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Invariants of the tomographic projection operator of texture goniometry and counterexamples provide
a unified view of existing methods to resolve the corresponding inverse problem and may be instructive
to develop novel approaches.
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1. INTRODUCTION

To analyse and interpret patterns of preferred crystal orientation, a probability density
function f defined on the group SO(3) of rotations referred to as orientation density
function has to be evaluated. The orientation density function cannot generally be
measured without destroying the specimen of the material to be investigated. An
experimentally accessible corresponding pole density function/5 of a given crystal form
h is defined as superposition of tomographic projections of the orientation density
function provided by an integral operator Px L2(S0(3)) -> f-,2($3). Applying functions
the type of which is preserved by the projection operator or which are otherwise well-
behaved provides means to resolve the corresponding inverse problem and may largely
facilitate numerical evaluation in orientation imaging microscopy.

2 BASIC MATHEMATICS OF TEXTURE GONIOMETRY

Let f LZ(G) be a square integrable orientation density function (odf) defined on an
appropriate subgroup G of the group SO(3) of proper rotations.
Let x,y $3c IR3, then the integral operator Px L2(G) -> L2(S3) is defined as

(Txf)(y) Px[f(g)](y) =- geGx=gy},f(g)dg Px(y) (1)

Obviously, P-x(y) Px(-y)
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An odf f is related to its corresponding pole density function (pdf)/6 of the crystal
form h {hml m Mh} defined for r S c IR by

11 2 (’" [Thm 4- -hm]J0(r) Ph(r) (2)(f)(r) Mh/2 m:l

with h S+3, m 1 Mh/2, where M denotes the multiplicity of the crystal form
h.

Thus, a pdf is an even function

Ph(r) Ph(-r) (3)

while an odf is generally neither even nor odd.

3 INVARIANTS OF THE PROJECTION OPERATOR

3.1 Harmonics

As is well known since the early days of quantitative texture analysis, applying the
pole figure projection operator (1) to generalized spherical harmonics

-1 fGT+x[Om,n(g )](y) 3(X -1gy)Om,n(g )dg

2rt(----’1)/ l 4- 1 Yl’m(x)Yl’n(Y) (4)

yields spherical harmonics (Bunge, 1969; 1982; Matthies et al., 1987). Since harmonics
are either even or odd, depending on l, it holds that

-1T3x[Dtm,n(g-1)](y) (Tx + P-x)[Dm,n(g )](Y)

{4g,*,m(X)Yz,,(y if/if eVenodd (5)

Spherical harmonics lead to orthonormal series expansion. It may be noted that classical
harmonic series expansion was developed by 19th century mathematicians as a means
of representation and not as a means of numerical evaluation.

3.2 tS- distributions

Simply, the pole figure projection operator (1) maps a t%distribution onto another
tS-distribution

Px[4(ggo-1)](y) - 83(x gy)g(ggo-)dg

1_ t3(x goY) (6)2;

t-distributions provide the most simple model odf and pdf, respectively, which are
defined pointwise.
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3.3 Central functions, rotationally invariant functions
Let o9 o9(ggffl) [0, r] denote the orientation distance of the orientations g, go
G, let r/ r/(y,gfflx) arccos (y gfflx) denote the angle between y and glx; and let
Dn denote the Dirichlet kernel (cf. Butzer and Nessel, 1971)

Dn(O9)

_
-1 1, -1 -1Dm,m(g g)= D m,n(go )Dm,n(g)

m=-I m,n=-I

{ sin((2n+l)o/2)

+ 2 cos(/o9) sin(om o9 2jc
/=1 2n+l 09 2jzc J 7Z (7)

which may also be referred to as Chebyshev polynomial of second kind, first Gegenbauer
ultraspherical polynomial, or Legendre polynomial for IR4.
An orientation density function is called central, if it depends only on the orientation

distance with respect to a given orientation go. In this case, the harmonic series expansion
simplifies to

f(g;go, t f(og(glg); to) =. C(tc)Dt(o9 (8)
/=0

with coefficients

f(g;go,f)D(og)sin(og/2)do9 (9)C(:)
0,

where t denotes a measure of spread, or concentration, respectively, with respect to
go.
Applying the operator (1) to an orientation density function f which is central with

respect to an arbitrary go G

Tx[f(g;go, tC)](y) Cl(tc)et(xgoy ex(y;gfflx, t) (10)
/=0

results in a function Px which is rotationally invariant with respect to Y0 gffix
S3,cf. (Matthies et al., 1988). Thus, rotational invariance is preserved by the operator Tx.
A pole density function corresponding to a given central orientation density function

f is the superposition of rotationally symmetric functions Phm, rn 1 Mh, where M
denotes the multiplicity of the crystal form h. Since h h c S implies mh h, it
can essentially be stated that a pole density function corresponding _to a given central
orientation density function f is the superposition of even functions ehm on S+ centered
at r +glh $3+, rn 1 Mh/2.

3.4 De la Valle Poussin kernel

Applying the pole figure projection operator (1) to the de la Vall6e Poussin kernel
(cf. Butzer and Nessel, 1971)

Vk(og) Cv(k) cos2k(og/2), o9 [0,;], k IN, ko (11)

yields
Cv(k) fTx[V(og)](Y)
2r t-,l

dt} cos2(r//2) (12)COS2-
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Thus, the de la Vall6e Poussin kernel is invariant under the projection operator and
provides a central (rotationally invariant) model odf and pdf, respectively. The order
of approximation of the corresponding singular integral is rather poor (Butzer and Nessel,
1971); nevertheless, the de la Vall6e Poussin kernel may provide an appropriate and
computationally efficient model distribution.

3.5 Abel-Poisson kernel Cauchy distribution "Lorentzian" standard distribution

Applying the pole figure projection operator (1) to the Abel-Poisson kernel (cf. Butzer
and Nessel, 1971) on S4 c Ie

f_.,4(0),/k’’2) C.4(K" (2/+ 1)’ D,(o)
/=0

yields

(1 ) (1 + )2 + 4 cos2(o/2)
[(1 + )z_ 4 cos2(o/2)]
o [0, rr], t [0,1), t0 1-

Tx[L4(o,)](y) Cz(t) , (2/+ 1) Pl(xgoy)
/=0

(13)

(1 + - 2xg0y)3/2
,3(r/,) (14)

the Abel-Poisson kernel (on S c IR3). The result is contained in (Matthies et al., 1987)
where the invariance was not noticed. The term "Lorentzian" standard distribution was
coined, but above all it should be referred to as a multivariate generalization of the
circular wrapped Cauchy distribution (cf. Mardia, 1972).
Summarily, the Abel-Poisson kernel is preserved by the projection operator and

provides a central (rotationally invariant) model odf and pdf, respectively.
In 1- dimensional theory for a function defined on the circle, its corresponding singular

integral is related to a Laplace differential equation and provides a solution of Dirichlet’s
problem for the unit disc, i.e. it is a harmonic function.

3.6 Gauss-Weierstrass kernel Brownian distribution "normal" distribution

Applying the pole figure projection operator (1) to the Gauss-Weierstrass kernel (cf.
Butzer and Nessel, 1971)

B4(0.),K’) CB4(1) Z (21+ 1)exp[-l(l+l)t] DI((_O
/=0

0 [0, rr], t (0,1], to0 0+
yields

"[gx[B4(,K’)](y) CB(t) _, (21 + 1)exp[-l(l+l)tc]P(xgoy) B3(r/;x’)
l--0

(15)

(16)
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The result is due to (Savyolova, 1984; 1989; see also Bucharova and Savyolova,
1993) who refers to the Gauss-Weierstrass kernel as to the spherical normal distribution
satisfying the spherical central limit theorem. However, a spherical central limit theorem
thought of as straightforward spherical generalization of the central limit theorem for
Euclidean spaces does not exist. The Brownian distribution may be interpreted as
multivariate generalization of the circular wrapped normal distribution (Mardia, 1972).
The Gauss-Weierstrass kernel is preserved by the projection operator and provides

a central (rotationally invariant) model odf and pdf, respectively. The distribution is
infinitely divisible and satisfies the convolution semi-group property (cf. Nikolayev and
Ullemeyer, these proceedings).

Its corresponding singular convolution integral applied to a function f provides a
solution of a diffusion problem with initial conditions given by f.

4 COUNTEREXAMPLES

4.1 Fisher distribution on S0(3) Bingham distribution on $4+ c Ie4 "Gaussian"
standard distribution

Applying the pole figure projection operator (1) to the Fisher matrix distribution on
SO(3) when it is central and reduces to the von Mises-Fisher distribution, or equivalently
to the Bingham distribution on S when it reduces to the rotationally invariant Watson
distribution

W4(oJe/(’) Cw4(K’)exp(K’cosco) C4()exp(cos2--) (17)
co [0, rt], r,2, IR+, too 2o

yields
Px[W4(CO, K’)](y) "-Cw4(l)lo(- (1 -- cos r/))exp (-- (cost/-1)) (18)

which is different from the von Mises-Fisher distribution on S

W3(/’/,K’ C3(K-)exp(h--cosr/) (19)

Thus, the von Mises-Fisher distribution is not preserved by the projection operator;
nevertheless, it provides a useful central (rotationally invariant) model odf labeled
Gaussian standard distribution in (Matthies et al., 1987). The distribution is infinitely
divisible (Kent, 1977).

4.2 Riemann-Lebesgue kernel, Steklov mean

Applying the pole figure projection operator (1) to the Riemann-Lebesgue kernel (cf.
Butzer and Nessel, 1971)

yields

lo( co" I) Clo(I) 1((r+1)/2,1](cos2(co/2))
Clo(1) lr.l](COSco
co [0,rt], t [-1,1), to0 1-

4Cio(t)Px[lo(co, tc)](y)-
2r

(20)

COScob/2arccos
COSt//2 lr’l](COSr]) (21)

for r/ < with
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The notationally obvious generalization with k IN (which leads in 1-dimensional
theory to the introduction of splines by iterated singular integrals)

COS2(CO/2) (K" + 1)/2
q(ar, t) C.(CO)( 1-(to+ 1)/2 l+’/"(csZ(co/2))

cosco x"
lA(cosco) (22)c.,,()(

_
co [0,rt], t [-1,1), to0 1-

yields for k

f 2Cjk(co)Tgx[.gk(co;tc)](y) [ 2X
2cos cos t dt} l(,](cosr/)[0,/bl’ 1- x’

"J’" (to + sin to) cos - (1 + to)t0} l(,](cosr/) (23)
2x 1 t

for r/< . Thus, the Riemann-Lebesgue kernel is neither invariant under the projection
operator nor does it seem to possess any particularly appealing properties.

4.3 Indicators with respect to partitions

Let q(N) {G In 1 N} be a partition of G c SO(3), i.e. U G
if rn n, and let

if g Gn q(N)
1G,(g) 0 otherwise

G, Gn f’lGm

(24)

denote the indicator function with respect to G (N). For every N IN the set
1Gn, n 1 N} is an orthonormal total and closed system of functions defined on

G.
The analogue is true for a partition 2;(P) {Zo p 1 P of S+ and corresponding

indicator functions lzp(r) with respect to L2(S+)
Let x Zp2 c S+ be fixed; applying the projection Tx to 1Gno with Gno gn0 such

that gnoY X for some y Zpl C7. $3+ yields

1
Px[1Gn0(g)](y) " 1Zp2 (X)lZp,(y) (25)

Thus, indicators with respect to given partitions are not preserved, i.e. canonical
partitions of G SO(3) and $3 IR with respect to the pole figure projection operator
do not seem to exist.

5 METHODS IN TEXTURE GONIOMETRY

5.1 Quantitative Texture Analysis

Let K’4(ar,p) be an even rotationally invariant approximate indentity on S4 such that

Tx[ l4(co(g’g); p4)](y) l3(rl(x,goy);p3 (26)
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where K’3(r/(x,goy);p3 is the corresponding rotationally invariant approximate identity
on S3. Obviously, all the kernels shown are valid candidates.
An approximation of an orientation density function f by the singular integral Ap

corresponding to the approximate identity K’4 is then given by

N
(Ao(4f)(g) f(gn)l4(O)(gg;1);p4) f(g) (27)

n=l

with N IN large and a tuning parameter 104 appropriatel.y adjusted to the total number
N of sites gn, n 1 N. Next, the pole figure operator Ph is applied to f which yields

1 N M

(P)(r) hh y- f(gn) .,. l23(hmgnr;p3)
n=l m=l

(28)

Finally, the unknown coefficients f(gn), n= 1 N, of the expansion (27) are
determined according to

1 N mh., f(gn) -, 3(hmgnr;p3) /rh(r/) l, l= 1 L (29)
Mh n--1 m=l

with a large total number L IN of measured intensities l.

The system of linear equations (29) provides the general scheme of any particular
advanced method of quantitative texture analysis except for the harmonic and indicator
method. While the latter may be referred to as orthonormal series expansions (Schaeben,
1995b), the former may be characterized as nonorthogonal series expansion methods
(cf. Freeden and Schreiner, 1994). The system is rank deficient, and additional
mathematical modeling assumptions are required as usually to resolve the inverse
problem of texture analysis in a unique way. Methods differ in the choice of modeling
assumption(s), and algorithms for numerical determination of the corresponding model
solution.
To be of some practical interest the kernels should be easy to evaluate numerically.

Moreover, it should be noted that the matrix of the linear system corresponding to
equations (28) and (29) is generally not sparse as for kernels with "local" support like
-distributions, indicators, Riemann-Lebesgue kernel.

5.2 Exploratory Texture Modeling Component Fit Methods

As above, let K’4(co;p4) be an even (rotationally invariant) approximate identity on
S4 such that

Px[ lf4(oo(gg);Pa)](y) K’3(r/(x,g0y); P3) (30)

where (r/(x, g0y); /93) is the corresponding rotationally invariant approximate identity
on S3. Let - 1 K M- ak3(rrkm; Pk) (31)P(r)- M =, m=l

be an approximation of Ph by K components (K small) each with parameters ak, rk,m,
Pk to be fit such that

eh(rl) /3h(r/) l, 1= 1 L (32)
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where L denotes the total number of measured intensities t. Usually, this fit is basically
done interactively by trial and error supported by computer graphics. It should be noted
that for M > 2 the geometry of the points rk, E S+3, m Mh/2, for a given k
is imposed by the crystallographic symmetry of the crystal form h and that for fixed
k the set {rk,m, m 1 Mh/2 uniquely determines an orientation g E G such that
gkr,m hm, m 1 Mh/2.
Then K

f(g) _, al4(fo(gg[1);p4) (33)
k=l

provides an exploratory modeling of the inverse projection problem.
Any particular method of orientation component fit employs a scheme provided by

equations (31) and (33) for a special choice of K’4, and K’3, respectively. Even though
these methods differ in the extent of numerical sophistication, they all are nevertheless
afflicted with the common problem that the number of components is obviously
somewhat arbitrary and to some extent subjective. The only check is the goodness of
fit of pole density functions, but that does not imply any measure of confidence or
ghost correction capability with respect to the orientation density function determined
in this way. Pole density component fit methods are much more apt to model a given
experimental pole density function with a few evidently major components and to
provide thus a better understanding of the pattern of preferred orientation (whatever
the over all goodness of fit is) than to resolve the inverse problem of texture goniometry.
Comparing eq. (31) and eq. (29) reveals the fundamental difference between texture

modeling by components and a full texture analysis with respect to a set of basis
functions very clearly. Interpreting the superposition of few model functions as a
particular finite series expansion, component fit methods seem applicable in terms of
series expansion methods if only very few coefficients contribute considerably in the
corresponding series expansion. If the complexity of the pattern of preferred
crystallographic orientation requires a large number of rotationally invariant model
functions for a sufficiently good fit, the method generalizes to a finite series expansion
into non-orthogonal model functions.
While the kernels to be applied in nonorthogonal series expansion methods of texture

analysis have to be rotationally invariant, application of model distributions without
rotational symmetry seems favorable in exploratory texture modeling if the number of
parameters to be fit remains reasonable small and if the parameters can actually be
fit by an analysis of pole density functions (cf. Schaeben, 1990; 1995a; Eschner, 1993).

6 APPLICATIONS IN ORIENTATION IMAGING MICROSCOPY

Orientation imaging microscopy (Adams et al., 1992) does not provide mean intensities
but direct measurements of localized orientations, i.e. of grains at specified locations

gn g(Un) 1Dk(Un)g(Ok) (34)

with u Dkc IR3, n 1 N, k 1 K. Thus it provides the essential prerequisite
of a complete orientation distribution analysis in Sander’s sense of
Achsenverteilungsanalyse (Sander, 1934; 1950) by spatial orientation correlation
analysis.
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6.1 Orientation Density Estimation by Orthogonal Series Expansion

Harmonic series expansion yields an estimate of the orientation density by number
emphasized by the superscript #

1 N
f#(g;g, g) -, f(gi)a4(ggT’)

i-

with coefficients

-_. .a toni -1C Dm,n(g (35)
/-0 m=-I n=l

N
D m,n(giC? (2/ + 1)-- *! -1

i=1
(36)

which is not generally nonnegative (cf. Kronmal and Tarter, 1968; Watson, 1969), and
which requires a correction to be interpreted as an estimate of the common orientation
density by volume (cf. Wright and Adams, 1990).

6.2 Kernel Orientation Density Estimation

The kernel estimate (Schaeben, 1982, 1994; Hall et al., 1987) of the probability density
of orientations by number is defined as

N
(e,,p;g, e,,) - n=l

l4(o(gg;’);p4(N)) >- 0 (37)

Let the sites u E D c IR of orientation measurements gn g(Un) be uniformly
distributed in a domain D and let {D k 1 K’} be a partition of D into "grains".
Provided the random variables 1,D(Un) and g(D) are uncorrelated, then the kernel
estimate of the probability density function of orientations by volume is defined as

1 N
/(g,p;g(Ul) g(UN)) -- l4(O)(gg-(Un));p4(N))

K

"l)(O) -"k=_l v(D) l4(a(gg-’(D));p4(N)) (38)

where u(D)/u(D) denotes the volume portion of grain D within the domain D.
A corresponding pole density function can be calculated according to

1 Mh K
TBh[(g;P)](r)

v(D) m=l k=-I v(D)(hmg(D)r;p3(N)) (39)

7 CONCLUSIONS

Numerical determination and evaluation of an orientation density function either from
diffraction experiments or individual orientation measurements requires its representation
by a finite series expansion, i.e. by a series expansion which is genuinely finite or
finite by truncation. This communication presents a collection of families of functions
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which are appropriate for series expansions of orientation distributions. To be of practical
interest in texture analysis, it is emphasized that the family of functions is not required
to be orthonormal and closed (as are harmonics and indicators) nor to be invariant
with respect to the pole figure projection operator (as are harmonics and distributions
of Brownian and Cauchy type). The results are instructively summarized in table 1.

Table 1 Summary: Methods in QTA

function invariant orthonormal
(+ yes; no) (+ yes; no)

related method(s)

harmonics + + harmonic method(s)

Dirac t5 + + ideal orientations, discrete methods

indicators + discrete methods

Watson-Fisher "Gaussian"

Brownian "normal" +

Cauchy "Lorentzian" +

component fit, modeling, series
expansion, density estimation

component fit, modeling, series
expansion, density estimation

component fit, modeling, series
expansion, density estimation
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