Conditional Disconnection Probability in Star Graphs

WALID NAJJAR and PRADIP K. SRIMANI
Department of Computer Science, Colorado State University, Ft. Collins, Colorado, USA

Recently a new interconnection topology has been proposed which compares very favorably with the well known n-cubes (hypercubes) in terms of degree, diameter, fault-tolerance and applicability in VLSI design. In this paper we use a new probabilistic measure of network fault tolerance expressed as the probability of disconnection to study the robustness of star graphs. We derive analytical approximation for the disconnection probability of star graphs and verify it with Monte Carlo simulation. We then compare the results with hypercubes [4]. We also use the measures of network resilience and relative network resilience to evaluate the effects of the disconnection probability on the reliability of star graphs.

Key Words: Star graphs; Disconnection probability; Network resilience; VLSI Design; Reliability

Very large scale integration technology or VLSI has seen tremendous growth in the past decade and this has intensified the research in different aspects of massively parallel computing systems. A multiple processor system consists of a large number of identical independent processing elements which communicate among each other only by exchanging messages over an interconnection network and the application programs are modeled as collections of concurrently executable tasks that may communicate with each other. As the number of processing elements or nodes increases, so does the failure rate, and consequently the system reliability as well as availability become important issues in the design of such systems. Excellent analyses of different issues involved in designing reliable parallel systems can be found in Kohl and Reddy, Forbes and Raghavendra, and Pradhan [6, 7, 8].

In traditional reliable or fault-tolerant architectures the objective of failure-free operation is achieved mainly by hardware replication or redundancy. But in case of a large scale parallel computing system, this redundancy is provided inherently in the design of the interconnection topology and the system is allowed to degrade gracefully under conditions of failure down to the lowest acceptable performance level. Hence the design of the interconnection network becomes the most important issue in the design of large-scale systems.

The underlying topology of an interconnection network is modeled as a symmetric graph where the nodes represent the processing elements and the edges (arcs) represent the bidirectional communication channels. Design features for an efficient interconnection topology include properties like low degree, regularity, small diameter, high connectivity, efficient routing algorithm, high fault tolerance, low fault diameter etc. Since more and more processors must work concurrently in a large-scale system, the criteria of high fault tolerance and strong resilience [1, 2, 3] have become increasingly important. A computer system is said to be k-fault tolerant if it can allow up to k failures with continuing operations; k is called the fault tolerance of the system. Network fault tolerance has been defined as the maximum number of elements that can fail without inducing a possible disconnection in the network [8]. For example, in a regular graph with degree m, the network fault tolerance is \(m - 1\).

Whenever a node fails, the fault tolerant routing algorithm bypasses the failed node. But when successive failures lead to a state of network disconnection whereby one or more healthy nodes are cut out from the rest of the system, distributed recovery is not possible because the state of the computation in the isolated nodes is unreachable. This situation is a failure state since distributed fault detection, recovery and restart procedures depend on graph
connectedness. If we define coverage factor as the probability of a successful recovery from failure, then this coverage factor will depend on the disconnection probability of the graph. In this paper we attempt to analyze this dependence for star graphs.

STAR GRAPHS

In this section we briefly discuss the background information about star graphs that is necessary for subsequent discussions. Graph theoretic terms not defined here can be found in Harary [9] and the complete details about the properties of star graphs can be found in Akers and Krishnamurthy, and Akers et al. [1, 2]. A star graph $S_n$, of order $n$, is defined to be a symmetric graph $G = (V, E)$ where $V$ is the set of $n!$ vertices each representing a distinct permutation of $n$ elements and $E$ is the set of symmetric edges such that two permutations (nodes) are connected by an edge if one can be reached from the other by interchanging its first symbol with any other symbol. For example in $S_3$, the node representing permutation $ABC$ will have edges to two other permutations (nodes) $BAC$ and $CBA$. Figure 1 shows $S_3$ and $S_4$.

The diameter of $S_n$ is given by $\lceil 3(n - 1)/2 \rceil$ and efficient routing algorithm exists for such star graphs.
to compute the minimal path [2]. Let $A(G:v)$ or simply $A(v)$ (when $G$ is understood from the context) denote the set of vertices adjacent to vertex $v$ in graph $G$. For any subset $X \subseteq V$, $A(X)$ is defined as $\bigcup_{v \in X} A(v) - X$. Then $|A(S_n:v)| = n - 1 = d(v)$, $\forall v \in S_n$, i.e., $S_n$ is a $(n-1)$-regular graph, where $d(v)$ denotes the degree of vertex $v$. The vertex connectivity of a graph $G$ is defined to be the least $|X|$ for a subset $X \subseteq V$ such that $G - X$ is disconnected. It has been shown in Akers and Krishnamurthy [1] that the vertex connectivity of star graph $S_n$ is $n-1$, i.e., $S_n$ is optimally or $(n-2)$-fault tolerant in the sense that whenever an arbitrary set of $(n-2)$ or fewer vertices are removed the remaining graph is still connected.

**DISCONNECTION PROBABILITY OF STAR GRAPHS**

Now we present an analytical and experimental approach to evaluate the disconnection probability of a star graph. The model is a homogeneous, non-reconfigurable, large-scale system based on star graphs. This model is similar to the one used in Najjar and Gaudiot [4, 5] to analyze hypercubes and cube-connected cycles.

**Theoretical Analysis**

Let $S_n = G(V, E)$ represent a star graph of order $n$ as defined earlier. A $m$-cluster is any connected subset $X_m$ of $M$ nodes in $G$. $R_m$ is the number of neighbor nodes to a $m$-cluster $X_m$, i.e., $R_m = |A(X_m)|$. Also let $N(m)$ be the number of $m$-clusters in the star graph $S_n$.

**Lemma 1** For an arbitrary edge $(u, v)$ in $S_n$, we have $\{A(u) - v\} \cap \{A(v) - u\} = \emptyset$.

**Proof:** Let the first symbol in $u$ and $v$ be $X$ and $Y$ respectively. For all vertices in $A(v) - u$, the symbol $Y$ is in the same position as in $v$, say $j$. Now $Y$ is in the first position of $u$ and vertices in $A(u)$ are generated by interchanging $Y$ with any other symbol in $u$. To bring $Y$ to the $j$-th position will lead to vertex $v$. Thus the vertices in $A(u) - v$ can't have $Y$ in $j$-th position. Hence the result. □

**Corollary 1** For any arbitrary $u, v \in S_n$, $|A(v) \cap A(u)| \leq 1$.

**Lemma 2** Consider two edges $(u, v)$ and $(v, w)$ in $S_n$. Then $\{A(u) - v\} \cap \{A(w) - v\} = \emptyset$.

**Proof:** Similar to that of lemma 1. □

**Corollary 2** Any edge $e = (u, v)$ in $S_n$ is a 2-cluster and hence $|\{A(u) - v\} \cup \{A(v) - u\}| = 2n - 4$.

**Definition 1** A system is in a disconnected state if and only if there exists a cluster of size $m$ that is disconnected from the system and $m \geq 1$.

**Definition 2** $P(i)$ Disconnection Probability = Prob [the system is disconnected exactly after $i$-th failure].

**Definition 3** $Q(i)$ Probability that a disconnected graph results with $N$ nodes at the $i$-th node removal provided that no disconnection occurred until $i$-th node removal.

**Definition 4** $Q_m(i)$ probability that a disconnected $m$-cluster results in a graph with $N - 1$ nodes by removing a single node from a connected graph with $N - i + 1$ nodes.

It readily follows from these two definitions [4] that

$$P(i) = Q(i) \prod_{j=1}^{i-1} (1 - Q(j))$$

and

$$Q(i) = \sum_{m=1}^{i-1} Q_m(i)$$

It is now evident that to compute the disconnection probability of a star graph for a given number of node removal, we have to enumerate all possible $m$-clusters of the graph. This is combinatorially an almost intractable problem. We try to develop an insight into the problem first by computing the number of $m$-clusters for smaller values of $m$.

**Lemma 3** For a star graph $S_n$,

$$P(i) = \begin{cases} 0, & i < n - 1 \\ Q_i, & i = n - 1 \end{cases}$$

**Proof:** $S_n$ is a regular graph of degree $n - 1$ and hence there cannot be any disconnection as long as the number of faults is less than $n - 1$. And also when $i \equiv n - 1$ disconnection of only a single node is possible (i.e., a 1-cluster) since the graph is $n - 1$ regular; this can happen when all these failed nodes form the adjacency of the disconnected node. □

**Lemma 4** For a given $S_n$, $Q_1(n - 1) = N!/(n-1)!$

**Proof:** In $S_n$, there are $N = n!$ nodes which can be disconnected and there are $(n-1)$ ways to select a subset of $n - 1$ nodes. □
Lemma 5 For a given $S_n$,

$$Q_2(i) = \begin{cases} 
0, & i < 2n - 4 \\
\binom{n!(n-1)/2}{n!/2(n-4)}, & i = 2n - 4 
\end{cases} \quad (4)$$

Proof: In order to disconnect a 2-cluster i.e., an edge, all of the neighbors must be failed and by lemma 2 and its corollary, any edge in $S_n$ has $2n-4$ neighbors. We can choose an edge in $n!(n-1)/2$ ways in $S_n$ since there are only that many edges and $\binom{n!}{2(n-4)}$ represents the number of ways one can choose a subset of $(2n-4)$ vertices out of $n!$ ones.

Lemma 6 Consider two connecting edges $(u, v)$ and $(u, w)$ in $S_n$. Then $P(X) = 3n - 7$ where $X = \{u, v, w\}$.

Proof: Lemmas 1 and 2 indicate that $A(u) = \{v, w\}$, $A(v) = u$, and $A(w) = u$ are pairwise mutually disjoint. Since each vertex has degree $n - 1$, the result readily follows.

Lemma 7 For a given $S_n$, 

$$Q_3(i) = \begin{cases} 
0, & i < 2n - 7 \\
\binom{(n-1)!}{n!(3n-7)}, & i = 3n - 7 
\end{cases} \quad (5)$$

Proof: To disconnect a 3-cluster (i.e., two adjoining edges), all the neighbors of this 3-cluster must be failed. By lemma 6 the number of such neighbors is $3n - 7$. For a given node we can choose two incident edges in $(\frac{n!}{2})$ ways and there are $n!$ nodes; hence $n!(\frac{n!}{2})$ gives the number of possible 3-clusters. And we can choose a subset of $(3n - 7)$ vertices out of $n!$ in $(\frac{n!}{3n-7})$ ways.

To compute $Q_m$ for $m > 3$ becomes increasingly involved. Instead, for simplicity we consider only those cases where $m$ is a factorial of some integer and the cluster is an order-$k$ star graph, $m = k!$. This will indeed provide an indication of the variation of $Q_m(i)$ as a function of $m$. This approach can be justified by the fact that of all the possible configurations of an $m$ node cluster, a star graph $S_k$, $k! = m$, has the lowest number of neighbors and hence the highest probability of disconnection.

Lemma 8 The number $R_m$ of neighbors of a $m$-cluster, $m = k!$, in a star graph $S_n$ is given by

$$R_{m=k!} = (n - k)k$$

Proof: There are $k!$ nodes in a subgraph $S_k$. Each of these nodes has $n - 1$ neighbors, $k - 1$ of which belong to the subgraph itself and $n - k$ are “external neighbors.”

Lemma 9 The number of distinct star subgraphs $S_k$ of order $k$ in a given $S_n$, when $k \leq n - 2$, is given by

$$N(k!) = \binom{n}{k} \frac{(n-1)!}{(k-1)!} \quad (6)$$

Proof: Each node is represented by a permutation of $n$ symbols. Also the nodes in a subgraph $S_k$ must have $(n - k)$ symbols in the same positions. We can choose $k$ symbols out of $n$ in $(\frac{n!}{k!})$ ways and then place the remaining $(n - k)$ symbols in different possible positions to get different subgraphs. For example the first of the $(n - k)$ symbols can be placed in $k$ different positions in a string of $k$ symbols (we cannot place the new symbol at the beginning since if the leading symbol is fixed in position no edge can be generated). Hence the $(n - k)$ symbols can be placed in $(n - 1)!/(k - 1)!$ ways and hence the result.

Theorem 1 The disconnection probability of a star subgraph of size $k$ (consisting of $m = k!/n!$ nodes) in a star graph $S_n$ of $n!$ nodes is given by

$$Q_m(i) = \begin{cases} 
0, & i < R_m \\
\frac{N(m)}{n!}, & i = R_m 
\end{cases} \quad (7)$$

Proof: The disconnection can occur when the number of failures is less than the number of neighbors of the subset to be disconnected, the probability of a disconnection when the number of failures $i$ is less than the number of neighbors $R_m$ is zero. For larger values of $i$, the probability of a disconnection of a subset of size $m$ is proportional to the number of possible subsets which can be so disconnected. The disconnection of each of these subsets can occur when a specific $R_m$ out of a total of $n!$ nodes failed. Thus, the total probability of disconnection is the ratio of two values.

At this point we want to note that it was conjectured in Najjar and Gaudiot [4] that in any regular graph $Q_2(i) \geq Q_m(i)$, for $m > 1$ provided that for any $m$-cluster the graph satisfies the relation $1 < m < N/2 \Rightarrow R_m > n$ where $N$ is number of nodes in the graph and $n$ is the degree of each node. Najjar and Gaudiot [4] also gave an intuitive justification for their conjecture. While it seems extremely hard
to prove the conjecture rigorously, our following examples and subsequent experimental results on star graphs lend further strong credibility to this conjecture.

**Example:** Consider a star graph $S_6$ with $n = 6$ and the number of nodes $N = 6! = 720$.

$$Q_1(5) = \frac{720}{5} = 45.27 \times 10^{-11}$$

$$Q_2(8) = \frac{720 \times 5}{2 \times \frac{720}{8}} = 10.449 \times 10^{-16}$$

$$Q_3(11) = 720 \times 10 \left(\begin{array}{c} 720 \\ 11 \end{array}\right) = 5 \times 10^{-20}$$

This example shows that when the connection of a 2-node cluster is possible at $2n - 4$, the probability of a prior single node disconnection event is about half a million times larger and similarly when a disconnection of a 3-node cluster is possible at $3n - 7$, the probability of a prior two node disconnection is twenty thousand times larger. This example, although it does not prove the said conjecture of Najjar and Gaudiot [4], is a further demonstration of the rationale behind the conjecture as was shown with examples from hypercubes, cube connected cycles, etc.

Now we propose to give an approximate analytical expression for $P(i)$ based on the above-mentioned results. We cannot give an exact expression for $P(i)$ but try to give an indication of its magnitude (and later verify it experimentally) by using the approximation $Q(i) = Q_1(i)$ which is based on the conjecture $Q_1(i) \gg Q_m(i)$ for all $m > 1$. Hence

$$P(i) = Q_1(i) \prod_{j=1}^{i-1} (1 - Q_1(j))$$

**Proof:** By definition, no disconnection occurred at $(i - 1)$st failure and hence the probability that one occurs at the $i$-th failure is the probability that some node had all but one of its neighbors failed and that neighbor was the $i$-th failure. $(\binom{N}{i})$ represents the possible combinations of $i - 1$ failures among $N = n!$ nodes. $(\binom{N-1}{i}) = n - 1$ is the possible choices of $n - 2$ failed neighbors among $n - 1$ neighbors while $(\binom{n}{i})$ is the combination of the remaining $i - n + 1$ failure in the rest of the system, where $N$ is the number of nodes that can be isolated. Lastly $1/(N - i + 1)$ is the probability that the last remaining neighbor fails.

Equation 10 corresponds to the single node disconnection probability when more than $n - 1$ nodes have failed. For $i \geq 2n - 3$, it is possible to have two or more single node disconnection. However, the probability of multiple single node disconnection is of the same order as that of a cluster disconnection when $m > 1$. Therefore, using the approximation $Q(i) = Q_1(i)$, we can extend the range of $i$ in 10 to $i > n - 1$. We obtain

$$Q_1(i > n - 1) = \frac{(n - 1)(N - n)!(i - 1)!(N - i)}{(i - n + 1)!(N - 1)!}$$

From equation 11, we can write that

$$\frac{Q_1(i + 1)}{Q_1(i)} = \frac{i}{i - n + 2} \frac{N - i - 1}{N - i}$$

This proves that the relation $Q_1(i + 1) > Q_1(i)$ holds for $i > n - 1$. Thus the approximation analysis for $P(i)$ of a star graph is complete.

**Monte Carlo Simulation**

The objective of our simulation experiment was to measure the values of $P(i)$ for star graphs of different sizes and to compare those with similar results for hypercubes [4]. A program has been developed which simulates the failure of nodes and checks eventual disconnection in the graph. Each iteration stage of the simulation consisted of the following:

- Randomly choose any one of the remaining $(N - i)$ vertices and remove the vertex from the graph along with all the incident edges.
TABLE I

<table>
<thead>
<tr>
<th>m</th>
<th>Star Graph</th>
<th>C-C Cycles</th>
<th>Binary Cube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td>120</td>
<td>720</td>
</tr>
<tr>
<td>1</td>
<td>63.6</td>
<td>82.6</td>
<td>94.3</td>
</tr>
<tr>
<td>2</td>
<td>15.6</td>
<td>12.4</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>6.3</td>
<td>2.7</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>3.1</td>
<td>0.9</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- Record the number and size of the connected components of the remaining graph.
- If more than one component is found, record the iteration number and size of the component and exit, else repeat.

In each case the number of samples were higher than 2000.

Frequency of Disconnection

Table I shows the frequency of occurrence of disconnections of different-sized clusters for different-sized star graphs. Table I also includes similar results for binary hypercubes and cube-connected cycles for comparison purposes; those are taken from Akers and Krishnamurthy [1]. Let \( F_s(K) \) denote the probability that the disconnected cluster is of size \( K \) provided disconnection occurred in the star graph. Similarly \( F_c(K) \) and \( F_{cc}(K) \) are defined. These values are shown in Table I for \( K = 1, 2, 3, 4 \) as obtained by our simulation experiment. We make the following observations:

- For all values of \( N \) (number of nodes in the star graph), \( F_s(1) \), frequency of single node disconnection is larger than 50% and \( F_s(1) \) always increases with increasing \( N \). Similar observations

![Probability of Disconnections for S4, N = 24, i denotes number of failed nodes.](image)
can be made about binary cubes and cube connected cycles [1].

- Dominance of the single node disconnection increases with increasing node degree \( n \).

The above results do not give any indication of the value of \( P(i) \) itself, only of its composition. In the following section we give the analytical (obtained by using the expressions derived in the earlier section) as well as simulation (obtained by our Monte Carlo simulation) results for \( P(i) \) of star graphs of different sizes.

**Results for \( P(i) \)**

Figure 2, 3, and 4 show the analytical and simulation plots of \( P(i) \) versus the percentage of failed nodes \((i/N)\) percent) for a star graph of order 4, 5 and 6 respectively. We make the following observations:

- The curves are narrower for higher order star graphs and the discrepancy between analytical and simulation results is never beyond 20%.

- If \( P_{\text{max}} \) represents the maximum value of \( P(i) \) and \( i_{\text{peak}} \) represents the corresponding value of \( i \), there is a very close correlation in the value of \( i_{\text{peak}} \) between the simulation results and the analytical model. Also the value of \( i_{\text{peak}} \) tends to be lesser for higher order star graphs and \( i_{\text{peak}} \) for star graphs is always less than 50%. It may be recalled from Aker and Krishnamurthy [1] that \( i_{\text{peak}} \) for binary cubes was near 50%.

- The variation in the value of \( P_{\text{max}} \) is due to the approximation in the analytical model as well as to the statistical error in simulation experiment.

- \( P_{\text{max}} \) steadily falls with increasing size of the star graph.

- We can conclude that \( N \) is the dominant factor in determining the value of \( P_{\text{max}} \).

**Network Resilience**

We have seen that a network disconnection can impede the recovery mechanism in a gracefully de-
gradable system. Hence the probability of no disconnection is a multiplicative coefficient of the coverage factor, the probability of successful recovery. In other words, the coverage factor at i-th failure is $(1 - P(i))$ times the coverage factor in a fully connected network graph. The range of values of $P_{\text{max}}$ as obtained from the figures is very high compared to acceptable values of coverage factor. In order to allow enough failures without reaching high values of $P(i)$, we use the concept of network resilience which was used in Najjar and Gaudiot [4] to study hypercubes.

Network Resilience $N R(p)$ of a distributed system is defined as the maximum number of node failures that can be sustained while the network remains connected with a probability $(1 - p)$. It is formally defined as

$$\sum_{i=1}^{N R(p)} P(i) \leq p$$

$(1 - p)$ is therefore the certainty factor of no disconnection after $N R(p)$ failures. The measure of relative network resilience $RN(p)$ is defined as $N R(p)/N$. Table II shows the values of $N R(p)$ and $RN R(p)$ for the star graph, hypercubes and cube connected cycle cases and for $p = 0.01$. The values for the hypercubes and cube connected cycles are taken from Akers and Krishnamurthy [1] for comparison purposes. These values represent the maximum number of nodes that can fail with less than $1\%$ chance of network disconnection. The plots of $RN R(0.01)$ are shown in Figure 5 (x-axis values are values of $\log_2 N$ and y-axis represents relative resilience). We make the following observations:

- Relative network resilience decreases for cube connected cycles while it increases for star graphs and hypercubes.
- The network resilience in all cases increases with increase in number of nodes in the network, i.e.,...
larger systems allow a larger number of degradation states irrespective of the topology.

- When the degree of nodes remain constant the relative network resilience decreases with increasing \( N \).
- A sublogarithmic increase in node degree, such as in a star graph results in a slight increase of the \( RN_R \) and a logarithmic increase in node degree such as in hypercube results in more increase in relative network resilience.

CONCLUSIONS

In this paper we have used the probability of disconnection as a probabilistic measure of network fault tolerance and have used this criterion to study the robustness of star graphs. We have derived several interesting properties of this new family of network topology and compared the results with those of hypercubes. Our study lends further proof to two major points: disconnection probability can be used as a very meaningful criterion to measure network resilience in real life applications and the star graphs

\[
RNR(N, p = 0.01)
\]

![Figure 5](image_url)  
Relative Resilience for \( p = 0.01 \).
seem to be a very attractive alternative to hypercubes in VLSI design.

References


Biographies

WALID NAJJAR received a B.E. in Electrical Engineering from the American University of Beirut and an M.Sc. and Ph.D. in Computer Engineering from the University of Southern California, Los Angeles. He worked at the USC/Information Sciences Institute, Marina del Rey, and is presently an Assistant Professor in the Computer Science Department at Colorado State University. His research interests include parallel processing and multicomputer architectures with focus on dataflow processors and interconnection networks. Dr. Najjar is a member of the IEEE and the ACM.

PRADIP K. SRIMANI has served on the faculty of Indian Statistical Institute, Calcutta; Gesselschaft fuer Mathematik und Datenverarbeitung, Bonn, Germany; Indian Institute of Management, Calcutta; and Southern Illinois University, Carbondale. Currently, he is a Professor of Computer Science at Colorado State University in Ft. Collins. His research interests include parallel algorithms, distributed operating systems, software reliability, fault-tolerant computing, networks and graph theory applications. He is a senior member of the IEEE, and member of ACM, IEEE CS Press Editorial Board and Editorial Board of the International Journal of Computer Simulation.