
= \frac{1}{\pi} \int_0^\pi ||\tilde{x}'(t)||^2 - \sum_{i=1}^N \Gamma_{\alpha,i}(t)\tilde{x}_i^2(t) dt
\]

\[
- \frac{1}{\pi} \sum_{i=1}^N \int_0^\pi \Gamma_{\beta,i}(t) + \Gamma_{\infty,i}(t)\tilde{x}_i^2(t) dt
\]

\[
\geq \delta(\Gamma_\alpha) ||\tilde{x}||_{H_N^1}^2 - ||\Gamma_\beta||_{L_N^\infty} ||\tilde{x}||_{L_N^2}^2 - ||\Gamma_\infty||_{L_N^\infty} ||\tilde{x}||_{L_N^\infty}^2
\]

\[
\geq \left(\delta(\Gamma_\alpha) - \frac{\pi^2}{3} ||\Gamma_\beta||_{L_N^\infty} - ||\Gamma_\infty||_{L_N^\infty} \right) ||\tilde{x}||_{H_N^1}^2.
\]

\[
\Box
\]

Definition 1 For \(x = (x_1, x_2, ..., x_N)\) and \(y = (y_1, y_2, ..., y_N)\) in \(\mathbb{R}^N\), we say \(x \leq y\) if \(x_i \leq y_i\) for every \(i = 1, 2, ..., N\).

Lemma 3 Let \(\gamma = (\gamma_1, \gamma_2, ..., \gamma_N) \in L^1([0, \pi], \mathbb{R}^N)\) and \(\Gamma = \Gamma_\alpha + \Gamma_\beta + \Gamma_\infty \in L^1([0, \pi], \mathbb{R}^N)\) be as in Lemma 2, and let \(\delta(\Gamma_\alpha)\) be given by Lemma 1. Then for all measurable functions \(p : [0, \pi] \to \mathbb{R}^N\) such that \(\tilde{\gamma} \leq \tilde{p}\), \(p(t) \leq \Gamma(t)\) for a.e. \(t \in [0, \pi]\) and all \(x \in W^{2,1}([0, \pi], \mathbb{R}^N)\) with \(x'(0) = x'(\pi) = 0\),

\[
\frac{1}{\pi} \int_0^\pi < \tilde{x} - \tilde{x}(t), \tilde{x}'(t) + p^T(t)I\tilde{x}(t) > dt
\]

\[
\geq \eta||\tilde{x}||^2 + \left(\delta(\Gamma_\alpha) - \frac{\pi^2}{3} ||\Gamma_\beta||_{L_N^\infty} - ||\Gamma_\infty||_{L_N^\infty} \right) ||\tilde{x}||_{H_N^1}^2.
\]

Here \(\eta = \min\{|\tilde{\gamma}_i| 1 \leq i \leq N\}\), \(I\) denotes the \(N \times N\) identity matrix, \(p^T(t)\) denotes the transpose of the column vector \(\text{col.}\{p_1(t), p_2(t), ..., p_N(t)\}\), and all vectors are understood as column vectors for the purpose of matrix arithmetic.
Proof. For \(x = (x_1, x_2, \ldots, x_N) \in W^{2,1}([0, \pi], \mathbb{R}^N) \) with \(x'(0) = x'(\pi) = 0 \), we have (on integrating by parts and from Lemma 2) that
\[
\frac{1}{\pi} \int_0^\pi < \ddot{x} - \dddot{x}(t), \dddot{x}(t) + p'T(t)I\dddot{x}(t) > dt
\]
\[
= \frac{1}{\pi} \int_0^\pi |\dddot{x}'(t)|^2 dt + \sum_{i=1}^N \frac{1}{\pi} \int_0^\pi p_i(t)(\dddot{x}^2_i - \dddot{x}^2_i(t))dt
\]
\[
= \frac{1}{\pi} \int_0^\pi |\dddot{x}'(t)|^2 - \sum_{i=1}^N p_i(t)\dddot{x}^2_i(t)dt + \sum_{i=1}^N \dddot{p}_i\dddot{x}^2_i
\]
\[
\geq \sum_{i=1}^N \dddot{g}_i\dddot{x}^2_i + [\delta(\Gamma_\alpha) - \frac{\pi^2}{3}||\Gamma_\rho||_{L^1_\mathcal{H}} - ||\Gamma_\infty||_{L^2_\mathcal{H}}]||\dddot{x}||^2_{H^1_\mathcal{H}}
\]
\[
\geq \eta||\dddot{x}||^2 + [\delta(\Gamma_\alpha) - \frac{\pi^2}{3}||\Gamma_\beta||_{L^1_\mathcal{H}} - ||\Gamma_\infty||_{L^2_\mathcal{H}}]||\dddot{x}||^2_{H^1_\mathcal{H}}.
\]
Hence the lemma follows. \(\Box \)

4 Asymptotic Resonance Conditions for the Existence of Solutions

Let \(f : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) be a function satisfying Caratheodory's conditions, namely,

(i) for each \(x \in \mathbb{R}^N \), the function \(t \in [0, \pi] \rightarrow f(t, x) \in \mathbb{R}^N \) is measurable on \([0, \pi] \);

(ii) for a.e. \(t \in [0, \pi] \), the function \(x \in \mathbb{R}^N \rightarrow f(t, x) \in \mathbb{R}^N \) is continuous; and

(iii) for each \(r > 0 \), there exists a function \(\alpha(t) \in L^1[0, \pi] \) such that \(|f(t, x)| \leq \alpha(t) \) for a.e. \(t \in [0, \pi] \) and all \(x \in \mathbb{R}^N \) with \(|x| \leq r \).

Let \(x = C([0, \pi], \mathbb{R}^N) \) and \(Y = L^1([0, \pi], \mathbb{R}^N) \). Also, let \(Y_1 \subset Y \) denote the subspace of \(Y \) defined by
\[
Y_1 = \{ x \in L^1([0, \pi], \mathbb{R}^N) | x_i(t) \text{ is constant for a.e. } t \in [0, \pi], i = 1, 2, \ldots, N \}; \quad (4.1)
\]
and let \(Y_2 \) be the closed subspace of \(Y \) such that \(Y = Y_1 \oplus Y_2 \). We define the canonical projections \(P : Y \rightarrow Y_1 \) and \(Q : Y \rightarrow Y_2 \) by setting, for \(x \in Y \),
\[
Px(t) = x(t) - \frac{1}{\pi} \int_0^\pi x(t)dt = \ddot{x}(t), \quad (4.2)
\]
\[
Qx(t) = \frac{1}{\pi} \int_0^\pi x(t)dt = \dddot{x}, \quad (4.3)
\]
for \(t \in [0, \pi] \).

We next define a linear operator \(L : D(L) \subset X \rightarrow Y \) by setting
\[
D(L) = \{ x \in W^{2,1}([0, \pi], \mathbb{R}^N) | x'(0) = x'(\pi) = 0 \}; \quad (4.4)
\]
and for \(x \in D(L) \),
\[
Lx = -x''. \quad (4.5)
\]
Now, for $x \in D(L)$, we see, on integrating by parts, that

$$
(Lx, x) = \frac{1}{\pi} \int_0^\pi < -x''(t), x(t) > \, dt
$$

$$
= \frac{1}{\pi} \int_0^\pi |x'(t)|^2 \, dt = ||x||_{L^2}^2 \geq 0. \tag{4.6}
$$

Lemma 4 For every given $y \in L^1([0, \pi], \mathbb{R}^N)$ with $\bar{y} = 0$, there exists a unique $x \in C([0, \pi], \mathbb{R}^N)$ with $\bar{x} = 0$ such that

$$
x''(t) = y(t), \quad 0 < t < \pi, \tag{4.7}
$$

$$
x'(0) = x'(\pi) = 0. \tag{4.8}
$$

Proof. It is easy to see that

$$
x(t) = -\int_0^t (t - \tau)y(\tau)d\tau + \frac{1}{2\pi} \int_0^\pi (\pi - \tau)^2 y(\tau)d\tau,
$$

for $t \in [0, \pi]$, is the unique solution for (4.7)-(4.8) with $\bar{x} = 0$. Hence the lemma follows. \square

It follows from Lemma 4 that there is a bounded linear operator $K : Y_1 \rightarrow X$ such that for $y \in Y$,

$$
KPy \in D(L), LKPy = Py, \quad (KPy, Py) \geq 0. \tag{4.10}
$$

Now let $N : X \rightarrow Y$ be a nonlinear operator defined by

$$
(Nx)(t) = f(t, x(t)), t \in [0, \pi], \tag{4.11}
$$

where $f : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N$ is a given function satisfying Caratheodory's conditions. It follows easily from the Arzela-Ascoli theorem that the operator $KPN : X \rightarrow X$ is a compact operator (i.e., it maps bounded subsets in X into relatively compact subsets of X) and $QN : X \rightarrow X$ is a bounded operator (i.e., QN maps bounded subsets in X into bounded subsets in X).

Theorem 1 Let $f = (f_1, f_2, ..., f_N) : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions. Suppose that for each $i = 1, 2, ..., N$ there exist real numbers r_i, R_i, a_i and A_i with $r_i < 0 < R_i$ and $a_i \leq A_i$ such that

(i) for a.e. $t \in [0, \pi]$ and all $x \in \mathbb{R}^N$ with $x_i \geq R_i$,

$$
f_i(t, x) \geq A_i, \tag{4.12}
$$

(ii) for a.e. $t \in [0, \pi]$ and all $x \in \mathbb{R}^N$ with $x_i \leq r_i$,

$$
f_i(t, x) \leq a_i. \tag{4.13}
$$

Suppose further that for every real number $r \geq 0$ and each $i = 1, 2, ..., N$ there exist functions $\alpha_i(t) \in L^1[0, \pi]$ such that

$$
|f_i(t, x)| \leq \alpha_i(t), \tag{4.14}
$$

where $\alpha_i(t) \in L^1[0, \pi]$.
for a.e. \(t \in [0, \pi] \) and all \(x \in \mathbb{R}^N \) with \(|x_i| \leq r \). Then for every \(e \in L^1([0, \pi], \mathbb{R}^N) \) with \(a_i \leq \bar{e}_i \leq A_i \) for each \(i = 1, 2, \ldots, N \) the boundary value problem

\[
-x''(t) + f(t, x(t)) = e(t), \quad 0 < t < \pi,
\]

(4.15)

\[
x'(0) = x'{}'(\pi) = 0,
\]

(4.16)

has at least one solution.

Proof. Define \(F = (F_1, F_2, \ldots, F_N) : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) by

\[
F_i(t) = f_i(t) - \frac{A_i + a_i}{2},
\]

(4.17)

for \((t, x) \in [0, \pi] \times \mathbb{R}^N \) and \(i = 1, 2, \ldots, N \). Also define \(E : [0, \pi] \rightarrow \mathbb{R}^N \), \(E = (E_1, E_2, \ldots, E_N) \), by

\[
E_i(t) = e_i(t) - \frac{A_i + a_i}{2},
\]

(4.18)

for \(t \in [0, \pi] \) and \(i = 1, 2, \ldots, N \). Clearly \(F \) satisfies Caratheodory's conditions, and for \(i = 1, 2, \ldots, N \) and for a.e. \(t \in [0, \pi] \),

\[
F_i(t, x) \geq \frac{A_i - a_i}{2} \geq 0,
\]

(4.19)

for all \(x \in \mathbb{R}^N \) with \(x_i \geq R_i \), while

\[
F_i(t, x) \leq \frac{A_i - A_i}{2} \leq 0,
\]

(4.20)

for all \(x \in \mathbb{R}^N \) with \(x_i \leq r_i \). Further, for every real number \(r \geq 0 \) and each \(i = 1, 2, \ldots, N \) there exist functions \(\beta_{r_i} \in L^1[0, \pi] \) such that

\[
|F_i(t, x)| \leq \beta_{r_i}(t),
\]

(4.21)

for a.e. \(t \in [0, \pi] \) and all \(x \in \mathbb{R}^N \) with \(|x_i| \leq r \). Indeed, in view of (4.14), we have \(\beta_{r_i}(t) = \alpha_{r_i}(t) + \frac{1}{2}|A_i + a_i| \) for \(t \in [0, \pi] \). We also have for \(i = 1, 2, \ldots, N \),

\[
\frac{1}{2}(a_i - A_i) \leq \bar{e}_i \leq \frac{1}{2}(A_i - a_i).
\]

(4.22)

Clearly, (4.15) is equivalent to

\[
-x''(t) + F(t, x(t)) = E(t), \quad 0 < t < \pi.
\]

(4.23)

Let us next define the nonlinear operator \(N : X \rightarrow Y \) by

\[
(Nx)(t) = F(t, x(t)), \quad t \in [0, \pi],
\]

while \(x(t) \in X \). It is easy to see, in view of (4.19), (4.20), and (4.21), that for every \(k \geq 0 \) there exists a constant \(C(k) \geq 0 \) such that

\[
(Nx, x) \geq k||Nx||_Y - C(k),
\]

(4.24)
for \(x \in X \). Now, if \(L : D(L) \subset X \to Y \) is the linear operator defined by (4.4) and (4.5) and \(K : Y_1 \to X \) is the linear operator as in (4.10), then the boundary value problem of (4.23) with (4.16) is equivalent to the operator equation
\[
Lx + Nx = E, \quad x \in X,
\]
which in turn is equivalent to the system of equations
\[
\begin{align*}
Px + KPNx &= KPE \\
QNx &= QE,
\end{align*}
\]
where \(P \) and \(Q \) are as defined by (4.2) and (4.3). Now, (4.26) is clearly equivalent to the single equation
\[
Px + QNx + KPNx = KPE + QE,
\]
which has the form of a compact perturbation of the Fredholm operator \(P \) of index zero. We can, therefore, apply the version given in [6: Theorem 1, Corollary 1] or [5: Theorem IV.4] or [7] of the Leray-Schauder Continuation theorem which ensures the existence of a solution for (4.27) if the set of all possible solutions of the family of equations
\[
Px + (1 - \lambda)Qx + \lambda QNx + \lambda KPN = \lambda KPE + \lambda QE,
\]
\(\lambda \in (0, 1) \), is a priori bounded in \(X \), independently of \(\lambda \). Notice that (4.28) is equivalent to the system of equations
\[
\begin{align*}
Px + \lambda KPNx &= \lambda KPE \\
(1 - \lambda)Qx + \lambda QNx &= \lambda QE.
\end{align*}
\]
If \(x_\lambda \in X \) is a solution for (4.29) for some \(\lambda \in (0, 1) \), then \(x_\lambda \in D(L) \) and
\[
\begin{align*}
Lx_\lambda + \lambda PNx_\lambda &= \lambda PE, \\
(1 - \lambda)Qx_\lambda + \lambda QNx_\lambda &= \lambda QE.
\end{align*}
\]
Now we get from (4.30) that
\[
(Lx_\lambda, Px_\lambda) + \lambda(PNx_\lambda, Px_\lambda) = \lambda(PE, Px_\lambda),
\]
\[
(1 - \lambda)(Qx_\lambda, Qx_\lambda) + \lambda(QNx_\lambda, Qx_\lambda) = \lambda(QE, Qx_\lambda).
\]
Since \((Lx_\lambda, Px_\lambda) = (Lx_\lambda, x_\lambda) \), and given (4.6) and (4.24), we obtain that
\[
||Px_\lambda||^2_H + k||Nz_\lambda||_Y - C(k) \leq ||PE||_Y \cdot ||Px_\lambda||_X + |QE| \cdot |Qx_\lambda|.
\]
Now, the second equation in (4.30) gives for each \(i = 1, 2, ..., N \) that
\[
(1 - \lambda)\frac{1}{\pi} \int_0^\pi x_{\lambda i}(t)dt + \lambda \frac{1}{\pi} \int_0^\pi F_i(t, x_\lambda(t))dt = \frac{1}{\pi} \int_0^\pi E_i(t)dt.
\]
If \(x_{\lambda i}(t) \geq R_i \) for every \(t \in [0, \pi] \), we get from (4.32), in view of (4.19) and (4.22), that
\[
(1 - \lambda)R_i + \frac{\lambda}{2}(A_i - a_i) \leq \frac{\lambda}{2}(A_i - a_i).
Thus, $(1 - \lambda)R_i \leq 0$, and we have a contradiction. Similarly, $x_{\lambda i}(t) \leq r_i$ for every $t \in [0, \pi]$ leads to a contradiction. So for every $i = 1, 2, ..., N$ there exists a $r_i \in [0, \pi]$ such that $r_i \leq x_{\lambda i}(r_i) \leq R_i$.

It follows that there exist constants $C_1 \geq 0$ and $C_2 \geq 0$, independent of $\lambda \in (0, 1)$ such that

$$||x_\lambda||_X \leq C_1 + C_2||Px_\lambda||_{H_N^2}. \tag{4.33}$$

Finally, using the facts that $||Px_\lambda||_X \leq 2||x_\lambda||_X$ and $|Qx_\lambda| \leq ||x_\lambda||_X$, we have that

$$||Px_\lambda||_{H_N^2}^2 + k||Nx_\lambda||_Y - C(k) \leq C_3(C_1 + C_2||Px_\lambda||_{H_N^2}),$$

where $C_3 = 2||PE||_Y + |QE|$. Hence, there exists a constant $C > 0$, independent of $\lambda \in (0, 1)$, such that

$$||Px_\lambda||_{H_N^2} \leq C,$$

which implies, from (4.33), that

$$||x_\lambda||_X \leq C_1 + C_2C.$$

We have thus shown that the set of solutions of (4.28) is bounded in X independently of $\lambda \in (0, 1)$. Hence the theorem follows. \square

Theorem 2 Let $\Gamma = (\Gamma_1, \Gamma_2, ..., \Gamma_N) \in L^1([0, \pi], R^N)$ be as in Lemma 2. Let $f = (f_1, f_2, ..., f_N) : [0, \pi] \times R^N \rightarrow R^N$ be as in Theorem 1. Assume, further, for each $i = 1, 2, ..., N$

$$\lim \sup_{|x_i| \rightarrow \infty} \frac{f_i(t, x)}{x_i} \leq \Gamma_i(t), \tag{4.34}$$

uniformly a.e. in $t \in [0, \pi]$. Then, for every $e \in L^1([0, \pi], R^N)$ with $a_i \leq \bar{e}_i \leq A_i$ for each $i = 1, 2, ..., N$ the boundary value problem

$$x''(t) + f(t, x(t)) = e(t), \quad 0 < t < \pi, \tag{4.35}$$

$$x'(0) = x'(\pi) = 0, \tag{4.36}$$

has at least one solution.

Proof. Define $F = (F_1, F_2, ..., F_n) : [0, \pi] \times R^N \rightarrow R^N$ and $E : [0, \pi] \rightarrow R^N$, $E = (E_1, E_2, ..., E_N)$, as in the proof of Theorem 1, so that (4.19), (4.20), (4.21), and (4.22) hold. We have from (4.34) for each $i = 1, 2, ..., N$ that

$$\lim \sup_{|x_i| \rightarrow \infty} \frac{F_i(t, x)}{x_i} \leq \Gamma_i(t), \tag{4.37}$$

uniformly a.e. in $t \in [0, \pi]$. We also see for each $i = 1, 2, ..., N$ for all $x \in R^N$ with $|x_i| \geq \max(R_i, -r_i)$ that $F_i(t, x)x_i \geq 0$, so that $\Gamma_i(t) \geq 0$ a.e. in $[0, \pi]$. Moreover, the equation (4.35) is equivalent to

$$x''(t) + F(t, x(t)) = E(t), \quad 0 < t < \pi. \tag{4.38}$$

Now let $\eta = \frac{1}{2N}[\delta(\Gamma_\alpha) - \frac{\pi^2}{3||\Gamma_\alpha||_{L_N^2}} - ||\Gamma_\infty||_{L_N^2}] > 0$. Then for each i there exists a $\rho_i > 0$ such that for a.e. $t \in [0, \pi]$ and all $x \in R^N$ with $|x_i| \geq \rho_i$,

$$0 \leq \frac{F_i(t, x)}{|x_i|} \leq \Gamma_i(t) + \eta. \tag{4.39}$$
Next, set \(\rho = \max\{\rho_i | 1 \leq i \leq N\} \) and define \(\tilde{\gamma} : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) by setting, for \((t, x) \in [0, \pi] \times \mathbb{R}^N \) and each \(i = 1, 2, \ldots, N \),

\[
\tilde{\gamma}_i(t, x) = \begin{cases} \frac{F_i(t, x)}{x_i} & \text{if } |x_i| \geq \rho, \\ \frac{F_i(t, x_1, \ldots, x_{i-1}, \rho, x_{i+1}, \ldots, x_N)}{\rho} (x_i) & \text{if } 0 \leq x_i < \rho, \\ + (1 - \frac{x_i}{\rho}) \Gamma_i(t) & \text{if } -\rho \leq x_i < 0.
\end{cases}
\]

Then \(\tilde{\gamma} \) satisfies Caratheodory's conditions and

\[
0 \leq \tilde{\gamma}_i(t, x) \leq \Gamma_i(t) + \eta, \tag{4.40}
\]

for a.e. \(t \in [0, \pi] \), all \(x \in \mathbb{R}^N \), and \(i = 1, 2, \ldots, N \). If we next set \(h = (h_1, h_2, \ldots, h_N) \) with

\[
h_i(t, x) = F_i(t, x) - \tilde{\gamma}_i(t, x)x_i,
\]

for \(t \in [0, \pi] \), \(x \in \mathbb{R}^N \), and \(i = 1, 2, \ldots, N \), then we see from (4.21) and the definition of \(\tilde{\gamma}_i \) that there exist functions \(m_i(t) \in L^1[0, \pi] \) such that

\[
|h_i(t, x)| \leq m_i(t), \tag{4.41}
\]

for a.e. \(t \in [0, \pi] \) and all \(x \in \mathbb{R}^N \). Defining \(g : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N \), \(g = (g_1, g_2, \ldots, g_N) \) by setting

\[
g_i(t, x) = \tilde{\gamma}_i(t, x)x_i
\]

for \((t, x) \in [0, \pi] \times \mathbb{R}^N \), \(i = 1, 2, \ldots, N \), we see that the equation (4.38) is equivalent to

\[
x''(t) + g(t, x(t)) + h(t, x(t)) = E(t). \tag{4.42}
\]

We can next apply Theorem IV.4 of [5] to the boundary value problem posed by (4.42) and (4.36). It suffices to show that the set of solutions of the family of equations

\[
x''(t) + (1 - \lambda)\tilde{T}(t)x(t) + \lambda g(t, x(t)) + \lambda h(t, x(t)) = \lambda E(t), \tag{4.43}
\]

\[
x'(0) = x'(-\pi) = 0,
\]

\(\lambda \in (0, 1) \), is a priori bounded in \(X = C([0, \pi], \mathbb{R}^N) \) independently of \(\lambda \), where \(\tilde{T}(t) = (\tilde{T}_1(t), \ldots, \tilde{T}_N(t)) \) with \(\tilde{T}_i(t) = \Gamma_i(t) + \eta, i = 1, 2, \ldots, N \).

If, now, \(x(t) \) is a possible solution of (4.43) for some \(\lambda \in (0, 1) \), we see on integrating the equation obtained by taking the inner product of the equation in (4.43) with \(\frac{1}{\pi}(\tilde{x} - \tilde{x}(t)) \) and using Lemma 3 with \(\Gamma_{\infty} \) replaced by \(\Gamma_{\infty} + \eta \), for \(i = 1, 2, \ldots, N \) and \(\gamma = (\gamma_1, \ldots, \gamma_N) \equiv 0 \) that

\[
0 = \frac{1}{\pi} \int_0^\pi \langle x''(t), \tilde{x} - \tilde{x}(t) \rangle dt
\]
where $C > 0$ is a constant independent of $\lambda \in (0, 1)$. Hence,

\[
\|\ddot{z}\|^2_{H^1_N} \leq \left(\frac{C}{\eta N} \right) (|\ddot{z}| + \|\ddot{z}\|_{H^1_N}). \tag{4.44}
\]

Next, integrating each of the component equations in (4.43) over $[0, \pi]$, we see that

\[
(1 - \lambda) \frac{1}{\pi} \int_0^\pi (\Gamma_i(t) + \eta)x_i(t)dt + \lambda \frac{1}{\pi} \int_0^\pi F_i(t, x(t))dt = \lambda \frac{1}{\pi} \int_0^\pi E_i(t)dt,
\]

$i = 1, 2, \ldots, N$. As in the proof of Theorem 1, we see that there exist constants $C_1 \geq 0$ and $C_2 \geq 0$, such that

\[
|\ddot{z}| \leq \|\ddot{z}\|_{X} \leq C_1 + C_2\|\ddot{z}\|_{H^1_N}. \tag{4.45}
\]

It follows from (4.44) and (4.45) that there exists a constant C_3 independent of $\lambda \in (0, 1)$ such that

\[
\|\ddot{z}\|_{H^1_N} \leq C_3,
\]

and hence

\[
\|x\|_{X} \leq C_1 + C_2C_3.
\]

Thus we have shown that the set of solutions of (4.43) is bounded in X independently of λ. Hence the theorem holds. \(\Box\)

Remark 1. We say that the boundary value problem (4.35)-(4.36) has “no L^∞-resonance” at the second eigenvalue $\lambda = 1$ of the linear eigenvalue problem (1.7)-(1.8) if $\Gamma_\alpha = \Gamma_\infty = 0$ in Theorem 2. In the case of no L^∞-resonance, Theorem 2 implies the existence of a solution for the boundary value problem (4.35)-(4.36) if $\|\Gamma_\beta\|_{L^1_N} < \frac{3}{2\pi}$. We give a sharpening of this result in Section 5.

5 Resonance Condition When No L^∞-Resonance Exists

We need the following lemma for a sharper resonance condition that gives the existence of a solution for the boundary value problem (4.35)-(4.36) when there is no L^∞-resonance.

Lemma 5 Let $e \in L^1([0, \pi], \mathbb{R}^N)$ and $\Gamma = (\Gamma_1, \Gamma_2, \ldots, \Gamma_N) \in L^1([0, \pi], \mathbb{R}^N)$ with $\bar{\Gamma}_i = \frac{1}{\pi} \int_0^\pi \Gamma_i(t)dt \geq 0$ for every $i = 1, 2, \ldots, N$. Then every possible solution $x(t)$ of the linear boundary value problem

\[
x''(t) + p(t)^T I x(t) = e(t), 0 < t < \pi
\]
\[x'(0) = x'(\pi) = 0, \quad (5.1) \]

with \(p = (p_1, p_2, \ldots, p_N) \in L^1([0, \pi], \mathbb{R}^N) \) such that
\[\tilde{\rho}_i \leq \bar{\Gamma}_i, \quad 0 \leq p_i(t) \quad (5.2) \]

for a.e. \(t \in [0, \pi], \ i = 1, 2, \ldots, N, \) satisfies the inequality
\[(1 - \frac{\pi^2}{4} |\Gamma|) \|x''\|_{L^2_N}^2 \leq 2 \|\epsilon\|_{L^1_N} \|x''\|_{L^1_N} + \|\bar{\Gamma}\| \|\epsilon\|_{L^1_N} \|x\|_{L^\infty}. \quad (5.3) \]

(Here \(\bar{\Gamma} = (\bar{\Gamma}_1, \bar{\Gamma}_2, \ldots, \bar{\Gamma}_N). \)

Proof. It follows from Lemma 4 of [1] that each solution \(x_i(t) \) of the \(i \)-th component boundary value problem of (5.1), namely,
\[x''_i(t) + p_i(t)x_i(t) = e_i(t), \quad 0 < t < \pi \]
\[x'_i(0) = x'_i(\pi) = 0, \]

satisfies the inequality
\[(1 - \frac{\pi^2}{4} |\Gamma_i|) \|x''_i\|_{L^2_N}^2 \leq 2 \|e_i\|_{L^1_N} \|x''_i\|_{L^1_N} + |\bar{\Gamma}_i| \|e_i\|_{L^1_N} \|x_i\|_{L^\infty} \]

for each \(i = 1, 2, \ldots, N. \) Noting that \(\max_{1 \leq i \leq n} \bar{\Gamma}_i \leq |\bar{\Gamma}|, \) we get
\[(1 - \frac{\pi^2}{4} |\bar{\Gamma}|) \|x''_i\|_{L^2_N}^2 \leq 2 \|e_i\|_{L^1_N} \|x''_i\|_{L^1_N} + |\bar{\Gamma}| \|e_i\|_{L^1_N} \|x_i\|_{L^\infty} \]

for each \(i = 1, 2, \ldots, N. \) On adding all these inequalities and using the Cauchy-Schwarz inequality in \(\mathbb{R}^N \) we get that
\[(1 - \frac{\pi^2}{4} |\bar{\Gamma}|) \|x''\|_{L^2_N}^2 \leq 2 \|e\|_{L^1_N} \|x''\|_{L^1_N} + |\bar{\Gamma}| \|e\|_{L^1_N} \|x\|_{L^\infty}. \]

Hence the lemma follows. \(\square \)

Theorem 3 Let \(\Gamma = (\Gamma_1, \Gamma_2, \ldots, \Gamma_N) \in L^1([0, \pi], \mathbb{R}^N) \) be such that \(|\Gamma| < \frac{4}{\pi^2}. \) Let \(f = (f_1, f_2, \ldots, f_N) : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) be as in Theorem 2. Then for every \(e \in L^1([0, \pi], \mathbb{R}^N) \) with \(a_i \leq \tilde{e}_i \leq A_i \) for each \(i = 1, 2, \ldots, N, \) the boundary value problem
\[x''(t) + f(t, x(t)) = e(t), \quad 0 < t < \pi, \quad (5.4) \]
\[x'(0) = x'(\pi) = 0, \]

has at least one solution.

Proof. Define \(F = (F_1, F_2, \ldots, F_N) : [0, \pi] \times \mathbb{R}^N \rightarrow \mathbb{R}^N, \) \(E : [0, \pi] \rightarrow \mathbb{R}^N \) and \(E = (E_1, E_2, \ldots, E_N) \) as in the proof of Theorem 2. Then the boundary value problem (5.4) is equivalent to the boundary value problem
\[x''(t) + F(t, x(t)) = E(t), \quad 0 < t < \pi, \quad (5.5) \]
Also
\[
x'(0) = x'(\pi) = 0.
\]

Also
\[
\lim_{|x_i| \to \infty} \sup_{|x| \leq 1} \frac{F_i(t, x)}{x_i} \leq \Gamma_i(t),
\]
uniformly a.e. in \(t \in [0, \pi] \) and
\[
F_i(t, x)x_i \geq 0,
\]
for a.e. \(t \in [0, \pi] \) and all \(x \in \mathbb{R}^N \) with \(|x_i| \geq \max(R_i, -r_i) \) so that \(\Gamma_i(t) \geq 0 \) for a.e. \(t \in [0, \pi] \). Let
\[
\eta = \frac{1}{2N}(\frac{4}{\pi^2} - |\bar{\Gamma}|) \quad \text{so that} \quad |\Gamma_i| + N\eta < \frac{4}{\pi^2}.
\]
Proceeding as in the proof of Theorem 2, we can write the boundary value problem (5.5) in the equivalent form
\[
x''(t) + g(t, x(t)) + h(t, x(t)) = E(t),
\]
\[
x'(0) = x'(\pi) = 0.
\]

The same degree arguments will imply the existence of a solution for (5.6) if the set of all possible solutions of the family of equations
\[
x''(t) + (1 - \lambda)\bar{\Gamma}^*T(t)x(t) + \lambda g(t, x(t)) + \lambda h(t, x(t)) = \lambda E(t)
\]
\[
x'(0) = x'(\pi) = 0,
\]
\(\lambda \in (0, 1) \), is a priori bounded in \(X = C([0, \pi], \mathbb{R}^N) \) independently of \(\lambda \). Here \(\bar{\Gamma}^*(t) = (\bar{\Gamma}_1^*(t), \ldots, \bar{\Gamma}_N^*(t)) \) with \(\bar{\Gamma}_i^*(t) = \Gamma_i(t) + \eta, i = 1, 2, \ldots, N, t \in [0, \pi] \).

We note that \(g = (g_1, g_2, \ldots, g_N) \) in (5.6) is such that \(g_i(t, x) = \bar{\gamma}_i(t, x)x_i \). If we write \(\bar{\gamma}(t, x) = (\bar{\gamma}_1(t, x), \ldots, \bar{\gamma}_N(t, x)) \), then
\[
g(t, x) = \bar{\gamma}(t, x)^T Ix.
\]

We see that
\[
0 \leq (1 - \lambda)\bar{\Gamma}^*_i(t) + \lambda \bar{\gamma}_i(t, x(t)) \leq \Gamma^*_i(t)
\]
for \(i = 1, 2, \ldots, N \) in view of (4.40) with
\[
|\bar{\Gamma}^*| = \left\{ \sum_{i=1}^{N} (\bar{\Gamma}_i + \eta)^2 \right\}^{1/2} \leq \left(\sum_{i=1}^{N} \bar{\Gamma}_i^2 \right)^{1/2} + \sqrt{N}\eta
\]
\[
\leq |\bar{\Gamma}| + \eta N < \frac{4}{\pi^2}.
\]

Also, since
\[
||E(t) - h(t, x(t))||_{L^1_N} \leq ||E||_{L^1_N} + \sum_{i=1}^{N} ||m_i||_{L^1},
\]
it follows from Lemma 5 that
\[
(1 - \frac{\pi^2}{4} |\bar{\Gamma}^*|)||x''||_{L^1_N} \leq 2(||E||_{L^1_N} + \sum_{i=1}^{N} ||m_i||_{L^1})||x'||_{L^1_N}
\]
\[
+ |\bar{\Gamma}^*(||E||_{L^1_N} + \sum_{i=1}^{N} ||m_i||_{L^1})||x||_{L^\infty_N}.
\]

(5.8)
As in the proof of Theorem 2, we have that there exist constants \(C_1 \geq 0 \) and \(C_2 \geq 0 \), independent of \(\lambda \in (0, 1) \) such that

\[
|\tilde{x}| \leq ||x||_{L_N^\infty} \leq C_1 + C_2 ||\tilde{x}||_{H_N^1} = C_1 + C_2 ||x'||_{L_N^3} \leq C_1 + C_2 \frac{\pi}{2} ||x'''||_{L_N^1}.
\]

(5.9)

It then follows from (5.8) and (5.9) that there exists a constant \(C_3 \geq 0 \), independent of \(\lambda \in (0, 1) \), such that

\[
||x'''||_{L_N^1} \leq C_3
\]

and, hence, from (5.9) again,

\[
||x||_{L_N^\infty} \leq C_1 + C_2 \frac{\pi}{2} C_3.
\]

Hence the theorem holds. \(\Box\)

Remark 2. If there is no \(L^\infty \)-resonance (i.e., \(\Gamma_\alpha = \Gamma_\infty = 0 \)), Theorem 3 improves the condition on \(\Gamma \) to \(|\Gamma| \leq \frac{3}{4} \) compared to Theorem 2, where \(|\Gamma| < \frac{3}{2} \).

Remark 3. If \(p(t) = (p_1(t), ..., p_N(t)) \in L^1([0, \pi], \mathbb{R}^N) \) in Lemma 5 satisfies, additionally, for a given \(\eta > 0 \), \(p_i(t) \geq \eta > 0 \) for a.e. \(t \in [0, \pi] \), \(i = 1, 2, ..., N \) and \(|\Gamma| < \frac{3}{2} \), it follows easily from the inequality (5.3) that the boundary value problem (5.1) has at most one solution.

References

Submit your manuscripts at http://www.hindawi.com