MONOTONE ITERATIONS FOR DIFFERENTIAL EQUATIONS WITH A PARAMETER

TADEUSZ JANKOWSKI
Technical University of Gdansk, Department of Numerical Analysis
Gdansk, POLAND

V. LAKSHMIKANTHAM
Florida Institute of Technology, Applied Mathematics Program
Melbourne, FL 32901 USA

(Received February, 1997; Revised June, 1997)

Consider the problem
\[\begin{align*}
 y'(t) &= f(t, y(t), \lambda), \\
 y(0) &= k_0, \\
 G(y, \lambda) &= 0.
\end{align*} \]

Employing the method of upper and lower solutions and the monotone iterative technique, existence of extremal solutions for the above equation are proved.

Key words: Monotone Iterations, Differential Equations, Monotone Iterative Technique.

AMS subject classifications: 34A45, 34B99.

1. Preliminaries

Consider the following differential equation
\[x'(t) = f(t, x(t), \lambda), \quad t \in J = [0, b] \]
with the boundary conditions
\[x(0) = k_0, \quad x(b) = k_1, \]
where \(f \in C(J \times R \times R, R) \) and \(k_0, k_1 \in R \) are given. The corresponding solution of (1) yields a pair of \((x, \lambda) \in C^1(J, R) \times R\) for which problem (1) is satisfied. Problem (1) is called a problem with a parameter.

Conditions on \(f \) which guarantee the existence of solutions to (1) are important analysis theorems. Such theorems can be formulated under the assumption that \(f \) satisfies the Lipschitz condition with respect to the last two variables with suitable
Lipschitz constants or Lipschitz functions [1-3, 5].

This paper applies the method of lower and upper solutions for proving existence results [4]. Using this technique, we construct monotone sequences, giving sufficient conditions under which they are convergent. Moreover, this method gives a problem solution in a closed set.

Note that \(x(b) \) in condition (1b) may appear in a nonlinear way, so it is a reason that we consider the following problem in the place of (1):

\[
\begin{aligned}
 y'(t) &= f(t, y(t), \lambda), \\
 y(0) &= k_0, \\
 G(y, \lambda) &= 0.
\end{aligned}
\]

where \(f \in C(J \times R \times R, R), G \in C(R \times R, R) \).

2. Main Results

A pair \((v, \alpha) \in C^1(J, R) \times R\) is said to be a lower solution of (2) if:

\[
\begin{aligned}
 v'(t) &\leq f(t, v(t), \alpha), \\
 v(0) &\leq k_0, \\
 0 &\leq G(v, \alpha),
\end{aligned}
\]

and an upper solution of (2) if the inequalities are reversed.

Theorem 1: Assume that \(f \in C(J \times R \times R, R), G \in C(R \times R, R), \) and:

1° \(y_0, z_0 \in C^1(J, R), \lambda_0, \gamma_0 \in R, \) such that \((y_0, \lambda_0), (z_0, \gamma_0)\) are lower and upper solutions of problem (2) such that \(y_0(t) \leq z_0(t), t \in J \) and, \(\lambda_0 \leq \gamma_0 \);

2° \(f \) is nondecreasing with respect to the last two variables;

3° \(G \) is nondecreasing with respect to the first variable;

4° \(G(y, \lambda) - G(y, \beta) \leq N(\beta - \lambda) \) for \(y_0(t) \leq y(t) \leq z_0(t), t \in J, \lambda_0 \leq \lambda \leq \beta \leq \gamma_0 \) with \(N \geq 0 \).

Then there exist monotone sequences \(\{y_n, \lambda_n\}, \{z_n, \gamma_n\} \) such that \(y_n(t) \to y(t), z_n(t) \to z(t), t \in J; \lambda_n \to \lambda, \gamma_n \to \gamma \) as \(n \to \infty \); and this convergence is uniformly and monotonically on \(J \). Moreover, \((y, \lambda), (z, \gamma)\) are minimal and maximal solutions of problem (2), respectively.

Proof: From the above assumptions, it is known that:

\[
\begin{aligned}
 y_0(t) &\leq f(t, y_0(t), \lambda_0), \\
 y_0(0) &\leq k_0, \\
 0 &\leq G(y_0, \lambda_0),
\end{aligned}
\]

and \(y_0(t) \leq z_0(t), t \in J, \lambda_0 \leq \gamma_0 \). Let \((y_1, \lambda_1), (z_1, \gamma_1)\) be the solutions of:

\[
\begin{aligned}
 y'_1(t) &= f(t, y_0(t), \lambda_0), \\
 y_1(0) &= k_0, \\
 0 &= G(y_0, \lambda_0) - N(\lambda_1 - \lambda_0),
\end{aligned}
\]

and

\[
\begin{aligned}
 z'_1(t) &= f(t, z_0(t), \gamma_0), \\
 z_1(0) &= k_0, \\
 0 &= G(z_0, \gamma_0) - N(\gamma_1 - \gamma_0),
\end{aligned}
\]
respectively.

Put $p = \lambda_0 - \lambda_1$, so:

$$0 = G(y_0, \lambda_0) - N(\lambda_1 - \lambda_0) \geq - N(\lambda_1 - \lambda_0) = N_p,$$

thus $p \leq 0$ and $\lambda_0 \leq \lambda_1$. Now let $p = \lambda_1 - \gamma_1$. In view of 3^0 and 4^0, we have:

$$0 = G(y_0, \lambda_0) - N(\lambda_1 - \lambda_0) = G(y_0, \lambda_0) - G(z_0, \gamma_0) - N(\lambda_1 - \lambda_0) + N(\gamma_1 - \gamma_0)
\leq G(z_0, \lambda_0) - G(z_0, \gamma_0) - N(\lambda_1 - \lambda_0) + N(\gamma_1 - \gamma_0)
\leq N(\gamma_0 - \lambda_0) - N(\lambda_1 - \lambda_0) + N(\gamma_1 - \gamma_0) = - Np.$$

Hence $\lambda_1 \leq \gamma_1$. Set $p = \gamma_1 - \gamma_0$, so that:

$$0 = G(z_0, \gamma_0) - N(\gamma_1 - \gamma_0) \leq - N(\gamma_1 - \gamma_0) = - Np,$$

and thus $\gamma_1 \leq \gamma_0$. As a result, we have:

$$\lambda_0 \leq \lambda_1 \leq \gamma_1 \leq \gamma_0.$$

We shall show that

$$y_0(t) \leq y_1(t) \leq z_1(t) \leq z_0(t), \quad t \in J. \quad (3)$$

Let $p(t) = y_0(t) - y_1(t), \quad t \in J$, so:

$$p'(t) = y_0'(t) - y_1'(t) \leq f(t, y_0(t), \lambda_0) - f(t, y_0(t), \lambda_0) = 0,$$

and $p(0) = y_0(0) - y_1(0) \leq 0$. This shows that $p(t) \leq 0, \quad t \in J$. Therefore $y_0(t) \leq y_1(t), \quad t \in J$. Put $p(t) = y_1(t) - z_1(t), \quad t \in J$. In view of 2^0, we have

$$p'(t) = y_1'(t) - z_1'(t) = f(t, y_0(t), \lambda_0) - f(t, z_0(t), \gamma_0)
\leq f(t, z_0(t), \gamma_0) - f(t, z_0(t), \gamma_0) = 0,$$

and $p(0) = 0$, so $p(t) \leq 0, \quad t \in J$, and $y_1(t) \leq z_1(t), \quad t \in J$. Put $p(t) = z_1(t) - z_0(t), \quad t \in J$. We obtain:

$$p'(t) = z_1'(t) - z_0'(t) \leq f(t, z_0(t), \gamma_0) - f(t, z_0(t), \gamma_0) = 0,$$

so $p(t) \leq 0, \quad t \in J$, and hence $z_1(t) \leq z_0(t), \quad t \in J$. This shows that (3) is satisfied.

Note that:

$$y_1'(t) - f(t, y_0(t), \lambda_0) \leq f(t, y_1(t), \lambda_1), y_1(0) = k_0,$$

and

$$z_1'(t) - f(t, z_0(t), \gamma_0) \geq f(t, z_1(t), \gamma_1), z_1(0) = k_0.$$

Moreover, in view of 3^0 and 4^0, we have:

$$0 = G(y_0, \lambda_0) - N(\lambda_1 - \lambda_0) \leq G(y_1, \lambda_0) - N(\lambda_1 - \lambda_0)
= G(y_1, \lambda_0) - G(y_1, \lambda_1) + G(y_1, \lambda_1) - N(\lambda_1 - \lambda_0)
\leq N(\lambda_1 - \lambda_0) + G(y_1, \lambda_1) - N(\lambda_1 - \lambda_0) = G(y_1, \lambda_1),$$

and

$$0 = G(z_0, \gamma_0) - N(\gamma_1 - \gamma_0) \geq G(z_1, \gamma_0) - N(\gamma_1 - \gamma_0)
= G(z_1, \gamma_0) - G(z_1, \gamma_1) + G(z_1, \gamma_1) - N(\gamma_1 - \gamma_0).$$
Consequently, \((y_1, \lambda_1), (z_1, \gamma_1)\) are lower and upper solutions of problem (2).

Let us assume that
\[
\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_{k-1} \leq \lambda_k \leq \gamma_{k-1} \leq \ldots \leq \gamma_1 \leq \gamma_0,
\]
\[
y_0(t) \leq y_1(t) \leq \ldots \leq y_{k-1}(t) \leq y_k(t) \leq z_k(t) \leq z_{k-1}(t) \leq \ldots \leq z_1(t) \leq z_0(t),
\]
\[t \in J\]

and
\[
\begin{cases}
 y_k'(t) \leq f(t, y_k(t), \lambda_k), & y_k(0) = k_0, \\
 0 \leq G(y_k, \lambda_k),
\end{cases}
\]
\[
\begin{cases}
 z_k'(t) \geq f(t, z_k(t), \gamma_k), & z_k(0) = k_0, \\
 0 \geq G(z_k, \gamma_k)
\end{cases}
\]

for some \(k > 1\). We shall prove that:

\[
\begin{cases}
 \lambda_k \leq \lambda_{k+1} \leq \gamma_{k+1} \leq \gamma_k, \\
 y_k(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_k(t), \quad t \in J,
\end{cases}
\]

(4)

and
\[
\begin{cases}
 y_{k+1}'(t) \leq f(t, y_{k+1}(t), \lambda_{k+1}), & y_{k+1}(0) = k_0, \\
 0 \leq G(y_{k+1}, \lambda_{k+1}),
\end{cases}
\]
\[
\begin{cases}
 z_{k+1}'(t) \geq f(t, z_{k+1}(t), \gamma_{k+1}), & z_{k+1}(0) = k_0, \\
 0 \geq G(z_{k+1}, \gamma_{k+1}),
\end{cases}
\]

where
\[
\begin{cases}
 y_{k+1}'(t) = f(t, y_k(t), \lambda_k), & y_{k+1}(0) = k_0, \\
 0 = G(y_k, \lambda_k) - N(\lambda_{k+1} - \lambda_k),
\end{cases}
\]
\[
\begin{cases}
 z_{k+1}'(t) = f(t, z_k(t), \gamma_k), & z_{k+1}(0) = k_0, \\
 0 = G(z_k, \gamma_k) - N(\gamma_{k+1} - \gamma_k).
\end{cases}
\]

Put \(p = \lambda_k - \lambda_{k+1}\), so:
\[
0 = G(y_k, \lambda_k) - N(\lambda_{k+1} - \lambda_k) \geq - N(\lambda_{k+1} - \lambda_k) = Np,
\]
and hence \(\lambda_k \leq \lambda_{k+1}\). Let \(p = \lambda_{k+1} - \gamma_{k+1}\). In view of 3° and 4°, we see that:
\[
0 = G(y_k, \lambda_k) - N(\lambda_{k+1} - \lambda_k)
\]
\[
= G(y_k, \lambda_k) - G(z_k, \gamma_k) - N(\lambda_{k+1} - \lambda_k) + N(\gamma_{k+1}, \gamma_k)
\]
\[
\leq G(z_k, \lambda_k) - G(z_k, \gamma_k) - N(\lambda_{k+1} - \lambda_k) + N(\gamma_{k+1}, \gamma_k)
\]
\[
\leq N(\gamma_k - \lambda_k) - N(\lambda_{k+1} - \lambda_k) + N(\gamma_{k+1} - \gamma_k) = - Np.
\]
Hence we have \(\lambda_{k+1} \leq \gamma_{k+1} \). Now, let \(p = \gamma_{k+1} - \gamma_k \). Then:

\[
0 = G(z_k, \gamma_k) - N(\gamma_{k+1} - \gamma_k) \leq -Np,
\]
so \(\gamma_{k+1} \leq \gamma_k \), which shows that the first inequality of (4) is satisfied.

As before, we set \(p(t) = y_k(t) - y_{k+1}(t) \), \(t \in J \). Then:

\[
p'(t) = y'_k(t) - y'_{k+1}(t) \leq f(t, y_k(t), \lambda_k) - f(t, y_{k+1}(t), \lambda_k) = 0,
\]
and \(p(0) = 0 \), so \(y_k(t) \leq y_{k+1}(t) \), \(t \in J \). We observe that for \(p(t) = y_{k+1}(t) - z_{k+1}(t) \), \(t \in J \), we have

\[
p'(t) = y'_{k+1}(t) - z'_{k+1}(t) - f(t, y_k(t), \lambda_k) + f(t, z_{k+1}(t), \gamma_k) \\
\leq f(t, z_k(t), \gamma_k) - f(t, z_{k+1}(t), \gamma_k) = 0
\]
which proves that \(y_{k+1}(t) \leq z_{k+1}(t) \), \(t \in J \). Put \(p(t) = z_{k+1}(t) - z_k(t) \), \(t \in J \). Then we have:

\[
p'(t) = z'_{k+1}(t) - z'_k(t) \leq f(t, z_k(t), \gamma_k) - f(t, z_{k+1}(t), \gamma_k) = 0,
\]
so \(z_{k+1}(t) \leq z_k(t) \), \(t \in J \). Therefore:

\[
y_k(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_k(t) \quad t \in J.
\]

It is simple to show that \((y_{k+1}, \lambda_{k+1}), (z_{k+1}, \gamma_{k+1})\) are lower and upper solutions of problem (2).

Hence, by induction, we have:

\[
\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_n \leq \gamma_n \leq \ldots \leq \gamma_1 \leq \gamma_0,
\]

\[
y_0(t) \leq y_1(t) \leq \ldots \leq y_n(t) \leq z_n(t) \leq \ldots \leq z_1(t) \leq z_0(t) \quad t \in J
\]
for all \(n \). Employing standard techniques [4], it can be shown that the sequences \(\{y_n, \lambda_n\}, \{z_n, \gamma_n\} \) converge uniformly and monotonically to \((y, \lambda), (z, \gamma)\), respectively. Indeed, \((y, \lambda)\) and \((z, \gamma)\) are solutions of problem (2) in view of the continuity of \(f \) and \(G \), and the definitions of the above sequences.

We have to show that if \((u, \beta)\) is any solution of problem (2) such that:

\[
y_0(t) \leq u(t) \leq z_0(t) \quad t \in J, \quad \lambda_0 \leq \beta \leq \gamma_0,
\]
then:

\[
y_0(t) \leq y(t) \leq u(t) \leq z(t) \leq z_0(t) \quad t \in J, \quad \lambda_0 \leq \lambda \leq \beta \leq \gamma \leq \gamma_0.
\]

To show this, we suppose that:

\[
y_k(t) \leq u(t) \leq z_k(t) \quad t \in J, \quad \lambda_k \leq \beta \leq \gamma_k
\]
for some \(k \). Put \(\beta = \lambda_{k+1} - \beta \). Then, in view of 3° and 4°, we have

\[
0 = G(y_k, \lambda_k) - N(\lambda_{k+1} - \lambda_k) \leq G(u, \lambda_k) - N(\lambda_{k+1} - \lambda_k) \\
= G(u, \lambda_k) - G(u, \beta) - N(\lambda_{k+1} - \lambda_k) \\
\leq N(\beta - \lambda_k) - N(\lambda_{k+1} - \lambda_k) = -Np,
\]
so \(p \leq 0 \), and hence \(\lambda_{k+1} \leq \beta \). Let \(p = \beta - \gamma_{k+1} \). Then we obtain:

\[
0 = G(u, \beta) \leq G(z_k, \beta) = G(z_k, \beta) - G(z_k, \gamma_k) + N(\gamma_{k+1} - \gamma_k)
\]
\[N(T_k) + N(T_k + 1) \geq N_p, \]
and hence \(p \leq 0 \), so \(\beta \leq \gamma_{k+1} \). This shows that:
\[\lambda_{k+1} \leq \beta \leq \gamma_{k+1}. \]

As before, we set \(p(t) = y_{k+1}(t) - u(t), t \in J \). In view of 2°, we obtain:
\begin{align*}
p'(t) &= y'_{k+1} - u'(t) = f(t, y_k(t), \lambda_k) - f(t, u(t), \beta) \\
&\leq f(t, u(t), \beta) - f(t, u(t), \beta) = 0;
\end{align*}

hence \(p(t) \leq 0, t \in J \), and \(y_{k+1}(t) \leq u(t), t \in J \). Now let \(p(t) = u(t) - z_{k+1}(t), t \in J \). We see that:
\begin{align*}
p'(t) &= u'(t) - z'_{k+1}(t) = f(t, u(t), \beta) - f(t, z_k(t), \gamma_k) \\
&\leq f(t, z_k(t), \gamma_k) - f(t, z_k(t), \gamma_k) = 0,
\end{align*}

and \(p(t) \leq 0, t \in J \), so \(u(t) \leq z_{k+1}(t), t \in J \). This shows that:
\[y_{k+1}(t) \leq u(t) \leq z_{k+1}(t), t \in J. \]

By induction, this proves that the inequalities:
\[y_n(t) \leq u(t) \leq z_n(t), t \in J, \text{ and } \lambda_n \leq \beta \leq \gamma_n \]
are satisfied for all \(n \). Taking the limit as \(n \to \infty \), we conclude that:
\[y(t) \leq u(t) \leq z(t), t \in J, \text{ and } \lambda \leq \beta \leq \gamma. \]

Therefore, \((y, \lambda), (z, \gamma) \) are minimal and maximal solutions of (2). The proof is complete.

References

[5] Pomentale, T., A constructive theorem of existence and uniqueness for the problem \(y' = f(x, y, \lambda), y(\alpha), \alpha, y(\beta) = \beta \), *Z. Angew. Math. Mech.* 56 (1976), 387-388.
Submit your manuscripts at http://www.hindawi.com