AN APPROACH TO THE STOCHASTIC CALCULUS IN THE NON-GAUSSIAN CASE

ANDREY A. DOROGOVTSEV
Ukrainian Academy of Sciences
Institute of Mathematics
252601 Kiev, Tereshenkovskaia, 3

(Received January, 1994; Revised April, 1995)

ABSTRACT

We introduce and study a class of operators of stochastic differentiation and integration for non-Gaussian processes. As an application, we establish an analog of the Itô formula.

Key words: Non-Gaussian Stochastic Process, Stochastic Integral, Stochastic Derivative, Itô's Formula.

AMS (MOS) subject classifications: 60H05, 60G15, 60H25.

1. Introduction

Operators of stochastic differentiation D and an extended integration $I = D^*$ play an important role in stochastic calculus. In the Gaussian case and for certain special martingales, D and I can be defined with the aid of an orthogonal expansion (cf., T. Sekiguchi, Y. Shiota [3]). Also, D and I can be defined by means of the usual differentiation with respect to the admissible translation of the probability measure (A.A. Dorogovtsev [2]). In all these situations there are some common features. In this article we consider a general scheme in which the operators D and I are constructed for a non-Gaussian case. Since I plays the role of stochastic integration, an analog of the Itô formula is also established.

2. Stochastic Derivative and the Logarithmic Process

Let $\{\xi(t); t \in [0,1]\}$ be a random process defined on a probability space (Ω, \mathcal{F}, P). A subset K of \mathbb{R}^n is said to have the conic property if for every $x \in K$, there exists a cone, C_x, with the non-empty interior and a neighborhood, U_x of x such that $x \in U_x \cap C_x \subset K$.

Suppose that the support of any finite-dimensional distribution of ξ has the conic property.

Let λ be the Lebesgue measure on the Borel σ-algebra $\mathcal{B}([0,1])$.

Definition 1: A family of the random elements $\{\xi(t); t \in [0,1]\}$ from $L_2(\Omega \times [0,1], P \times \lambda)$ is called a differentiation rule if

1) $\forall t \in [0,1]; \zeta(t) \cdot \chi_{(t,1)} = 0 \ (\text{mod} \ P)$,

2) for every tuple $t_1, \ldots, t_n \in [0,1], a_1, \ldots, a_n \in \mathbb{R}, n \geq 1, G \in \mathcal{F}$, such that

$$ (a_1 \xi(t_1) + \ldots + a_n \xi(t_n)) \chi_G = 0 \ (\text{mod} \ P), $$

(Received January, 1994; Revised April, 1995)
the following equality holds

\[(a_1\zeta(t_1) + \ldots + a_n\zeta(t_n))x \equiv 0 \pmod{p \times \lambda}.

Definition 2: Let \(\varphi: \mathbb{R}^n \to \mathbb{R}\) be bounded, continuously differentiable and have a bounded derivative. For a random variable

\[\alpha = \varphi(\xi(t_1), \ldots, \xi(t_n)), \quad t_1, \ldots, t_n \in [0, 1],\]

the sum

\[\varphi'_1(\xi(t_1), \ldots, \xi(t_n))\zeta'(t_1) + \ldots + \varphi'_n(\xi(t_1), \ldots, \xi(t_n))\zeta'(t_n)\]

is called a **stochastic derivative** of \(\alpha\) and denoted by \(D\alpha\) (so \(D\xi(t) = \zeta(t)\)).

In the sequel, denote the set of all random variables from Definition 2 by \(\mathcal{M}\). \(\mathcal{M}\) is a linear subset of \(L_2(\Omega, \mathcal{F}, P)\). Also for \(t \in [0, 1]\), denote by \(\mathcal{M}_t\) the subset of \(\mathcal{M}\) which is only from \(\{\xi(s), 0 \leq s \leq t\}\). Obviously, \(\mathcal{M}_1 = \mathcal{M}_0\).

Lemma 1: \(D\) is well-defined on \(\mathcal{M}\).

Proof: Consider \(\varphi, \psi: \mathbb{R}^n \to \mathbb{R}\) which satisfy the conditions in Definition 2, and let \(t_1, \ldots, t_n\) be such that

\[\varphi(\xi(t_1), \ldots, \xi(t_n)) = \psi(\xi(t_1), \ldots, \xi(t_n)) \pmod{p}.

Then, it follows from the assumption about \(\xi\) that for all \(i = 1, \ldots, n\),

\[\varphi'_i(\xi(t_1), \ldots, \xi(t_n)) = \psi'_i(\xi(t_1), \ldots, \xi(t_n)) \pmod{p}.

Thus, the corresponding sums in Definition 2 are equal. The lemma is proved.

Definition 3: A random process \(\xi\) is said to have a **logarithmic derivative** with respect to a differentiation rule \(\zeta\) if there exist a random process \(\{p_\Delta, \Delta \in \mathcal{B}\}\) indexed by the Borel subsets of \([0, 1]\) such that

1) \(\forall \Delta \in \mathcal{B}, M p_\Delta^2 < +\infty\);
2) \(\forall \alpha \in \mathcal{M}\) and \(\forall \Delta \in \mathcal{B}\);

\[M \int_{\Delta} D\alpha(\tau)d\tau = M\alpha \cdot p_\Delta.

In the sequel, suppose that the process \(\xi\) satisfies the conditions in Definition 3.

Definition 4: Denote for \(t \in [0, 1]\),

\[m(t) = p_{[0, t]}\]

The process \(\{m(t); t \in [0, 1]\}\) is called the **logarithmic process**.

Let for \(t \in [0, 1], \mathcal{F}_t = \sigma(\{\xi(s); s \leq t\})\). Note, that analogous processes were considered in different situation in A. Benassi [1].

Lemma 2: For \(0 \leq s \leq t \leq 1\),

\[M(m(t) - m(s))/\mathcal{F}_s = 0 \pmod{p}.

Proof: For \(\alpha \in \mathcal{M}_s\) consider

\[M(m(t) - m(s)) \cdot \alpha = M_{[0, t]} \cdot \alpha - M_{[0, s]} \cdot \alpha\]
\[M \int_0^t D\alpha(\tau) d\tau - M \int_0^s D\alpha(\tau) d\tau = M \int_{(s,t]} D\alpha(\tau) d\tau = \sum_{i=1}^n M \int_{(s,t]} \varphi_i'((\xi(\tau_1), \ldots, \xi(\tau_n))) \cdot \xi(\tau_i) d\tau = 0 \pmod{P}. \]

Since the set \(\mathcal{A}_s \) is dense in \(L_2(\Omega, \mathcal{F}_s, P) \) then the statement of the lemma follows.

For further considerations the following result will be useful.

Lemma 3: The operator \(D \) can be closed as a linear operator from \(\mathcal{A}_s \subset L_2(\Omega, \mathcal{F}, P) \) to \(L_2(\Omega \times [0,1], P \times \lambda) \).

Proof: Consider a sequence \(\{\alpha_n; n \geq 1\} \subset \mathcal{A}_s \), such that there exists \(\nu \in L_2(\Omega \times [0,1], P \times \lambda) \) for

\[M \alpha_n^2 \to 0, \quad n \to \infty, \]
\[M \int_0^1 (D\alpha_n(\tau) - \nu(\tau))^2 \lambda(d\tau) \to 0, \quad n \to \infty. \]

Then, for every \(\Delta \in \mathcal{B} \) and \(\beta \in \mathcal{A}_s \),

\[M \beta \cdot \int_\Delta \nu(\tau) d\tau = \lim_{n \to \infty} M \beta \cdot \int_\Delta D\alpha_n(\tau) d\tau = \lim_{n \to \infty} (M \int_\Delta (D\alpha_n(\beta)(\tau) d\tau - M \alpha_n \int_\Delta D\beta(\tau) d\tau) = \lim_{n \to \infty} (M \alpha_n \beta \cdot \rho_\Delta - M \alpha_n \int_\Delta D\beta(\tau) d\tau) = \lim_{n \to \infty} M \alpha_n (\beta \cdot \rho_\Delta - \int_\Delta D\beta(\tau) d\tau) = 0 \pmod{P}. \]

So,

\[\int_\Delta \nu(\tau) d\tau = 0 \pmod{P}. \]

Since \(\Delta \) was arbitrary,

\[\nu = 0 \pmod{P \times \lambda}. \]

The lemma is proved.

Denote the closure of \(D \) by the same symbol. The domain of \(D \) is denoted by \(W^1 \).

3. **Integral with Respect to the Logarithmic Process and the Procedure of Approximation**

Definition 5: The adjoint operator

\[I = D^*: L_2(\Omega \times [0,1]; P \times \lambda) \to L_2(\Omega, \mathcal{F}, P) \]
is called a stochastic integration with respect to the process \(m \). The domain of \(I \) is denoted by \(\mathcal{D} \).

In the following, suppose that

\[
\forall \Delta \in \mathcal{D}; \rho_\Delta \in W^1,
\]

and, that the correspondence \(\Delta \mapsto \rho_\Delta \) can be extended by the bounded linear operator \(A: L_2([0,1], \lambda) \to W^1 \) (the inner product in \(W^1 \) is defined in the usual way, as a sum of \(L_2 \)-products of random variables and their stochastic derivatives). Note that under this assumption, each \(\varphi \in L_2([0,1]) \) also belongs to \(\mathcal{D} \) and

\[
I(\varphi) = A(\varphi).
\]

To have \(I \) act on random elements of \(L_2([0,1]) \), i.e., to define an extended stochastic integral with respect to the process \(m \), we need the following.

Let \(\{K_n; n \geq 1\} \) be a sequence of symmetric kernels defined on \([0,1]^2 \) such that

1) \(K_n \in L_2([0,1]^2, \lambda \times \lambda) \),
2) \(A \in L_2([0,1], \lambda) \),

where \(K_n \) is an integral operator in \(L_2([0,1], \lambda) \) with the kernel \(K_n \). Denote for \(n \geq 1 \),

\[
h_n(s,r) = D\left(\int_0^1 K_n(s,\tau)dm(\tau) \right)(r).
\]

It follows from the existence of the operator \(A \) that

\[
\forall n \geq 1; h_n \in L_2([0,1]^2, \lambda \times \lambda) \quad (\text{mod } P).
\]

Consider the following sequences of integral operators with random kernels:

\[
\forall \varphi \in L_2([0,1], \lambda) \text{ and } \forall n \geq 1;
\]

\[
B_n(\varphi)(t) = \int_0^1 \varphi(s) \int_0^1 h_n(s,\tau)K_n(t,\tau)d\tau ds,
\]

\[
C_n(\varphi)(t) = \int_0^t \varphi(s) \int_0^1 h_n(s,\tau)K_n(t,\tau)d\tau ds.
\]

Suppose that for every \(\varphi \) there exist

\[
L_2 - \lim_{n \to \infty} B_n(\varphi) = B(\varphi) \quad \text{and} \quad L_2 - \lim_{n \to \infty} C_n(\varphi) = C(\varphi).
\]

Then the operators \(B \) and \(C \) are strong random linear operators (A.V. Skorokhod [4]) which are continuous in \(L_2 \)-sense.

Definition 6: A random element \(x \) from \(L_2([0,1], \lambda) \) is said to belong to the domain of \(B \) (or \(C \)) if the sequence \(\{B_n(x); n \geq 1\} \) converges in \(L_2 \)-sense (\(\{C_n(x); n \geq 1\} \) respectively).

The following statement can be verified.

Lemma 4: Let \(H \) be a separable real Hilbert space embedded into \(L_2([0,1], \lambda) \) by the Hilbert-Schmidt operator, and let \(x \) be an essentially bounded random element of \(H \). Then, \(x \in \mathcal{D}(B) \) and
Now, consider the stochastic integration. Suppose that the differentiation rule is such that the highest derivatives are symmetric, i.e.,

\[D^2 \alpha(\tau_1, \tau_2) = D^2 \alpha(\tau_2, \tau_1) \mod P \times \lambda \times \lambda. \]

The space of random variables which have \(k \)th stochastic derivative will be denoted by \(W^k \).

Lemma 5: For every bounded \(\alpha_1, \ldots, \alpha_n \in W^2 \) and for every \(\varphi_1, \varphi_2, \ldots, \varphi_n \in L^2([0; 1], \lambda) \), the sum

\[x = \sum_{i=1}^{n} \alpha_i \varphi_i \in \mathcal{D} \]

and

\[I(x) = \sum_{i=1}^{n} \alpha_i I(\varphi_i) - \sum_{i=1}^{n} \int_{0}^{1} D\alpha_i(\tau) \varphi_i(\tau) d\tau, \]

\[MI(x) = 0, \]

\[MI(x)^2 = M \left\{ \int_{0}^{1} (Bx)(\tau) x(\tau) d\tau + tr(Dx \cdot Dx) \right\}. \]

Proof: First consider \(x = \alpha \cdot \varphi \). For every \(\beta \in \mathcal{M} \),

\[M \int_{0}^{1} D\beta(\tau) \cdot x(\tau) d\tau = M \alpha \int_{0}^{1} D\beta(\tau) \varphi(\tau) d\tau \]

\[= M \int_{0}^{1} (D(\alpha \beta)(\tau) - \beta D\alpha(\tau)) \varphi(\tau) d\tau \]

\[= M \alpha \beta I(\varphi) - M \beta \int_{0}^{1} D\alpha(\tau) \varphi(\tau) d\tau \]

\[= M \beta [\alpha I(\varphi) - \int_{0}^{1} D\alpha(\tau) \varphi(\tau) d\tau]. \]

So, \(\alpha \cdot \varphi \in \mathcal{D} \) and

\[I(\alpha \cdot \varphi) = \alpha \cdot I(\varphi) - \int_{0}^{1} D\alpha(\tau) \varphi(\tau) d\tau. \]

Consequently,

\[I(\sum_{i=1}^{n} \alpha_i \varphi_i) = \sum_{i=1}^{n} \alpha_i I(\varphi_i) - \sum_{i=1}^{n} \int_{0}^{1} D\alpha_i(\tau) \varphi_i(\tau) d\tau \]

\[= \sum_{i=1}^{n} \alpha_i I(\varphi_i) - tr(D \sum_{i=1}^{n} \alpha_i \varphi_i). \]

To prove that \(MI(x) = 0 \) it is sufficient to see that \(D1 = 0 \) and use the equation \(I = D^* \). Now, consider the following chain of equalities:

\[MI(x)^2 = M \left[\sum_{i_1, i_2 = 1}^{n} \alpha_{i_1} \alpha_{i_2} I(\varphi_{i_1}) I(\varphi_{i_2}) - 2 \sum_{i_1, i_2 = 1}^{n} \alpha_{i_1} I(\varphi_{i_1}) \int_{0}^{1} D\alpha_{i_2}(\tau) \varphi_{i_2}(\tau) d\tau \right] \]
\[M \left[\sum_{i_1^2 = 1}^{n} \alpha_{i_1} \int_0^1 D(I(\varphi_{i_1}))(\tau) \varphi_{i_2}(\tau) d\tau + \sum_{i_1^2 = 1}^{n} \alpha_{i_2} \int_0^1 D(I(\varphi_{i_2}))(\tau) \varphi_{i_1}(\tau) d\tau \right] \]

\[= M \left[\sum_{i_1^2 = 1}^{n} \alpha_{i_1} \int_0^1 D(I(\varphi_{i_1}))(\tau) \varphi_{i_2}(\tau) d\tau + \sum_{i_1^2 = 1}^{n} \alpha_{i_2} \int_0^1 D(I(\varphi_{i_2}))(\tau) \varphi_{i_1}(\tau) d\tau \right] \]

Note that, due to the previous lemma, \(x \in \mathcal{B} \), and

\[B_n(x) = \sum_{i = 1}^{n} \alpha_i \int_0^1 \varphi_i(s) \int_0^1 D \left(\int_0^1 K_n(s, \tau) dm(\tau) \right) (\tau) K_n(\cdot, \tau) ds d\tau, \quad n \geq 1. \]
\[B(x) = \lim_{n \to \infty} \sum_{i=1}^{n} \alpha_i \int_{0}^{1} K_n(\tau, \varphi_i(s)K_n(s, \tau)ds \right) dm(\tau) (\tau) d\tau \]
\[= \sum_{i=1}^{n} \alpha_i \cdot D(I(\varphi_i)). \]

Consequently,
\[\sum_{i_1, i_2=1}^{n} \alpha_{i_1} \alpha_{i_2} \int_{0}^{1} D(I(\varphi_{i_1}))(\varphi_{i_2})(\tau)d\tau = \int_{0}^{1} B(x)(\tau)x(\tau)d\tau. \]

The lemma is proved.

From this lemma and from the fact that \(I \) is a closed operator, it follows that every random element \(x \) that satisfies the conditions of Lemma 4 and has a stochastic derivative belongs to \(\mathcal{F} \), and the equalities from Lemma 5 are valid.

The famous particular case of this situation is as follows. Let \(H \) be a Sobolev space of the first order on \([0, 1]\). Then elements of \(H \) have usual derivatives with respect to parameters from \([0, 1]\). Suppose that \(x \) satisfies the conditions of Lemma 4 and that \(Dx \) is a.s. a nuclear operator. Then,
\[I(x) = x(1)m(1) - \int_{0}^{1} m(t)x'(t)dt - trDx. \]

Note also that in this case,
\[\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} K(t, \tau) dm(\tau) dm(t) - n \int_{0}^{1} x(t)dm(t) = (1) \]

This expansion enables one to establish the Itô formula.

Theorem (The Itô formula): Let a function \(F: [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} \) have a continuous bounded derivative of the first and second order, and let the random process \(x \) satisfy the conditions:
1) \(x \) has the second stochastic derivative;
2) for every \(\tau \in [0, 1] \), \(x \) and \(Dx(\cdot)(\tau) \) satisfy all integrability conditions (considered above);
3) \(Dx(\cdot)(\cdot) \in C([0, 1]^2) \) (mod \(P \));
4) \(x, Dx \) and \(D^2x \) are bounded.
Then, the following random process
\[z(t) = \int_{0}^{t} x(\tau)dm(\tau), \quad t \in [0, 1] \]
is well-defined and it holds true that
\[F(t, z(t)) = F(0, 0) + \int_{0}^{t} F'_1(s, z(s))ds \]
\[+ \int_{0}^{t} F'_2(s, z(s))x(s)dm(s) + \int_{0}^{t} x(s)F''(s, z(s))C(x)(s)ds \]
\[+ \int_{0}^{t} x(s)F''(s, z(s)) \cdot \int_{0}^{s} Dx(r)(s)dm(r)ds. \]
The proof follows directly from the expansion (1) and approximation arguments.

4. Examples

Example 1: (Wiener case) Let \(\xi(t) = w(t), \quad t \in [0, 1] \) be a Wiener process. Consider the differentiation rule of the form \(\zeta(t) = \chi_{[0, t]}, \quad t \in [0, 1] \). Then the stochastic derivative \(D \) which is obtained from this rule is a well-known stochastic derivative of \(L^2 \)-integrable Wiener functionals (T. Sekiguchi, Y. Shiota [3]) and \(m(t) = w(t), \quad t \in [0, 1] \).

Now the operator \(B \) is the identity operator and \(C = \frac{1}{2}B \). Then, from the previous theorem we can obtain the Itô formula for the extended stochastic integral in the Gaussian case:

\[
F(t, z(t)) = F(0, 0) + \int_0^t F'_1(s, z(s))ds + \int_0^t F'_2(s, z(s))dw(s) \\
+ \frac{1}{2} \int_0^t F''_{22}(s, z(s)) \cdot z(s)^2 ds + \int_0^t x(s)F''_{22}(s, z(s)) \cdot \int_0^s Dz(r)dw(r)ds.
\]

Example 2: Let the distribution of the process \(\xi \) in the space \(C([0, 1]) \) be absolutely continuous with respect to the Wiener measure with the density \(p \). Suppose, that

1) \(0 < \inf p \leq \sup p < \infty \),
2) \(p \) has a bounded continuous derivative on \(C([0, 1]) \).

Consider the differentiation rule from Example 1: \(\zeta(t) = \chi_{[0, t]}, \quad t \in [0, 1] \). Then the stochastic derivative of the random variable \(\alpha \) from the family \(\mathcal{M} (M) \) is of type

\[
D\alpha = D\varphi(\xi(t_1), \ldots, \xi(t_n)) = \sum_{i=1}^n \varphi_i \chi_{[0, t_i]}.
\]

Hence, for the Borel subset

\[
M \int \Delta D\alpha(\tau)d\tau = M \sum_{i=1}^n \varphi_i(\delta_{t_i}) \int \chi_\Delta(\tau)d\tau).
\]

Here \(\delta_{t} \) is Dirac \(\delta \)-function with respect to the point \(t \). Denote by \(u_\Delta \) the function

\[
u_\Delta(s) = \int_0^s \chi_\Delta(\tau)d\tau, \quad s \in [0, 1],
\]

by \(\nu \) the distribution of \(\xi \), and by \(\mu \) the Wiener measure. Also, denote by \(\Phi \) the following function on \(C([0, 1]) \):

\[
\forall v \in C([0, 1]), \Phi(v) = \varphi(v(t_1), \ldots, v(t_n)).
\]

Then,

\[
M \int \Delta D\alpha(\tau)d\tau = \int \Phi(\nu ; u_\Delta) \nu(du) = \int \Phi'(v ; u_\Delta)p(v)\mu(du)
\]

\[
= \int \langle (p(v)\Phi(v)') ; u_\Delta \rangle \mu(du) - \int \langle p'(v) ; u_\Delta \cdot \Phi(v) \mu(du) = \int \Phi(v)p(v) \cdot \int d\nu(\tau)\mu(du)
\]
Here the symbol of integration is used for the integration through all \(C([0,1]) \), and the integral

\[
\int \Delta d\tau
\]

is a measurable linear functional on \(C([0,1]) \) with respect to the measure \(\nu \sim \mu \). Note also that the function

\[
\int \Delta d\tau - \langle (ln p(\xi))'; u_\Delta \rangle
\]

is square-integrable with respect to the measure \(\nu \). Consequently, \(\xi \) has a logarithmic derivative, and

\[
\rho_\Delta = \int \Delta d\xi(\tau) - \langle (ln p(\xi))'; u_\Delta \rangle.
\]

Hence, the logarithmic process is of the form

\[
m(t) = \xi(t) - \int_0^t Dln p(\xi) d\tau.
\]

Now the second stochastic derivatives are symmetric. So to estimate the second moment of the extended stochastic integral only the operator \(B \) is essential. To describe the operators \(B \) and \(C \) let us find the stochastic derivative of the integral

\[
\int_0^1 f(\tau) d\tau
\]

Using the approximation by step functions, it can be verified that

\[
D \left(\int_0^1 f(\tau) d\tau \right) (s) = f(s) + \int_0^1 f(\tau) \cdot D^2ln p(\xi)(\tau, s) d\tau, \quad s \in [0,1].
\]

Consequently, for the \(n \geq 1 \),

\[
B_n(\varphi)(t) = \int_0^1 \varphi(s) \int_0^1 K_n(s, \tau) + \int_0^1 K_n(s, r)D^2ln p(\xi)(r, \tau) dr \cdot K_n(t, \tau) d\tau ds.
\]

Hence,

\[
B(\varphi)(t) = \varphi(t) + \int_0^1 D^2ln p(\xi)(t, s) \varphi(s) ds.
\]
In a similar way,

\[C(\varphi)(t) = \frac{1}{2} \varphi(t) + \int_0^t D^2 \ln p(\xi)(s, t) \varphi(s) ds. \]

Now the second moment of the extended stochastic integral and the Itô formula have the form

\[M \left(\int_0^1 x(t) dm(t) \right)^2 = M \int_0^1 x^2(t) dt + M \int_0^1 D^2 \ln p(\xi)(t, s) x(t) x(s) dt ds + M (\text{tr}(Dx))^2; \]

\[F(t, z(t)) = F(0, 0) + \int_0^t F'_1(s, z(s)) ds + \int_0^t F''_1(s, z(s)) x(s) dm(s) \]

\[+ \frac{1}{2} \int_0^t F''_2(s, z(s)) z^2(s) ds + \int_0^t F''_2(s, z(s)) x(s) \int_0^s D^2 \ln p(\xi)(\tau, s) x(\tau) d\tau ds \]

\[+ \int_0^t x(s) F''_2(s, z(s)) \cdot \int_0^s Dx(\tau) dm(\tau) ds. \]

References

Submit your manuscripts at
http://www.hindawi.com