AN EXISTENCE THEOREM FOR NONLINEAR DELAY DIFFERENTIAL EQUATIONS*

Krishnan Balachandran
Department of Mathematics
Bharathiar University
Coimbatore 641 046
Tamil Nadu, India

ABSTRACT

In this paper we prove a theorem on the existence of solutions of nonlinear delay differential equations with implicit derivatives. The result is established using the measure of noncompactness of a set and Darbo's fixed point theorem.

Key words: Existence of solution, Delay differential equations, Darbo's theorem.

AMS subject classification: 34K05.

1. INTRODUCTION

The theory of linear and nonlinear delay differential equations has been studied by several researchers [1,4]. Recently Dacka [5] proved an existence theorem for nonlinear delay differential equations with implicit derivatives using the measure of noncompactness of a set and Darbo's fixed point theorem. By the same method Balachandran and Somasundaram [2] established an existence theorem for nonlinear delay differential equations having implicit derivatives with delay depending on state variable. In [3] Banas proved a theorem about existence of solutions of some nonlinear Volterra integral equations with deviating argument without assuming the Lipschitz condition and using a technique similar to Dacka [5]. In this paper we shall prove an existence theorem for nonlinear delay differential equations with delay depending on implicit derivatives.

2. MATHEMATICAL PRELIMINARIES

Let \((X, \| \cdot \|)\) be a Banach space and \(E\) be bounded set of \(X\). In this paper the following definition of the measure of noncompactness of a set \(E\) is used [7].

\[
\mu(E) = \inf \{r > 0: E \text{ can be covered by a finite number of balls whose radii are smaller than } r\}
\]

The following version of Darbo's fixed point theorem being a generalization of Schauder's fixed point theorem shows the usefulness of the measure of noncompactness [6]. "If \(S\) is a nonempty bounded closed convex subset of \(X\) and \(P : S \rightarrow S\) is a continuous mapping, such that for any set \(E \subseteq S\) we have

\[
\mu(PE) \leq k \mu(E)
\]
where \(k \) is a constant with \(0 \leq k < 1 \), then \(P \) has a fixed point.''

For the space of continuous functions \(C_n[t_0,t_1] \) with norm

\[
\|x\| = \max\{|x_i(t)| : i = 1,2,...,n, \ t \in [t_0,t_1]\},
\]

the measure of noncompactness of a set \(E \) is given by

\[
\mu(E) = \frac{1}{2} \omega_0(E) = \frac{1}{2} \lim_{h \to 0} \omega(E,h)
\]

where \(\omega(E,h) \) is the common modulus of continuity of the functions which belong to the set \(E \), that is,

\[
\omega(E,h) = \sup_{x \in E} \left[\sup \{ |x(t) - x(s)| : |t - s| \leq h \} \right]
\]

where, as in the space of continuously differentiable functions \(C[t_0,t_1] \) with norm

\[
\|x\|_{C_n} = \|x\| + \|\dot{x}\|_{C_n},
\]

we have

\[
\mu(E) = (1/2) \omega_0(\text{DE})
\]

where

\[
\text{DE} = \{ \dot{x} : x \in E \}.
\]

3. BASIC ASSUMPTIONS

Consider the following nonlinear delay differential equation with implicit derivative of the form

(1) \[
\dot{x}(t) = f(x(t),x(t-r(x(t),\dot{x}(t),t)),t), \ t \geq t_0
\]

\[
x(t) = \phi(t), \ t \leq t_0
\]

where \(x \in \mathbb{R}^n \) and \(f \) is an \(n \)-vector function. Let \(r(x(t),\dot{x}(t),t) \geq 0 \). Set

\[
\alpha(t) = t-r(x(t),\dot{x}(t),t), \ \text{and}
\]

\[
a = \inf_{(x,\dot{x},t)} \alpha(t) \ \text{and} \ -\infty < a < t_0.
\]

Then \(x(t) = \phi(t) \) on \([a,t_0]\).
Assume that the functions \(f(x,y,t) \) and \(r(x,y,t) \) are continuous and satisfy the following conditions. For \(y,\bar{y},x \in \mathbb{R}^n \) and \(t \in [t_0,t_1] \),

\[
(2) \quad |f(x,y,t)| \leq M
\]

\[
(3) \quad |f(x(t),x(\alpha(t)),t) - f(x(t),x(\alpha(s)),t)| \leq N |\alpha(t) - \alpha(s)|
\]

\[
(4) \quad |r(x,y,t) - r(x,\bar{y},t)| \leq b |y - \bar{y}|
\]

where \(M, N \) and \(b \) are positive constants such that \(0 < Nb < 1 \). Let \(\phi(t) \) be a continuous \(\mathbb{R}^n \)-valued function defined on \([a,t_0]\).

Definition: The solution of (1) is the function \(x(t) \) such that:

i) \(x(t) \) is defined and continuous on the interval \([a,t_1]\) and is of class \(C^1 \) on \([t_0,t_1]\) such that at the point \(t_0 \) the right side derivative only is taken into account;

ii) The function \(x(t) \) satisfies (1) on the interval \([t_0,t_1]\), whereas on the interval \([a,t_0]\) the function \(x(t) = \phi(t) \).

Next we shall prove that the solution of (1) exists in the sense of the above definition.

4. EXISTENCE THEOREM

Theorem: If the function \(f(x,y,t) \) satisfies the conditions (2) and (3), and if \(r(x(t),\dot{x}(t),t) \geq 0 \) and satisfies the condition (4), then (1) has at least one solution for any initial function \(\phi \in C_n[a,t_0] \).

Proof: Consider the Banach space \(C^1_n[t_0,t_1] \) and the set

\[
H = \{ x: x \in C^1_n[t_0,t_1], x(t_0) = \phi(t_0) \}.
\]

For any function \(x \in H \), \(x(\alpha(t)) \) will be the function defined in such a way that if \(\alpha(t) < t_0 \) for \(t \in [t_0,t_1] \) then

\[
(6) \quad x(\alpha(t)) = \phi(\alpha(t)).
\]

Define the mapping \(T \) by

\[
(7) \quad T(x)(t) = \phi(t_0) + \int_{t_0}^{t} f(x(s), x(s - r(x(s), \dot{x}(s), s)), s) ds.
\]

Moreover, consider the bounded closed set \(B \) in \(H \) as

\[
(8) \quad B = \{ x \in H : \|x\| \leq L, \|\dot{x}\| \leq M \}
\]
where L and M are positive constants such that

$$L = |\phi(t_0)| + (t_1 - t_0)M.$$

Since f is continuous, T is continuous and maps B into itself. Next let us estimate the modulus of continuity of the function $DT(x)(t)$ for $t, s \in [t_0, t_1]$. Since the only functions considered belong to some bounded subset of the space $C[t_0, t_1]$, and since these all have uniformly bounded derivatives, it follows that they are equicontinuous.

Thus

$$|DT(x)(t) - DT(x)(s)| = |f(x(t), x(\alpha(t)), t) - f(x(s), x(\alpha(s)), s)|$$

$$\leq |f(x(t), x(\alpha(t)), t) - f(x(s), x(\alpha(t)), s)|$$

$$+ |f(x(s), x(\alpha(t)), s) - f(x(s), x(\alpha(s)), s)|$$

$$\leq |f(x(t), x(\alpha(t)), t) - f(x(s), x(\alpha(t)), s)|$$

$$+ N |t - s| + N |r(x(t), \dot{x}(t), t) - r(x(s), \dot{x}(s), s)|$$

$$+ N |r(x(s), \dot{x}(t), s) - r(x(s), \dot{x}(s), s)|$$

For the first term on the right of inequality (10), one can take the upper estimate as $\beta_0(|t - s|)$, where β_0 is some non-negative continuous function such that $\lim_{h \to 0} \beta_0(h) = 0$. This follows from the fact that it is formed by the composition of a finite number of functions having a uniformly bounded modulus of continuity. The second and third terms on the right of inequality (10) have the upper bound $Nh + N\beta_1(h)$; and the last term has upper bound $Nb |x(t) - \dot{x}(s)|$. Letting $\beta = \beta_0 + Nh + N\beta_1$ and $k = Nb$, one gets

$$\omega(DT(x), h) \leq k\omega(Dx, h) + \beta(h);$$

hence it follows that

$$\mu(TE) \leq k\mu(E)$$

for any bounded set $E \subset B \subset H$. Consequently, by Darbo's fixed point theorem, the mapping T has a fixed point $x \in C[t_0, t_1]$ such that

$$x(t) = T(x)(t).$$

Clearly the extension of this function to the interval $[a, t_0]$ by means of the function ϕ is a solution of equation (1) having the following form:
An Existence Theorem for Nonlinear Delay Differential Equations: Balachandran

(12) \[x(t) = \phi(t_0) + \int_{t_0}^{t} f(x(s), x(s-r(x(s), c(s), s)), s) ds, \quad t \geq t_0 \]

\[x(t) = \phi(t), \quad a < t < t_0 \]

Remark: It should be observed that if one assumes that the function \(f \) and \(r \) satisfy also the Lipschitz condition, then the uniqueness of the solution of (1) can be established by standard techniques used in proving the uniqueness theorem.

REFERENCES

