ISOLATED RESECTION OF SEGMENT I (CAUDATE LOBE): IS IT JUSTIFIED?

ABSTRACT

Background: Isolated caudate lobectomy is a challenging surgical procedure for which safe and reliable techniques have yet to be developed.

Methods: Isolated caudate lobectomy was performed by initial inflow control of the caudate lobe, full mobilization of the liver from the inferior vena cava by dividing all short hepatic veins, and parenchymal division dorsal to the major hepatic veins with a clockwise rotation of the liver while the liver was selectively devascularised by Pringle’s maneuver and occlusion of the confluence of the major hepatic veins flush with the inferior vena cava.

Results: Two patients with cirrhosis underwent this procedure successfully without intraoperative hemodynamic instability or postoperative liver dysfunction.

Conclusions: This technique allows safe and truly selective excision of the caudate lobe without the need for occlusion of the inferior vena cava or venovenous bypass. (Surgery 1994;115:757–761)

From the Department of Surgery II, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

KEYWORDS: Liver resection caudate lobe resection carcinoma liver

PAPER DISCUSSION

This short technical presentation is of some considerable importance and draws attention to one of the very difficult problems in liver resection. The paper is significant in that it describes in a clear manner the anatomical and technical difficulties of isolated caudate lobe resection and emphasizes that the procedure can be carried out without total vascular isolation.

In writing this commentary I am pleased to concur with nearly all the points made by the authors, but there are some variations in the description of the
anatomy and in the technique which I think are worth
discussion.

In describing the anatomy of the caudate lobe the
authors refer to the work of Kumon and describe the
caudate lobe as being in three parts. From this
author’s point of view the characterization of the
caudate lobe of the liver into a left and right portion as
described by Couinaud is perhaps more appropriate
since it emphasizes that some of the caudate lobe lies
not only anterior but just to the right of the vena cava
in an intraparenchymal position. It is this portion of
the caudate, variable in size, which abuts the posterior
surface of Segment IV, the limit being an oblique plane
slanting from the left portal vein to the left hepatic vein
and closely adjacent to the roots of the major hepatic
veins as emphasized by the authors.

Another important anatomical point perhaps not
sufficiently emphasized, although illustrated in one of
the figures, is the fact that there is frequently a fairly
dense band of fibrous tissue running from the left
posterolateral caudate lobe behind the vena cava to
join with Segment VII on the right side. Indeed, some-
times this band of tissue is replaced by hepatic paren-
chyma and it is this circumstance that the freeing of
the caudate lobe can be extremely difficult and may
involve sectioning of some parenchymal tissue behind
the vena cava in order to afford mobilization.

The authors mention that, in the hepatic hilus, they
perform cholecystectomy as the first procedure. We
do not necessarily do this and I am not sure I under-
stand why it is necessary to carry out cholecystectomy
in order to remove the caudate lobe. Indeed, I am
somewhat surprised that the authors are adding this to
the procedure in hepatic resection in the cirrhotic liver,
since it is well established that cholecystectomy of it’s
own, in patients with cirrhosis and portal hyperten-
sion, carries substantial risk.

I am in full accord with the authors’ opinion that
complete vascular isolation is not necessary for re-
moval of the caudate lobe and, indeed, it can be difficult
to achieve if there is a substantial caudate tumor
present. I also agree that it is of value to occlude the
roots of the major hepatic veins with a vascular clamp
although it does seem from the authors’ description as
if they occlude all three major hepatic veins. I see no
reason for this and it is our practise to occlude simply
the left and middle hepatic veins, which usually have a
common root, and not to interfere with venous drain-
age through the right hepatic vein in the performance
of caudate lobectomy.

It may be perhaps of value to describe some of the
key aspects of our own technique in caudate lobe
resection, which while not different in essence, are
indeed different in detail.

The major problems in caudate lobe dissection are in
dissection and control of the retrohepatic caudate veins
and anteriorly, in the presence of substantial tumors, in
controlling bleeding from the middle hepatic vein. Re-
section of the caudate involves three essential steps:

1) Control of the inflow caudate blood supply from
the left portal vein and left hepatic artery at the base
of the umbilical fissure.

2) Dissection of the retrohepatic veins.

3) Severance of the liver parenchyma between the
base of Segment IV and the left side of Segment VII to
allow removal of the lobe. It is our practice that during
isolation of the caudate blood supply and bile ducts
the first and essential step is to lower the hilar plate.
This separates the left portal vein and the left portal
triad from the anterior surface of the caudate process
and assists in full mobilisation of the caudate lobe. The
left lobe of the liver is mobilized and turned to the
right, and it is our practice to divide the ligamentous
attachments on the left and mobilize the tip of the
caudate lobe and it’s left lateral margin from the
inferior vena cava working through the lesser sac of
the peritoneum prior to severance of the caudate
veins. If there is difficulty during this dissection and it
is evident that the caudate is embracing the vena cava
posteriorly, no further attempt is made to free the lobe
on the left but an approach is made from the right.
Indeed, dissection of the retrocaudate veins from the
vena cava can be done by a combination of dissection
from the right and the left side so as to free the cava
completely from the undersurface of the caudate lobe
as high as the major hepatic veins. As emphasized by
the authors it is important in isolated resection of the
caudate lobe and, indeed, in resection of the
caudate lobe in combination with extended right he-
patic lobectomy to recognize the danger that may arise
in hemorrhage from the middle hepatic vein should
this be torn posteriorly. In this instance we have
found it valuable to isolate the left and middle hepatic
veins by opening up to the tunnel between the left
hepatic vein and the inferior vena cava at the upper
end of the caudate. This is easily accomplished after
division of the uppermost part of the ligamentum
venosum. A clamp is then passed across the left and
middle hepatic veins for temporary control during the
parenchymal phase of the dissection of the portion of
the caudate lobe lying anterior to the inferior vena
cava. Finally, it is important to mention that some
authors, in the presence of a large caudate lesion,
have split the liver anteriorly in the Glissonian plane.

1. Couinaud
2. Kumon
3. The authors
separating the right and left liver and dividing the liver along the right margin of Segment IV so as to approach the caudate intra-parenchymally from above. A combination of this technique with the methods describe above may be useful in such large lesions. It is perhaps a minor criticism of this contribution that the authors do not mention this later contribution from Japan.

We have now resected a total of 21 complete caudate resections, 4 of whom underwent isolated caudate lobectomy. The most common diagnosis was metastatic colorectal cancer in nine patients and the most common procedure was an extended left hepatic lobectomy with en bloc caudate lobectomy. The median operative time was five hours and the median blood loss was 1,160 ml. Only one patient required intensive care and went on to die of liver failure. In none of our cases was vascular isolation employed but an intermittent Pringle maneuver combined with temporary occlusion of the left and middle hepatic veins was the method of choice.

In short, although only two cases of isolated hepatic lobectomy are reported this paper is of importance since there are but few reports of isolated caudate lobe resection, the most recorded by an author being the three cases reported by Colonna et al. and the four cases referred to and submitted for publication by our own group.

There is no doubt that the development of hepatic resectional techniques and the understanding of the anatomy of the caudate lobe has resulted in an ability to resect the isolated caudate lobe safely, and that the addition of caudate lobectomy to major liver resection does not add significantly to the morbidity or mortality of the procedure.

REFERENCES

Leslie H Blumgart, MD, FACS, FRCS
Chief: Hepatobiliary Service
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, New York 10021
United States of America

LIVER RESECTION: PROLONGED INFLOW OCCLUSION IN HUMAN CIRRHOTIC LIVERS

ABSTRACT

To evaluate the tolerance of the cirrhotic liver to extended warm ischaemia, 47 patients with cirrhosis who underwent liver resection over a 4-year period were studied retrospectively. Three groups of patients were identified. In group 1 (14 patients) liver resection was performed under conditions of portal triad occlusion ranging from 50 to 75 (mean 57.1) min. Group 2 (12 patients) was treated with portal occlusion for a period ranging from 30 to 42 (mean 33.1) min. Group 3 comprised 21 patients who underwent hepatectomy using conventional techniques. Mean blood loss was significantly
Submit your manuscripts at http://www.hindawi.com