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1. THE CHEMISTRY OF GOLD

For many centuries gold has occupied a special place in medicine as a potential "cure-all" for

diseases. As early as 2500 BC gold was used in Chinese and Arabic medicine. In the 8th century it

was advocated as an elixir of youth, and in the Middle Ages gold mixtures were prescribed for a range

of conditions. It was not until 1890 that Koch discovered that the gold(I) dicyanide ion had

antitubercular activity, although this was subsequently shown to have little benefit for the treatment of

the disease.2 During the search for non-toxic gold(I) complexes with antitubercular activity, gold(I)

thiolate complexes were synthesized. These were used extensively during "the golden decade" from

1925-1935 for the treatment of tuberculosis. 1,3 In 1929, Forestier found that gold was effective for

the treatment of rheumatoid arthritis,4 but it was not until 1960 that controlled clinical trials were able to

prove the efficacy of gold therapy. Today for the treatment of rheumatoid arthritis, injectable gold(I)

thiolates have been supplemented in the clinic by the orally-active gold(I) phosphine complex

(aumnofin). Aumnofin is also being used in the clinic for psoriatic arthritis, juvenile rheumatoid arthritis

and is on clinical trial as an antiasthmatic.

There is potential for more extensive use of gold in therapy based on the rational design of new

gold compounds. The interest in this area is displayed in the large number of reviews on various

aspects, such as those by Shaw (1979),5 Brown and Smith (1980), 6 Berners-Price and Sadler

(1986),7 Champion et al. (1990),8 Dash and Schmidbauer (1990),9 Smith and Reglinski (1991),10

Parish (1992) 11 and Ni Dhubhghaill and Sadler (1993). 12

1.1. Properties of the element.

Gold, atomic number 79, occurs at the end of the third transition series, with an outer shell

electronic configuration of 5d106s1. The enormous stability of Au(0) is a major feature of its chemistry.

Gold is a noble metal, easily obtained in a pure metallic form. This has a cubic close-packed structure,

each gold atom having 12 nearest neighbors. The yellow metal is malleable and ductile and is resistant

to attack by common chemicals and light, and only agents such as cyanide and aqua regia (a mixture of

nitric and hydrochloric acids) will degrade it. Higher oxidation states of gold are readily reduced to

Au(0), and the high strength of Au-Au bonds is another striking feature of its chemistry.13
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1.2. Colloidal gold

Under favourable conditions, solutions of Au(lll) can be reduced to colloidal gold. These may be

red, blue or violet in colour depending on the method of preparation, mean particle size, and shape.

"Purple of Cassius", generated in this manner has been used as a colouring in ceramics for several

centuries. Indeed the "potable gold" used in the past as a "cure-all" was obtained by reduction of a

solution of gold in aqua regia and diluted with essential oils such as oil of rosemary. The surfaces of

colloidal gold particles carry a negative charge and so can adsorb strongly to proteins. This has led to

the use of colloidal gold as a cytochemical marker in electron microscopy for protein binding studies. 14

For example, colloidal gold labelled with antibodies can be used to probe antigenic sites on cell

surfaces. Imaging of the liver can be carried out using mdiolabelled 198Au administered by injection.

Macrophages also take up gold particles by phagocytosis. Recently, ultrasound has been used to

give small (<10 nm) particles, 15 and reduction with [P(CH2OH)4]CI gives even smaller particles (1.5

rim).16

1.3. Physical methods for the study of gold compounds

There are few methods for the direct probing gold in gold complexes. These include 197Au

M6ssbauer17 and X-ray absorption spectroscopy. 18 197Au (100% abundance) NMR has not been

useful for examining gold complexes since the nucleus is quadrupolar (1=3/2) with a large quadrupole

moment and low gyromagnetic ratio. Only in the most symmetrical compounds would the 197Au NMR

signal be expected to be sharp enough to observe, and then only at high concentrations. No useful

chemical studies have been done, and nuclear quadrupole resonance has also not found wide

applications for gold. Single crystal X-ray diffraction give useful structural data if suitable crystals can be

obtained, indeed gold derivatives are often used to solve the phase problem in protein

crystallography. Extended X-ray absorption fine structure (EXAFS; e.g. LII edge) and wide angle X-ray

scattering (WAXS) have been used to study the gold coordination sphere in a number of complexes.

Electron paramagnetic resonance (EPR) has been used to study several Au(ll) compounds13 but the

biologically important oxidation states of Au(I) and Au(lll) are not EPR active. Table 1 summarizes the

information gained from these techniques. Gold complexes are mostly studied by indirect means such

as NMR, vibrational and electronic spectroscopy.
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Total gold determinations are usually carried out by atomic absorption spectroscopy (AAS)

where the detection limit is ca. 0.5 ppm, or, more recently, by inductively coupled plasma-mass

spectrometry (ICP-MS). The use AAS to monitor serum gold levels has greatly improved the safety of

use of gold drugs since the 1970’s. Recently the metabolism of auranofin has been studied by HPLC

coupled to ICP-MS, the detection limit of which is four orders of magnitude lower than AAS. This is

approximately the concentration of gold in the blood and urine of patients treated with the drug. 19

1.4. Oxidation states

Au(I), outer electronic configuration 5d10, is by far the most important form of gold biologically,

and most gold drugs contain gold in this oxidation state. It is possible that Au(I) can be oxidized to

Au(lll) in vivo, e.g via the myeloperoxidase system of white cells.20 Au(lll) may be responsible for some

of the toxic side-effects of Au(I) drugs (Section 3.4). Au(ll) could be an important intermediate in

biological reactions, but has not yet been recognized as such, while Au(V) is not likely to be

accessible in vivo.

While Au(I) dominates the biochemistry of gold compounds, it is important to note that the gold

must be stabilized by -acceptor ligands (those capable of accepting back-bonding from the metal)

because there is a tendency to disproportionation to Au(lll) and colloidal Au(0), particularly in aqueous

solution. The oxidation state diagram illustrates the high thermodynamic stability of Au(0). The Au(lll)

complexes generally have high potentials indicative of their oxidizing properties. Many of the Au(I)

complexes have E values that lie above a line drawn from the potentials of the corresponding Au(lll)

complexes and Au(0) indicating that the complexes are unstable with respect to disproportionation to

Au(lll) and Au(0). The low points for [Au(CN)2]- and [Au($203)2]3" indicate stabilization of Au(I) for

these complexes. The E for [Au(HgO)2]+ is a calculated value21 (Figure 1).139

An approximate order of thermodynamic stability22 for some Au(I) complexes with biologically-

important ligands is:-

CN CysS- PR3 >> Met-S-CH3 His(=N-) > CI >> CO0

and for halides:-

I>Br>CI->>F
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Figure 1- Oxidation state diagranl for gold (adapted). 139

112



P.J. Sadler mdR.E. Sue Metal-BasedDrugs

Generally the Au(I) complexes are prepared from Au(lll) precursors such as AuCI4", and there are

a variety of methods available, such as reduction with excess phosphine or thiodiglycol. Electrolytic

methods for producing Au(I) often have the advantage of giving fewer by-products and allow a ready

choice of counter-anion.23

1.5. Coordination geometries

X-ray crystallography has shown that Au(I) can adopt coordination numbers of two, three, and

four. Linear two-coordination is the most common, often with weak additional bonds (especially

Au...Au contacts) in the solid state. A recent analysis of Au..-Au interactions in the solid-state shows a

large number of contacts in the range 2.50 4.00 ,/k. For comparison, the Au...Au distance in metallic

gold is 2.89 ,/k and the van der Waals distance is 3.60 ,/k, illustrating the tendency for both bonding and

non-bonding Au-Au intermolecular contacts.24 For Au(lll), square-planar four coordination is the most

common, but five- and six-coordination are known. Examples are shown in Figure 2.

2. ANTIARTHRITIC GOLD DRUGS

2.1. Gold thiolate and gold phosphine complexes

Since Land first suggested the use of aurothioglucose (Solganol),25 a number of Au(I) thiolato

complexes have been used as injectable drugs in antiarthritic therapy, these have included sodium

aurothiosulfate (Sanochrysin), sodium aurothiomalate (Myocrisin), sodium aurothiopropanol sulfonate

(AIIocrysin) and the Au(I) complex of 4-amino-2-mercaptobenzoic acid (Krysolgan), Figure 3. The

thiolate complexes are polymeric in the solid state and in solution, forming rings or chains.

Of these complexes, only Sanochrysin has had its structure determined by X-ray

crystallography. The [Au($203)2]- ion is linear and two-coordinate with a bond angle of 176 and Au-S

distance of 2.28 , while the nearest Au neighbours are 3.30 ,, away.26
Aurothiomalate was developed with many other potential drugs in the 1920’s during the search

for less toxic antitubercular agents to replace [AuCN2]-.22 The structures of both aurothiomalate and

aurothioglucose have been studied by EXAFS since neither has been crystallized.27,28
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Figure 2: Typical structures of Au(I) and Au(lll) complexes.
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In both cases the gold is bound to two sulfur atoms at a distance of 2.37 A giving polymers with

bridging thiolate sulfurs. Cyclic hexamers or pentamers are possible,29 but WAXS measurements,

which allow detection of Au.-.Au contacts (of 3.35, 5.8 and 8.1 A), suggest that a linear hexamer

structure is the more likely as shown in Figure 3.30 Such structures require that the thiolate be present

in stoichiometric excess over gold in these complexes, which is usually the case (ca. 9% molar

excess).31

In solution the structure of aurothiomalate is highly dependent on the charge on the carboxylate

groups. At low ionic strength the conformation of the ligand is similar to that of free thiomalate, while at

higher ionic strength the structure is more compact and a number of conformations can be detected

by NMR.29 EXAFS studies of solutions of aumthiomalate and aumthioglucose show that Au(I) is

coordinated to 2 sulfur atoms at distances of 2.29 and 2.30 , respectively.28 The kinetics of the

folding and unfolding of the various polymeric forms of aurothiomalate have been analyzed using

electronic absorption spectroscopy.32 It is notable that the uptake of gold is greater in inflamed tissue

than for non-affected tissue.33

CH3COO
CH3COO-"O
CH3COO’/"S’Au

OCOCH3 PEt3

Figure 4: The orally-active antiarthritic drug, auranofin.

One of the problems with traditional chrysotherapy are the side-effects, the most severe being

exfoliative dermatitis, bone marrow suppression and nephmsis. Auranofin resulted from a search for

an orally-active drug to ovemome these problems and those associated with painful intramuscular

injection of gold thiolates.2 Several gold(I) phosphine complexes were found to have oral

antiinflammatory activity in animal models, including Et3PAuCI and (Et3P)2AuCI, but diarrhoea was a

troublesome side effect.34,35 Eventually the tetraacetylthioglucose derivative, auranofin (Figure 4)

was approved by the FDA in 1985. X-ray crystallography shows that auranofin is monomeric with linear

2-coordinate Au(I) with Au P and Au -S bond lengths of 2.259 ,/k and 2.293 A, respectively, and with

a P Au S angle of 173.6 36 and 1H, 13C and 31 p nmr show that the structure is similar in

solution.37,38 The gold phosphine complex has similar geometry in the solid state with the Au P and
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Au CI bond lengths of 2.232 A and 2.305/,, respectively, and a P Au CI angle of 178.50.39

Auranofin is a lipophilic complex and blood serum levels are maintained with a daily dose as

opposed to the weekly or monthly injections of aurothiomalate. Whereas aurothiomalate is almost

immediately taken into the blood stream and distributed to all parts of the body, auranofin is absorbed

only slowly. There is little difference in gold distribution 24 h after administration of the two complexes.

It should be noted that if solid auranofin is administered, only 20-25% is absorbed and so the effective

dose is much lower. However, if solutions of auranofin are administered (e.g. in ethanol) then

absorption is almost complete.40

Auranofin has been shown to be an inhibitor of the incorporation of 3H-thymidine and 14C_

amino acids in mitogen-stimulated human lymphocytes, i.e. the precursors to DNA and protein

synthesis.41 Inhibition of protein kinase C. which is important in the transmission of extracellular

signals, has also been reported, probably by interaction with thiol groups.42,43 Au(I) thiolate drugs

may also be involved with suppressing the production of reactive oxygen species. Phagocytosis may

result in the generation of superoxide ion and it has been shown that this can be oxidized to singlet

oxygen. This in turn is capable of peroxidation of unsaturated fatty acids, and may be involved in the

inflammatory process. Auranofin also deactivates singlet oxygen with a quenching constant of the

order of 107 M’ls"1.44 Both auranofin and myocrisin have been implicated in the control of oxidative

damage in rheumatoid arthritis.45

Gold phosphine complexes of thiobenzoic acid (Et3PAuSCOPh) and substituted thiophenols

(o-HOOCC6H4SAuPEt3 or o-H2NC6H4SAuPEt3) have also shown antiarthritic activity in rats, but have

not been used clinically.46 Gold yeast (containing 0.5 % gold by weight), obtained by growing yeast

on Au(lll), is also found to be effective against adjuvant arthritis.47

2.2. Ligand Exchange

Thiolate exchange reactions of aurothiomalate are facile via associative mechanisms and three-

coordinate intermediates, and the polymers are degraded eventually into monomeric bisthiolato

complexes [Au(SR)2]-. The thiols with the lowest PKa’s form the most stable complexes; an

approximate order of stability for complexes with some biologically important ligands is:-48
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cysteine methyl ester, D-penicillamine > 13-D-thioglucose > N-acetylcysteine

> glutathione, thiomalate, mercaptoacetate.

Thiols such as D-penicillamine (J,l]-dimethyI-D-cysteine) and 2,3-dimercaptopropanol are

sometimes prescribed to remove gold from the body in cases of toxicity because of the high stability

of their complexes with gold.49.50

Such thiolate exchange reactions play a role in the transport and metabolism of gold drugs.

Aurothiomalate is largely transported around the body on serum proteins such as albumin. M6ssbauer

and EXAFS studies show that the thiomalate is exchanged for cysteine-34 in albumin:-51

AIb-Cys-34-SH + 1/n[Autm]n -- AIb-Cys-34-S-Autm

It is notable that the pKa of Cys-34 in albumin is low (< 5).

Smith et al. have used resonance Raman, in conjunction with 5,5-dithiobis(2-nitrobenzoic acid),

EIIman’s reagent, and nmr spectroscopy to probe membrane thiols of red blood cells, and have shown

that these thiols are targets for aurothiomalate.51 15N Nmr has also been used to study the interaction

of C15N" with both aurothiomalate and aurothioglucose, and in both cases the cyanide ion

immediately binds to gold, forming [RSAuCN]- complexes. These rearrange to [Au(CN)2]" and

[Au(SR)2]" species. This may influence the uptake of these drugs into the red blood cells by

depolymerising the gold drugs and allowing them to cross the red cell membrane 52

Auranofin is readily deacetylated under acidic conditions such as those in the stomach and

triethylphosphineAu(I)thioglucose has been detected after passage of the drug through the intestinal

wall.54 31 p nmr spectroscopy is useful for probing interactions between gold phosphine complexes

and biofluids, cells and proteins.38,55 In R3P-Au-SR complexes, the 31 p chemical shift is dependent

on the pKa of the thiolate (SR) in the trans position.56

Auranofin and related complexes are readily taken up into red cells where the binding sites are

glutathione and haemoglobin (Cys-13-93). Et3P-Au-CI binds preferentially to the free Cys thiolates of

haemoglobin and albumin, but when these are saturated, then weaker binding to His residues
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occurs.38,55,57,58 Histidine (His) binding is probably responsible for the rather unusual low-spin state

to high-spin state change which this complex can induce in cytochrome c.59

Studies of the metabolism of triply-radiolabelled auranofin (32p, 195Au 35S) have shown that

excretion of the sulfur and phosphorus occur faster than excretion of gold,60 consistent with the

displacement of the (acetylated)thioglucose ligand by natural thiolate ligands in vivo, and subsequent

displacement of triethylphosphine and its rapid oxidation to OPEt3. The latter process may be

accompanied by reduction of a protein disulfide bond.38,61

Exchange reactions involving cyanide are also of physiological importance. Smoking has been

shown to increase the uptake of gold into red blood cells. This is attributable to inhalation of HCN in

smoke.62 Cyanide reacts with aurothiomalate to form the mixed ligand complex [Au(CN)(tm)]-, and

then [Au(CN)2]’.63 The latter complex is readily taken up into red cells whereas aurothiomalate is not.

[Au(CN)2]" has been detected as a metabolite in the urine of patients treated with both aurothiomalate

and auranofin; 19 for example 36% of the gold in a urine sample of a patient (smoker) treated with

Solganol was present as [Au(CN)2]’. [Au(CN)2]" may be a common metabolite for all gold antiarthritic

complexes. Since cyanide is also a natural metabolite (converted into SCN" by rhodanese in the liver)

it may play a more important role in the action of gold (and some other metallodrugs) than has

previously been realized. This requires further investigation.

3. GOLD COMPLEXES OF BIOMOLECULES

3.1. Gold-albumin complexes

Over 80% of the gold in circulation in the body after administration of gold drugs is bound to the

protein albumin (M 66.5 kDa).64 The protein contains 35 cysteine residues, all but one of which are

oxidised as disulfide bridges. The remaining cysteine, Cys-34, is present in the reduced form (SH) in

60-70% of albumin molecules while 30 40% is a mixed disulfide with free cysteine or glutathione.

Albumin-bound gold is probably then transferred into cells. The high affinity of Cys-34 for Au(I) is

consistent with its reported low PKsH (ca.5). EXAFS and M6ssbauer spectra of albumin after

modification with aurothiomalate suggest the presence of AIb-Cys-34-S-Au-tm with Au-S distances of

2.28/.51 Au-P and Au-S distances of 2.29 ,, have been determined by EXAFS for AIb-Cys-34-S-Au-

119



Volume 1, Nos. 2-3, 1994 The Chemistry ofGoMDntgs

PEt3 obtained by treatment of albumin with auranofin. Triple radiolabelling experiments (3H, 195Au

140) confirm that auranofin binds to albumin with release of the tetmacetylthioglucose ligand.66 In

accordance with the PKsH values, Au(I)PEt3 readily transfers from haemoglobin Cysl393 to albumin

Cys_34.57 1H Nmr studies suggest that the binding of Et3PAu+ to Cys-34 of albumin influences the

environment of His3 at the N-terminus. Since this is the site of Cu(ll) transport, and copper has been

implicated in the aetiology of rheumatoid arthritis, this finding could have a wider significance. In vitro,

reactions between Et3PAuSR and albumin lead to the release of SR, which in turn can reduce the

Cys-blocked albumin in the solution (ca. 40% for bovine serum albumin) with concomitant production

of disulfides Cys-SR, and Cys-Cys (e.g SR thioglucose, tetmacetylthioglucose).67 31 p Nmr studies

show that treatment of albumin with Et3PAuCI gives a Au(I) complex with phosphorus and sulfur

ligands (531P 42.0 ppm), further evidence for complexation at Cys-34. Additional peaks at 531P 34.4

and 30.3 ppm are indicative of Au(I) binding to other sites such as histidine and methionine;55 there

may also be a conformational change on gold binding.58 In addition, there is evidence for the sulfur-

bridged species AIb-Cys-S-(AuPEt3)2+ (531p 35.6 ppm).68 Once Et3Au+ is bound to Cys-34 of

albumin, the phosphine can be displaced by other ligands such as CN- with release of the phosphine,

this may influence the rate of gold metabolism in smokers.69 GC-MS studies with 170 nmr studies

suggest that albumin disulfides are reduced by oxidation of the free phosphine.70 Indeed it has been

shown that treatment of albumin with (Et3P)2AuCI results in the formation of AIb-Cys-S-AuPEt3 and

free Et3P which is in turn oxidised by disulfide bridges in albumin. The free thiols formed may then

bind more gold drug. This results in a family of gold-albumin complexes with variation in the position of

gold binding determined by which of the disulfide bridges is reduced.71 Tetraacetylthioglucose also

stimulates OPEt3 production by exchange reactions:-72

Tg(Ac)4 + AIb-Cys-S-Au-PEta AIb-Cys-S-Au-S-Tg(Ac), + EtP + H+

Et3P EtP=O

This is an illustration of the trans effect, resulting in labilization of the phosphine and although

the first step is reversible, the second step is irreversible and results in gradual loss of the phosphine.

Interestingly the effect is observed only for tetraacetylthioglucose and not for thioglucose or

glutathione.
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3.2. Gold Metallothionein.

Metallothionein (Mt) is a protein of 61 residues of which 20 are cysteine residues. It is thought to

have a role in intracellular storage of Cu(I) and Zn(ll) and may also play a part in the transport and

detoxification of other metal ions (e.g. Hg(ll) and Cd(ll)). When aurothiomalate reacts with

metallothionein, Au(I) displaces Zn(ll) and Cd(ll).73 If the protein is in excess then thiomalate is

completely displaced, but if the drug is in excess, thiomalate (tm) may be retained as Mt-Cys-Au-tm. Up

to 20 Au-tm bonds can form, consistent with gold binding to each of the cysteine residues with Au(I)

S distances of 2.30/, as shown by EXAFS. In contrast, auranofin does not displace zinc or cadmium,

although it will bind to the apoprotein. Et3PAuCI, on the other hand, binds strongly to metallothionein

indicating the ease of displacement of chloride compared to thiolate sulfur.66,74 Cultured human

epithelial cells can be stimulated to metallothionein synthesis by exposure to [AUCI4]-.75 Auranofin

also induces metallothionein synthesis in Chinese hamster ovary cells via activation of gene

transcription, and appears to provide a gold resistance mechanism.76 In vivo, administration of Au(I) to

rats leads to Mt-bound gold. The levels increase rapidly for 12 hours and then more slowly for the next

5 days, before declining.77

3.3. Gold complexes of other proteins and peptides

Under highly inflammatory conditions, as in arthritis, there are likely to be high levels of strong

oxidants available, e.g. H202, CIO-, IO- and some of the side-effects associated with Au(I) antiarthritic

drugs may be due to in vivo oxidation to Au(lll). Gold(Ill) peptides could be responsible for lymphocyte

activation processes. There are few well-established structures of Au(lll)-peptide complexes. Au(I)

binds predominantly to cysteine sulfur in peptides, and much more weakly to methionine sulfur and

histidine nitrogen. Au(lll) on the other hand binds strongly to N and O side-chains of peptides and

deprotonated amide nitrogens. The latter type of binding is shared by the other square-planar ions

Cu(ll), Ni(ll), Pd(ll), and Pt(ll). Au(lll) tends to oxidize methionine and cysteine sulfurs.78

In [Au(Gly-L-His)CI]+ the peptide behaves as a tridentate ligand with square-planar Au(lll)

coordinated to the glycyl amino group, the deprotonated peptide N and the N3 of the His imidazole

ring. The Au-N(peptide) bond is slightly shorter than the other two Au-N bonds (1.94.4, cf. 2.00/).
This monomer was crystallized at pH 1.5-2, and at pH 6 to 7 a tetramer [Au(Gly-L-His)]4 is formed. Here
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the fourth coordination site is occupied by a bridging N from the deprotonated imidazole ring instead

of chloride. The four Au atoms form a distorted tetrahedron with a C2 axis in the centre of a saddle

arrangement (Figure 5).79

COOH

H2

Monomer

-OH2

Tetramer

Figure 5: Structures of [Au(gly-L-his)CI]+ And [Au(gly-L-his)]4 as determined

by Wienken et al., 1992.79

There are several reports of gold amino acid derivatives, (L-cysteinato)gold(I) and (D-

penicillaminato)gold(I) have been prepared and studied electrochemically,80 and a number of salts of

the form [H3NCHRCO2R’]+[AuCI4] have been prepared. Of these, only the methyl alaninium salt

(Figure. 6) has been studied crystallographically, the structure is unexceptional with little interaction

between the amino acid and the [AuCI4]" ion.81 Triphenylphosphine-(N-benzoyI-L-alaninato)gold(I)

has also been crystallized (Figure. 6). As expected, the gold is linearly coordinated by the phosphine

(Au P, 2.22 ,/k) and the amino acid carboxlate group (Au O, 2.07 ,/k).82 This is one of the few

examples of Au O bonds.

Gold-protein complexes are often prepared by X-ray crystallographers (by soaking crystals in

solutions of gold complexes) to solve the phase problem. For example, the antibiotic valinomycin (a

cyclododecadepsipeptide) was shown to be held in the proper conformation for potassium binding
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with hydrogen bonds, by using the tetrachloroaurate salt to solve the crystal structure.83 Ions such as

[Au(CN)2 ]- often bind electrostatically, for example to the NAD+ binding site on liver alcohol

dehydrogenase.84 However, details of gold binding are often not reported.

O
II
OCH3HaN--C’, CH3H

AuC14

MethyI-L-alaninium
Tetrachloroaurate

O O
IIL C_._O_Aupph3

NH--C’, CH3

H

Triphenylphosphine-(N-benzoyl
L-alaninato)gold(I)

Figure 6: Gold complexes of amino acids which have been determined by X-ray

crystallography.

Schuhmann et al.have reported that Au(lll) induces antinucleolar autoantibodies in animals.

They propose that Au(I) drugs produce toxic side-effects via oxidation to Au(lll), for example in phago-

lysozomes (aurosomes). Self-proteins or peptides become modified by Au(lll) and give rise to

sensitized T-cells and adverse immunological reactions.85 However, Romagnoli et al. have found that

lymphocytes of patients who develop toxic skin reactions to gold, proliferate in vitro when challenged

with different gold compounds. Unlike the findings of Schuhmann et al., they found that gold specific

T-cells recognized Au(I) and not Au(lll).86

Zinc fingers are DNA-binding proteins, typically with two histidines and two cysteines as Zn(ll)

ligands. These may be targets for gold binding.87 Indeed aurothiomalate has recently been found to

inhibit binding of the progesterone receptor (PR) to its DNA response element.88 Displacement of

Zn(ll) by Au(I) is likely to disrupt DNA binding since Au(I) is likely to adopt a linear coordination in the

flexible loops of this protein rather than the tetrahedral stereochemistry adopted by Zn(ll).

There are a number of reports of gold compounds inhibiting DNA polymerase,89 RNA and

protein synthesis,90 adenosine triphosphatase91 and a number of enzymes.92 The toxicity of Au(lll)

compounds may also involve oxidation of protein disulfides by Au(lll).78 On the other hand, synthesis
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of a 32 kD human stress protein has been reported to be induced by auranofin.93

3.4. Gold complexes with nucleotides

Nucleotides with only nitrogen or oxygen donors would be expected to bind only weakly to

Au(I). This is consistent with the lack of mutagenicity and carcinogenicity of most gold complexes, and

is an obvious advantage for gold drugs. Instead, the cytotoxicity of gold(I) phosphine complexes has

been attributed to either the phosphine moiety or to interactions of the gold phosphine complexes

with proteins such as DNA polymerase. Indeed it has been shown that auranofin does not interact with

pBR322 DNA, although the analogous Et3PAuX complexes (X CI, Br) do bind to DNA, under certain

conditions (pH 9.5), with a preference for guanine and cytosine. This can be inhibited by the addition

of a thiosugar, and illustrates the preference of Au(I) for softer donors such as sulfur.94, 95 However,

Au(lll) does bind strongly to nitrogen and oxygen donors and a number of Au(lll) interactions with

nucleotides have been reported. For example, Et3PAuBr3 binds to Hind III/Ncil, a 139 base-pair

restriction fragment from pBR322 and this inhibits cleavage at guanine N(7).96 In addition, there have

been a number of reports of interactions between nucleobases and nucleosides with both Au(I) and

Au(lll). These include complexes of the form [Au(lll)(CH3)2(nucl)CI], where nucl adenosine, cytidine

or guanosine. In all of the complexes the Au(lll) has square-planar geometry with the gold bound to

N(7) of guanosine, and N(3) of cytidine, while for adenosine the gold may be bound to N(7) or the

amino group.97 Thermolysis of these complexes results in elimination of the nucleoside.98 Au(I)

complexes include the gold phosphine complexes [Au(I)(PR3)(nucl)]NO3, where R phenyl, o-anisyl,

p-anisyl; nucl guanosine, adenosine or cytidine, where the nucleoside binding sites are again

thought to be N(7), N(7) and N(3), respectively.99

Uridine and uracil complexes have been more elusive; the primary reaction between uridine or

uracil and [AuBr4]" gives the corresponding 5-bromopyrimidine and/or the 5-bromo-6-

hydroxypyrimidine.lOO, 101, 102 However, the related Au(lll) complex of 6-amino-l,3-dimethyl-5-

phenylazouracil (DZH), [Au(DZ)CI2], has been prepared and is thought to have square-planar

geometry with the ligand cis-coordinated through the nitrogen of the azo group bonded to the phenyl

ring and the deprotonated amino group, with the remaining sites occupied by 2 chlorine atoms. o3

The 5-diazouracil (5-du) complex of Au(lll), [Au(5-du)2CI2]CI.HCI, has also been prepared and shows

antitumour activity. 104
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Crystallographic studies include inosinium tetrabromaurate dihydmte,105 9-ethylguaninium

tetrachloroaurate hydrate, 106 tetrakis(1-methyluracilium)sodium tetrachloroaurate and [Na(1-

MeTh)(H20)4][AuCI4].I-MeTh.2H20 (1-MeTh 1-methylthymine).107 In each case Au(lll)is square-

planar with little association between the tetrahaloaurate ion and the base. In contrast, gold is bound

to the nucleobase in trichloro(1-methylcytosinato)gold(lll). This complex is square-planar with the

Au(lll) bound to N(3) of 1-methylcytosine with an Au-N(3) distance of 2.031,/k; the angle between the

planes of 1-methylcytosine and the AuCI3 is 85, which should minimize steric replusion. 108 1H Nmr

studies suggest that there is similar binding in trichloro(cytosinato)gold(lll). 109 The gold geometry is

also square-planar in [Au(2,2"-bipyridine)(1-methyluracil)2]CIO4.4H20, here there are 4 nitrogen

donors with the nucleobases arranged in a head-to-tail fashion. 110 Complexes of 3"-azido-3"

deoxythymidine (HAZT), [R3PAu(AZT)] exhibit antiinflammatory activity for R CH3, and anti-HIV

activity for R CH3, Ph. The trimethylphosphine complex has been crystallized and contains linear 2-

coordinate Au(I). 111 Similar geometry is observed in the phosphine gold thiouracil complexes,

[R3PAu(2-thiouracil)], R ethyl, phenyl. 112, 113 Structures of these complexes are shown in Figure 7.

Chlom(pyridine)gold(I) and trichloro(pyridine)gold(lll) both appear to react with a number of

different conformations of pBR322 DNA to produce inter-strand cross-links and single-strand breaks

as does Et3PAuCI3. On the other hand the Au(I) complex, Et3PAuCI binds without the formation of

cross-links. The amount of cross-linking can be reduced by the addition of thiols such as 2-

mercaptoethanol, again illustrating the strength of Au(I)-P and Au(I)-S bonds.94, 114

Gold(Ill) nucleotides have been prepared from AuCI4" and adenine nucleotides. If the only

cations present are Na+ or K+ they are soluble but can be precipitated with ethanol. Little is known

about their structure, although they may be polymeric with coordination to NH2(N6 and N7 of the

adenosine.115 Probable binding sites for Au(lll) with nucleotides have been suggested to be

N(1)/N(7) for adenine, N(7) or C(6)O of guanine, N(3) of cytosine and N(3) of thymidine which are

analogous to the binding sites for the isoelectronic Pt(ll) ion.95, 116, 117 Further work in this area is

required to fully understand the impact of gold binding to nucleotides on drug action.
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4. POTENTIAL GOLD ANTITUMOUR DRUGS

4.1. Cytotoxic gold phosphines and other complexes

Auranofin, the antiarthritic drug, is potently cytotoxic to human cancer cells in culture118 and

also increases the survival time of mice with P388 leukemia. 119 However, it is active only against

intraperitoneal (ip) P388 leukemia in mice, and then only when administered ip. It does not alter cell

cycle distribution but DNA, RNA and protein syntheses are inhibited at concentrations that are lethal

to cells.90

A large number of gold monodentate phosphine-thiolate complexes have since been tested for

antitumour activity, with variation of both phosphine and thiolate ligands.120 These are described in

Table 2 with their anticancer activity data. Comparison of Au(I) thiolates with phosphine Au(I) thiolates

suggests that it is the phosphine that is the toxic agent and that the metal plays a role in delivery of the

complex to the target site. By comparison, the triethylarsine gold complex Et3AsAuCI shows potent

cytotoxicity in vitro but is inactive in vivo .120

The activation energies for ligand exchange reactions on Au(I) through associative 3-coordinate

intermediates are low. 31p Nmr studies show that the Au(I) phosphine complexes undergo fast ligand

exchange reactions with free phosphine at 213 K. 121 Four-coordinate tetrahedral Au(I) bisphosphine

complexes undergo much slower ligand redistribution reactions. There is no evidence for 5-

coordinate Au(I) complexes, hence all exchange reactions require ring-opening of the chelates. Four-

coordinate complexes with 5- or 6-membered rings readily form, but bisphosphines with longer chains

between phosphorus atoms form annular 3-coordinate Au(I) dimers or bridged digold species, with

trigonal and linear coordination at gold, respectively.

Bridged linear digold(I) bisphosphine compounds (Figure 8) such as (thioglucose)Au(l-

dppe)Au(thioglucose) are also cytotoxic in vitro, and exhibit in vivo anticancer activity against a wider

range of tumours compared to auranofin. A large number of analogues have been prepared and

tested for their anticancer activity (Table 3). 122 The corresponding Au(lll) complex, [CI3Au(#-

dppe)AuCI3], also shows activity. 123 The structures of the bridged linear Au(I) complexes are

assumed to be the same as [CIAu(l-dppe)AuCI], which has linear 2-coordinate Au(I). 124
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Table 2

Antitumour Activity Of Auranofin Analogues In Mice With Ip P388 Leukemia And In Vitro Cytotoxicity

Against B16 Melanoma Cells.

Structure MTDa %ILSb IC50c
(Iamol/kg/day) (l.tM)

Et3PAuSGlu(Ac)4 1 8 70 1.5

Et3PAuGlu 24 68 2

Et3PAuSGlu(CONHCH3)4 21 58 7

Et3PAuSG u SO2CH3)4 19 40 3

Et3PAuS-o-G u(Ac)4 18 65 4

Et3PAuSGaI(Ac)4 8 88 4

Et3PAuSGlu(Ac)3Glu(Ac)4 19 88 6

Et3PAuS-(1 I-thio-2-isopropylidene- 15 27 6

xylofuranose)

Et3PAuSCH3 110 36 60

Et3PAuS(CH2)7CH3 17 32

Et3PAuSCH(COOH)CH2COOH 22 46 1

Et3PAuSCH2CH2N(CH2CH2)20.HCI 24 32

Et3PAuSCH2CH2OGlu 14 55 2

Et3PAuSCH2CH2SGlu 21 45 7

Et3PAuS-glutathione.HCI 12 32 2

Et3PAuSCN 21 36 1

Et3PAuSC(NH)NH2.HCI 14 41 1

Et3PAusC(NH)NHNH2.HCI 11 36 1

Et3PAuSPh 9 36 6

Et3PAuS H2N’C6H4) 18 63 1
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Table 2 (cont.)

Antitumour Activity Of Aumnofin Analogues In Mice With Ip P388 Leukemia And In Vitro Cytotoxicity

Against B16 Melanoma Cells.

Structure MTDa %ILSb iC50C
(pmol/kg/day) (pM)

Et3PAuS-(2-pyridyl) 14 46 2

Et3PAuS-(4-pyridyl)

S

Et3PAuS--x
N

9 36 1

19 60 4

17 45 5

Et3PAuSoN 11 27 3

+Et3PAuS(EtOH)2 NO3 19 64 10

(CH3)3PAuSGlu(Ac)4 9 45 2

((CH3)2CH)3PAuSGlu(Ac)4 14 46 4

((CH3)2N)3PAuSGlu(Ac 4 8 60 2

Ph3PAuSGlu(Ac)4 7 36 4

Et2PhPAuSGlu(Ac)4 13 55 2

EtPh2PAuSGlu(Ac)4 6 32 4

Et2(EtO)PAuSGlu(Ac)4 14 70

Et2((CH3)2CH PAuSGlu(Ac)4 17 90 2

Et2(HOBu)PAuSGlu(Ac)4 17 58 8

AuSGlu(Ac)4 110 14 150
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Table 2 (cont.)

Antitumour Activity Of Auranofin Analogues In Mice With Ip P388 Leukemia And In Vitro Cytotoxicity

Against B16 Melanoma Cells.

Structure MTDa %ILSb IC50c
(pmoFkg/day) (IM)

AuSGlu >300 15 166

AuSCH2CH2OH 500 9 140

AuSCH(COOH)CH2COOH 350 24 60

AuSCH2CH2OGlu(Ac)4 106 0 >100

Et3PAuCI 14 36 1

Et3PAuCH3 36 55 1

Et3PAuCN 7 68 0.4

Et3PAuNO3 13 41 2

(Et3P)2AuCI 8 36 1

Et3PAu(PPh3)CI 13 52 6

(CH3)3PAuCI 16 34 6

(allyl)3PAuCI 5 25 5

Et2(HOBu)PAuCI 15 27 8

((CH3)2N)3PAuCI 13 31 0.7

Ph3PAuCI 20 36 12

Et2PhPAuCI 8 41 1

((CH3)2CH)2PhPAuCI 9 36 3

(PhCH2)3PAuCI 1 9 91 4

Ph(PhCH2)2PAuCI 0 66 2

131



Volume 1, Nos. 2-3, 1994 The Chemistry ofGoMDrugs

Table 2 (cont.)

Antitumour Activity Of Auranofin Analogues In Mice With Ip P388 Leukemia And In Vitro Cytotoxicity

Against B16 Melanoma Cells.

Structure MTDa %ILSb iC50C
(.urnc4<day) (rtM)

Et3AsAuCI 40 1 8 8

Et2SAuCI 500 50 >200

AuCI 128 35 125

S----AuCI
/ 60 32 67

100 32 67

f,N,.N---AuCI
64 14 155

190 41 25

aMaximally tolerated dose for mice on an every day for 5 days regimen, bMaximum increase in life span

produced in mice bearing P388 leukemia ip; figures are generally average values for 2 experiments.

CConcentration which inhibits cloning efficiency of B16 melanoma cells by 50%. Abbreviations Et, ethyl;

Ph, phenyl; Glu, glucose; Gal, galactose; Ac, acetate; Bu, butyl. (Data from Mirabelli et al., 1986).120
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Table 3
Antitumour Activity Of Linear Bridged Diphosphine Complexes, [CIAu(R2XYXR’2)AuCI In Mice With Ip

P388 Leukemia And In Vitro Cytotoxicity Against B16 Melanoma Cells.

Complex MTDa %ILSb IC50c
(lmol/kg/day) (IJlVl)

R,R’ Y X

Ph (CH2)2 P 7 98+4 8

Et (CH2)2 P 60 neg 17

c-C6Hll (CH2)2 P 1 8 60, 80 14

PhCH2 (CH2)2 P 4 neg 4

2-furyl (CH2)2 P 5 neg 1 7

2-thienyl (CH2)2 P 3 neg 6

2-pyridyl (CH2)2 P 7 55, 60 4

4-pyridyl (CH2)2 P 14 neg

Ph, Et (CH2)2 P 20 neg 2

4-F-C6H4 (CH2)2 P 9 80, 75 8

2-F-C6H4 (CH2)2 P 9 60, 55 6

4-tolyl (CH2)2 P 4 neg 3

3-tolyl (CH2)2 P 4 neg 7

4-CF3-C6H4 (CH2)2 P 7 37, 44

4-HO-C6H4 (CH2)2 P 35 neg

4-CH30-C6H4 (CH2)2 P 3 neg 7

2-CH30-C6H4 (CH2)2 P 12 44, 79

4-CH3S-C6H4 (CH2)2 P 8 37, 65

2-CH3S-C6H4 (CH2)2 P 8 70_+28
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Table 3 (cont.)
Antitumour Activity Of Linear Bridged Diphosphine Complexes, [CIAu(R2XYXR’2)AuCI] In Mice With Ip

P388 Leukemia And In Vitro Cytotoxicity Against B16 Melanoma Cells.

Complex MTDa %ILSb IC50c
(lmol/kg/day) (M)

R,R’ Y X

4-(CH3)2N-C6H4 (CH2)2 P 8 neg

C6D5 (CH2)2 P 7 40, 65 8

P h CH2 P 5 9 65, 50 6

Ph cis-CH=CH P 5 105, 77 7

Ph trans-CH=CH P 28 33, 36 1 0

Ph C-=C P 37 neg 23

Ph CH2CH(CH3) P 7 43+6 4

Ph CH(CH3)CH(CH3) P 7 44+15 1 7

Ph (CH2)3 P 7 62+13 2

Ph (CH2)4 P 7 40, 45 3

Ph (CH2)5 P 4 55, 55 2

Ph (CH2)6 P 4 40, 35 2

Ph 1,4-C6H4 P 26 neg 13

Ph (CH2)2 P, As 9 neg 4

Ph (CH2)2 As 1 7 neg 7

Ph (CH2)2 S 90 neg 30

aMaximally tolerated dose for B6D2F1 mice on an every day for 5 days regimen, bMaximum increase in life

span produced in mice bearing P388 leukemia ip; figures separated by commas represent different

experiments; a drug is considered active if it produces >30% ILS. CConcentration which inhibits cloning

efficiency of B16 melanoma cells by 50% on 2 h exposure. (Data from Mirabelli et al., 1987). 122
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./(CH2)n"......
R21 PR’21
Au Au

X X

Bridged Linear Digold

Diphosphine
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X--Au Au--X

R2P(cH2)SPR’2

Annular Digold

Bisdiphosphine

R2pCH2pR’2
/AuI,,,

R2P .,,PR 2
(CH2)n

Tetrahedral Gold Bisdiphosphine

Figure 8: General structures of cytotoxic gold(I) diphosphine complexes.

Annular Au(I) complexes such as [Au2(Ph2PCH2CH2PEt2)2CI2] have 3-coordinate trigonal gold

centres which are probably stabilized by short Au...Au contacts (Figure 8).125 The structure activity

relationships for this series indicate that the phosphine is important. Replacement of phosphorus with

arsenic or sulfur results in inactivity, and the activity is optimized for 2-carbon bridges between the

phosphorus atoms; also replacement of the phenyl group can alter the activity. 122, 123 These

complexes are readily converted into tetrahedral complexes (Figure 8) in blood plasma, or on reaction

with thiolates, sulfide, or further bisphosphine ligand. 126, 127 In these complexes Au(I) has a flattened

tetrahedral geometry with average Au P bond lengths of ca. 2.4 ,.127, 128 The tetrahedral

complexes exhibit surprisingly high kinetic and thermodynamic stability, with sharp 31 p nmr signals for

free ligand and complex at room temperature. The mixed-ligand complex [Au(dppe)(depe)]+, shows a

31p_31p coupling constant of 52 Hz, showing that the rate of ring opening is <52 s’l. 128 Unlike

auranofin, the tetrahedml complexes remain intact in human plasma and do not readily undergo ligand

reactions with glutathione or albumin, and lipophilic tetrahedral complexes such as [Au(dppe)2]+

readily partition into lipoproteins or bind within cell membranes.129
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[Au(dppe)2]+ is highly toxic to tumour cells in vitro, although cells can exhibit some resistance at

low doses. The complex was found to be active to a P388 subline that was resistant to cisplatin.

Moreover, administration of a combination of cisplatin and [Au(dppe)2]CI was more effective against

P388 leukemia than either agent alone. 130 The primary cytotoxic lesion appears to involve DNA-

protein crosslinks, although DNA strand-breaks also occur at higher doses. The free diphosphine

ligand, dppe, is also active against P388 leukaemina but is much less potent, suggesting that part of

the action of Au(I) is to protect the ligand from oxidation reactions before it reaches the target site. In

the series of diphosphine ligands Ph2P(CH2)nPPh2, activity is highest for n 2 and 3 or where the

bridge between the phosphorus atoms is cis-CH=CH, i.e. for those ligands which can form strong

chelate rings. In the series of tetrahedral Au(I) complexes [Au(R2PCH2CH2PR’2)2]+ antitumour activity

is gradually lost on replacing R or R" Ph with Et. 131 Table 4 lists some of the analogues which have

been tested for cytotoxicity, although these have lower activities than the dppe complex. It is possible

that chelation of the free ligand to Cu(I) inside cells is essential for activity. Cu(I) and Ag(I) dppe

complexes are known to be active. 123, 130, 131

Arsenic analogues, such as the bridged digold and tetrahedral gold complexes of the ligand

dadpe (Ph2PCH2CH2AsPh2) have been tested against 3 cell lines: L1210 (antimetabolite-sensitive

leukemia cells), WS (alkylating-agent-sensitive Walker tumour cells) and V.79 (Chinese hamster lung

cells). They are both cytotoxic to all 3 cell lines, although the tetrahedral complex is more toxic to V.79

cells, while the corresponding dppe complex is 8 times more toxic to L1210 cells. The lower potency

compared to diphosphines is probably a reflection of the increased kinetic lability and lower

thermodynamic stability of Au-As bonds compared to Au-P bonds, and hence the ligand is more easily

displaced and detoxified by oxidation. 132

In contrast to R3PAuX complexes in the auranofin series, the antitumour activity of the bridged

digold complexes increases when X is a good leaving group (with R3PAuX complexes good leaving

groups result in binding to serum proteins such as albumin). This is probably related to the conversion

of the linear bridged complexes to the kinetically stable tetrahedral complexes. The major drawback to

the clinical use of tetrahedral complexes such as [Au(dppe)2]/ is their ability to uncouple mitochondrial

oxidative phosphorylation by increasing the permeability of the mitochondrial membrane to cations,

with collapse of the mitochondrial membrane potential. 133 In preclinical trials, [Au(dppe)2]+ exhibited

cardiac, hepatic and vascular toxicity. 134, 135
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Table 4
Antitumour Activity Of Tetrahedral Gold Bisdiphosphine Complexes, [Au(R2PYPR’2)2]X, In Mice With Ip

P388 Leukemia And In Vitro Cytotoxicity Against B16 Melanoma Cells.

Complex MTDa %ILSb IC50c

(lmol/kg/day) (IM)

R,R’ Y X

Ph (CH2)2 CI 3 83+25 4.5

Ph (CH2)2 Br 2 70, 83

Ph (CH2)2 2 60, 150

Ph (CH2)2 NO3 3 90+17 4

P h (CH2)2 CH3SO3 2 81 + 1 0

Ph (CH2)2 HO(CH2)2S03 2 55, 78

Ph (CH2)3 CI 3 89+28 0.6

Ph cis-CH=CH CI 2 92+26 2

3-fluorophenyl (CH2)2 CI 10 45, 55

4-fluorophenyl (CH2)2 CI 3 55, 50

Ph, Et (CH2)2 CI 4 54+16 5

2-pyridyl (CH2)2 CI 8 75+5

4-pyridyl (CH2)2 CI 6 inactive

Et (CH2)2 PF6 5 40, 30 1 7

(CH2)2 NO3 4 61, 33

aMaximally tolerated dose for B6D2F1 mice on an every day for 5 days regimen, bMaximum increase in life

span produced in mice bearing P388 leukemia ip; figures separated by commas represent different

experiments; a drug is considered active if it produces >30% ILS. CConcentration inhibiting cloning

efficiency of B16 melanoma cells by 50% on 2 h exposure. (Data from Berners-Price et al., 1990). 131
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There are a few reports of non-phosphine Au(lll) complexes with anticancer activity. These

include [Au(CN)2]-, [Au(III)Me2CI2]AsPh4, [Me2Au(III)(SCN)2Au(III)Me2]136 and [Au(dedetc)Br2],

(dedtc diethyldithiocarbamate). 137 In contrast to Pt(ll) compounds, these active compounds have

tightly bound (and potentially toxic) ligands with high trans influences. Colloidal radioactive 198Au is

reported to protect rats against hepatic tumour growth.138 However, despite these difficulties, gold(I)

phosphine complexes show promise as antitumour agents, particularly as complements to other metal

drugs already in clinical use, and there remains much to be explored in their development.
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