ON A THIRD ORDER PARABOLIC EQUATION
WITH A NONLOCAL BOUNDARY CONDITION

ABDELFATAH BOUZIANI
Centre Universitaire d'Oum El Bouaghi
Département de Mathématiques
B.P. 565, Oum El Bouaghi, 04000, Algérie

(Received January, 1997; Revised December, 1997)

In this paper we demonstrate the existence, uniqueness and continuous dependence of a strong solution upon the data, for a mixed problem which combine classical boundary conditions and an integral condition, such as the total mass, flux or energy, for a third order parabolic equation. We present a functional analysis method based on an a priori estimate and on the density of the range of the operator generated by the studied problem.

Key words: Integral Condition, Third Order Parabolic Equation, A Priori Estimate, Strong Solution.

AMS subject classifications: 35K25, 35K50.

1. Introduction

In the rectangle $Q = (0, l) \times (0, T)$, with $l < \infty$ and $T < \infty$, we consider the one-dimensional third order parabolic equation

$$
\mathcal{L}v = \frac{\partial v}{\partial t} - \frac{\partial^2}{\partial x^2} \left(a(x, t) \frac{\partial v}{\partial x} \right) = f(x, t). \tag{1.1}
$$

Assumption A: We shall assume that

$$
0 \leq a(x, t) \leq c_1, \quad \frac{\partial a(x, t)}{\partial t} \leq c_2,
$$

where $c_i > 0$, $(i = 0, 1, 2)$.

We pose the following problem for equation (1.1): to determine its solution v in Q satisfying

the initial condition

$$
\ell u = v(x, 0) = \Phi(x), \quad x \in (0, l), \tag{1.2}
$$

and the boundary conditions

$$
\frac{\partial v(0, t)}{\partial x} = \chi(t), \quad t \in (0, T), \tag{1.3}
$$
The data satisfies the following compatibility conditions:
\[
\frac{\partial \Phi(0)}{\partial x} = \chi(0), \quad \frac{\partial^2 \Phi(0)}{\partial x^2} = \vartheta(0), \quad \int_0^t \Phi(x) dx = m(0).
\]

Along a different line, mixed problems for second order parabolic equations, which combine classical and integral conditions, were considered by Ionkin [17], Cannon-van der Hoek [13, 14], Benouar-Yurchuk [3], Yurchuk [25], Cahn-Kulkarni-Shi [11], Cannon-Esteva-van der Hoek [15], and Shi [23]. A mixed problem with integral condition for second order pluriparabolic equation has been investigated in Bouziani [7]. Mixed problems with only integral conditions for a 2m-parabolic equation was studied in Bouziani [6], and for second order parabolic and hyperbolic equations in Bouziani-Benouar [8, 9].

In this paper, we demonstrate that problem (1.1)-(1.5) possesses a unique strong solution that depends continuously upon the data. We present a functional analysis method which is an elaboration of that in Bouziani [4, 5] and Bouziani-Benouar [10].

To achieve the purpose, we reduce the nonhomogeneous boundary conditions (1.3)-(1.5) to homogeneous conditions, by introducing a new, unknown function \(u \) defined as:
\[
\Phi(x, t) = \phi(x, t) - \Phi(x, t),
\]
where
\[
\Phi(x, t) = x \left(1 - \frac{2x^2}{l^2} \right) \chi(t) + \frac{1}{2} \left(x^2 - \frac{l^2}{3} \right) \vartheta(t) + \frac{4x^3}{l^4} \phi(x, t).
\]
Then, the problem can be formulated as follows:
\[
\mathcal{L}u = f - \mathcal{L}u = f,
\]
\[
\mathcal{L}u = u(x, 0) = \Phi(x) - \mathcal{L}u = \varphi(x),
\]
\[
\frac{\partial u(0, t)}{\partial x} = 0,
\]
\[
\frac{\partial^2 u(0, t)}{\partial x^2} = 0.
\]
Here, we assume that the function φ, satisfies conditions of the form (1.8)-(1.10), i.e.,

$$
\frac{\partial \varphi(0)}{\partial x} = 0, \quad \frac{\partial^2 \varphi(0)}{\partial x^2} = 0 \quad \text{and} \quad \int_0^l \varphi(x) dx = 0.
$$

Instead of searching for the function v, we search for the function u. So, the strong solution of problem (1.1)-(1.5) will be given by: $v(x,t) = u(x,t) + \mathcal{U}(x,t)$.

2. Preliminaries

We employ certain function spaces to investigate our problem. Let $L^2(0,l)$, $L^2(0,T;L^2(0,l)) = L^2(Q)$ be the standard functional spaces, $\| \cdot \|_{0,Q}$ and $(\cdot, \cdot)_{0,Q}$ denote the norm and the scalar product in $L^2(Q)$, $L^2_{2}(0,l)$ be the weighted space of square integrable functions on $(0,l)$ with the finite norm

$$
\| u \|_{L^2_{2}(0,l)}^2 := \int_0^l (l-x) u^2 dx,
$$

$B^1_2(0,l)$ be the Hilbert space defined, for the first time in [6], by

$$
B^1_2(0,l) = \{ u/\mathcal{T}_x u \in L^2(0,l) \},
$$

where $\mathcal{T}_x u = \int_0^l u(\xi, t) d\xi$, and let $L^2(0,T;B^1_2(0,l))$ be the space of all functions which are square integrable on $(0,T)$ in the Bochner sense, i.e., Bochner integrable and satisfying

$$
\int_0^T \| u \|_{B^1_2(0,l)}^2 dt < \infty.
$$

Problem (1.6)-(1.10) is equivalent to the operator equation

$$
Lu = \mathcal{F},
$$

where $\mathcal{F} = (f, \varphi), L = (\mathcal{L}, \ell)$ with the domain $D(L)$ consisting of all functions $u \in L^2(Q)$ with $\frac{\partial u}{\partial t}, \frac{\partial^2 u}{\partial x^2}, \frac{\partial^3 u}{\partial x^3}, \frac{\partial^4 u}{\partial t \partial x^3}, \frac{\partial^3 u}{\partial t \partial x^2} \in L^2(Q)$ and u satisfying conditions (1.8)-(1.10); the operator L is on B into F; B is the Banach space obtained by the completion of $D(L)$ in the form

$$
\| u \|_B^2 = \left\| \frac{\partial u}{\partial t} \right\|_{L^2(0,T;B^1_2(0,l))}^2 + \sup_{0 \leq \tau \leq T} \left\| \frac{\partial u(x, \tau)}{\partial x} \right\|_{L^2_2(0,l)}^2
$$

and F is the Hilbert space of the vector-valued functions $\mathcal{F} = (f, \varphi)$ with the norm.
\[\| \mathcal{F} \|_F^2 = \| f \|_{0,Q}^2 + \left\| \frac{\partial \varphi}{\partial x} \right\|_{L^2(0,1)}^2. \]

Let \(\bar{L} \) be the closure of the operator \(L \) with the domain \(D(\bar{L}) \).

Definition: A solution of the operator equation

\[\bar{L} u = \mathcal{F} \]

is called a **strong solution** of the problem (1.6)-(1.10).

We now introduce the family of operators \(\rho^{-1}_\varepsilon \theta \) and \((\rho^{-1}_\varepsilon)^* \theta \) defined by the formulas

\[\rho^{-1}_\varepsilon \theta = \frac{1}{\varepsilon} \int_0^t e^{\frac{1}{\varepsilon}(\tau - t)} \theta(x, \tau) d\tau, \quad \varepsilon > 0, \]

\[(\rho^{-1}_\varepsilon)^* \theta = -\frac{1}{\varepsilon} \int_t^T e^{\frac{1}{\varepsilon}(t - \tau)} \theta(x, \tau) d\tau, \quad \varepsilon > 0, \]

which we use as smoothing operators with respect to \(t \). These operators provide the solutions of the problems

\[
\begin{align*}
\rho^{-1}_\varepsilon \theta(x,0) &= 0, \quad (2.1) \\
\rho^{-1}_\varepsilon \theta(x,T) &= 0, \quad (2.2)
\end{align*}
\]

and

\[
\begin{align*}
-\varepsilon \frac{\partial (\rho^{-1}_\varepsilon)^* \theta}{\partial t} + (\rho^{-1}_\varepsilon)^* \theta &= \theta, \quad (2.3) \\
\left(\rho^{-1}_\varepsilon\right)^* \theta(x,T) &= 0 \quad (2.4)
\end{align*}
\]

respectively. They have the following properties.

Lemma 1: For all \(\theta \in L^2(0,T) \), we have

(i) \(\rho^{-1}_\varepsilon \theta(x,t) \in H^1(0,T) \) and \(\rho^{-1}_\varepsilon \theta(x,0) = 0 \);

(ii) \(\left(\rho^{-1}_\varepsilon\right)^* \theta(x,t) \in H^1(0,T) \) and \(\left(\rho^{-1}_\varepsilon\right)^* \theta(x,T) = 0 \).

Lemma 2: For all \(\theta \) and all \(h \) in \(L^2(Q) \), we have

\[\int_Q \rho^{-1}_\varepsilon \theta h dx dt = \int_Q \theta \left(\rho^{-1}_\varepsilon\right)^* h dx dt. \]

This lemma states that the operators \(\left(\rho^{-1}_\varepsilon\right)^* \) are conjugate to \(\rho^{-1}_\varepsilon \).

Lemma 3: For all \(\theta \in L^2(0,T) \), we have

\[\rho^{-1}_\varepsilon \frac{\partial \theta}{\partial \tau} = \frac{\partial}{\partial t}\rho^{-1}_\varepsilon \theta + \frac{1}{\varepsilon} e^{-t/\varepsilon} \theta(x,0). \]
For the proof of the above lemma, it suffices to integrate by parts the expression $\rho_\epsilon^{-1} \frac{\partial \theta}{\partial \tau}.$

Lemma 4: For all $\theta \in L^2(0, T)$, we have

(i) \[
\int_0^T \| \rho_\epsilon^{-1} \theta \|_{0,(0,t)} dt \leq \int_0^T \| \theta \|_{0,(0,t)} dt
\]

and

(ii) \[
\int_0^T \| \rho_\epsilon^{-1} \theta - \theta \|_{0,(0,t)} dt \to 0 \text{ for } \epsilon \to 0;
\]

Proof of Lemma 4 is similar to the proof of the lemma of Section 2.18 in [1].

We easily get the following lemma.

Lemma 5: If

\[
A(t)u = \frac{\partial^2}{\partial x^2} \left(a(x,t) \frac{\partial u}{\partial x} \right)
\]

then

\[
A(t)\rho_\epsilon^{-1} = \rho_\epsilon^{-1} A(\tau) + \epsilon \rho_\epsilon^{-1} A'(\tau) \rho_\epsilon^{-1},
\]

where $A'(t)$ is the operator of form (2.5) whose coefficient is the first derivative with respect to t of the corresponding coefficient of $A(t)$.

3. A Priori Estimate and Its Consequences

Theorem 1: Under Assumption A, there exists a positive constant c, independent of u, such that

\[
\| u \|_B \leq c \| Lu \|_F.
\]

Proof: We multiply equation (1.6) by an integro-differential operator

\[
M u = (l - x)\frac{\partial u}{\partial t} - 2 \frac{\partial u}{\partial t} - \frac{\partial u}{\partial t} - \frac{\partial u}{\partial t}
\]

and integrate over Q^τ, where $Q^\tau = (0, l) \times (0, \tau)$. Consequently,

\[
\int_{Q^\tau} \int_{Q^\tau} \mathcal{L} u \cdot M u dx dt = \int_{Q^\tau} \int_{Q^\tau} \frac{\partial u}{\partial t} - 2 \frac{\partial u}{\partial t} - \frac{\partial u}{\partial t} dx dt - \int_{Q^\tau} \int_{Q^\tau} \frac{\partial u}{\partial t} - 2 \frac{\partial u}{\partial t} - \frac{\partial u}{\partial t} dx dt
\]

(3.2)
\[
- \int \int_{Q^r} \left(\frac{\partial^2}{\partial x^2} \left(a(x,t) \frac{\partial u}{\partial x} \right)(l-x) \frac{\partial u}{\partial t} \right) dx dt + 2 \int \int_{Q^r} \left(\frac{\partial^2}{\partial x^2} \left(a(x,t) \frac{\partial u}{\partial x} \right) \right) \frac{\sigma^2 \partial u}{\partial t} dx dt.
\]

We know from the integration by parts that

\[
\int \int_{Q^r} \frac{\partial u}{\partial t} (l-x) \frac{\partial u}{\partial t} dx dt = -\frac{1}{2} \int \int_{Q^r} \left(\frac{\partial}{\partial x} \frac{\partial u}{\partial t} \right)^2 dx dt, \quad (3.3)
\]

\[
-2 \int \int_{Q^r} \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial x \partial t} dx dt = 2 \int \int_{Q^r} \left(\frac{\partial}{\partial x} \frac{\partial u}{\partial t} \right)^2 dx dt, \quad (3.4)
\]

\[
- \int \int_{Q^r} \frac{\partial^2}{\partial x^2} \left(a(x,t) \frac{\partial u}{\partial x} \right)(l-x) \frac{\partial u}{\partial t} dx dt = \frac{1}{2} \int l \int_{0}^{l} (l-x)a(x,\tau) \left(\frac{\partial u(x,\tau)}{\partial x} \right)^2 dx \]

\[
- \frac{1}{2} \int_{0}^{l} (l-x)a(x,0) \left(\frac{\partial \varphi}{\partial x} \right)^2 dx - \frac{1}{2} \int (l-x) \frac{\partial a(x,t)}{\partial t} \left(\frac{\partial u}{\partial x} \right)^2 dx dt \quad (3.5)
\]

\[
- 2 \int \int_{Q^r} a(x,t) \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} dx dt,
\]

\[
2 \int \int_{Q^r} \frac{\partial^2}{\partial x^2} \left(a(x,t) \frac{\partial u}{\partial x} \right) \frac{\sigma^2 \partial u}{\partial t} dx dt = 2 \int \int_{Q^r} a(x,t) \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} dx dt. \quad (3.6)
\]

Substituting (3.3)-(3.6) into (3.2), we obtain

\[
\frac{3}{2} \int \int_{Q^r} \left(\frac{\partial}{\partial x} \frac{\partial u}{\partial t} \right)^2 dx dt + \frac{1}{2} \int l \int_{0}^{l} (l-x)a(x,\tau) \left(\frac{\partial u(x,\tau)}{\partial x} \right)^2 dx
\]

\[
= \int \int_{Q^r} \left[f \left(l-x \right) \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} - 2\varphi^2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} \right] dx dt + \frac{1}{2} \int l \int_{0}^{l} (l-x)a(x,0) \left(\frac{\partial \varphi}{\partial x} \right)^2 dx \quad (3.7)
\]

\[
+ \frac{1}{2} \int \int_{Q^r} (l-x) \frac{\partial a(x,t)}{\partial t} \left(\frac{\partial u}{\partial x} \right)^2 dx dt.
\]

Further, by virtue of inequality (2.2) in [6] and the Cauchy inequality, the first integral on the right-hand side of (3.7) is estimated as follows

\[
\int \int_{Q^r} f \left(l-x \right) \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} dx dt
\]

\[
\leq \frac{3l^2}{2} \int \int_{Q^r} f^2 dx dt + \int \int_{Q^r} \left(\frac{\partial u}{\partial x} \right)^2 dx dt. \quad (3.8)
\]
Substituting (3.8) in (3.7) and using Assumption A, we get
\[L^2(0, r; B_{12}(0, l)) - \| \frac{\partial u(x, \tau)}{\partial x} \|_{L^2(0, l)}^2 \leq c_3 \left(\| f \|_{0, Q^r}^2 + \| \frac{\partial \varphi}{\partial x} \|_{L^2(0, l)}^2 \right) + c_4 \| \frac{\partial u}{\partial x} \|_{L^2(0, \tau; L^2(0, l))}^2, \]
where
\[c_3 = \frac{\max(3l^2, c_1)}{\min(1, c_0)} \]
and
\[c_4 = \frac{c_2}{\min(1, c_0)}. \]

We eliminate the last term on the right-hand side of (3.9). To do this we use the following lemma.

Lemma 6: If \(f_i(\tau) \) (\(i = 1, 2, 3 \)) are nonnegative functions on \((0, T) \), \(f_1(\tau) \) and \(f_2(\tau) \) are integrable on \((0, T) \), and \(f_3(\tau) \) is nondecreasing on \((0, T) \) then it follows, from
\[\mathcal{T}_\tau f_1 + f_2 \leq f_3 + c\mathcal{T}_\tau f_2, \]
that
\[\mathcal{T}_\tau f_1 + f_2 \leq \exp(c\tau).f_3, \]
where
\[\mathcal{T}_\tau f_i = \int_0^\tau f_i(t)dt, \quad (i = 1, 2). \]

The proof of the above lemma is similar to that of Lemma 7.1 in [16]. \(\square \)

Returning to the proof of Theorem 1, we denote the first term on the left-hand side of (3.9) by \(f_1(\tau) \), the remaining term on the same side on (3.9) by \(f_2(\tau) \), and the sum of two first terms on the right-hand side of (3.9) by \(f_3(\tau) \). Consequently, Lemma 6 implies the inequality
\[\| \frac{\partial u}{\partial t} \|_{L^2(0, \tau; B_{12}(0, l))}^2 + \| \frac{\partial u(x, \tau)}{\partial x} \|_{L^2(0, l)}^2 \leq c_3 e^{c_4 \tau} \left(\| f \|_{0, Q^r}^2 + \| \frac{\partial \varphi}{\partial x} \|_{L^2(0, l)}^2 \right) \]
\[\leq c_5 \left(\| f \|_{0, Q^r}^2 + \| \frac{\partial \varphi}{\partial x} \|_{L^2(0, l)}^2 \right), \]
where
\[c_5 = c_3 \exp(c_4 T). \]

Since the right-hand side of the above inequality does not depend on \(\tau \), in the left-hand side we take the upper bound with respect to \(\tau \) from 0 to \(T \). Therefore, we obtain inequality (3.1), where \(c = c_5^{1/2} \).

Proposition 1: The operator \(L \) from \(B \) into \(F \) is closable.

The proof of this proposition is analogous to the proof of the proposition in [7]. \(\square \)
Since the points of the graph of \(\overline{L} \) are limits of the sequences of points of the graph of \(L \), we can extend (3.1) to apply to strong solutions by taking the limits.

Corollary 1: Under Assumption A, there is a constant \(c > 0 \), independent of \(u \), such that
\[
||u||_B \leq c ||\overline{L}u||_F, \quad \forall u \in D(\overline{L}). \tag{3.11}
\]

Let \(R(L) \) and \(R(\overline{L}) \) denote the set of values taken by \(L \) and \(\overline{L} \), respectively. Inequality (3.11) implies the following corollary.

Corollary 2: The range \(R(\overline{L}) \) is closed in \(F \), \(R(L) = R(\overline{L}) \) and \(\overline{L}^{-1} = \overline{L}^{-1} \), where \(\overline{L}^{-1} \) is the extension of \(L^{-1} \) by continuity from \(R(L) \) to \(R(\overline{L}) \).

4. Solvability of the Problem

Theorem 2: Let Assumption A be satisfied and let \(\frac{\partial a}{\partial x} \) and \(\frac{\partial^2 a}{\partial x \partial t} \) be bounded. Then for arbitrary \(f \in L^2(Q) \) and \(\frac{\partial \varphi}{\partial x} \in L^2_a(0,1) \), problem (1.6)-(1.10) admits a unique strong solution \(u = \overline{L}^{-1} \varphi = \overline{L}^{-1} \varphi \).

Proof: Corollary 1 asserts that, if a strong solution exists, it is unique and depends continuously on \(\varphi \). (If \(u \) is considered in the topology of \(B \) and \(\varphi \) is considered in the topology of \(F \).) Corollary 2 states that, to prove that (1.6)-(1.10) has a strong solution for an arbitrary \(\varphi = (f, \varphi) \in F \) it is sufficient to show the equality \(R(L) = F \). To this end, we need the following proposition.

Proposition 2: Let the assumptions of Theorem 2 hold and let \(D_0(L) \) be the set of all \(u \in D(L) \) vanishing in a neighborhood of \(t = 0 \). If, for \(\varphi \in L^2(Q) \) and for all \(u \in D_0(L) \), we have
\[
(Lu, h)_{L^2(Q)} = 0, \tag{4.1}
\]
then \(h \) vanishes almost everywhere in \(Q \).

Proof of the proposition: We can write (4.1) as follows
\[
\int \int_Q \frac{\partial u}{\partial t} \cdot h \, dx \, dt = \int \int_Q A(t)u \cdot h \, dx \, dt. \tag{4.2}
\]

Replacing \(u \) by the smooth function \(\rho^{-1}_\varepsilon u \) in (4.2), this yields, from Lemma 5, that
\[
\int \int_Q \frac{\partial \rho^{-1}_\varepsilon}{\partial t} \cdot h \, dx \, dt = \int \int_Q \rho^{-1}_\varepsilon A u \cdot h \, dx \, dt + \int A'(\rho^{-1}_\varepsilon) \rho^{-1}_\varepsilon u \cdot h \, dx \, dt. \tag{4.3}
\]

Applying Lemma 3 to the left-hand side of (4.3), and Lemma 2 to the obtained equality, we obtain
\[
\int \int_Q \frac{\partial u}{\partial t} \cdot \left(\rho^{-1}_\varepsilon \right)^* h \, dx \, dt \tag{4.4}
\]
\[
= \int \int_Q A u \cdot \left(\rho^{-1}_\varepsilon \right)^* h \, dx \, dt + \int A' \rho^{-1}_\varepsilon u \cdot \left(\rho^{-1}_\varepsilon \right)^* h \, dx \, dt.
\]

The standard integration by parts with respect to \(t \) in the left-hand side of (4.4)
leads to

\[
\int \int_{Q} u \cdot \frac{\partial \left(\rho_{c}^{-1} \right)^{*}}{\partial t} \, dx \, dt = \int \int_{A} Au \cdot \left(\rho_{c}^{-1} \right)^{*} \, h \, dx \, dt \\
+ \epsilon \int \int_{Q} A'\rho_{c}^{-1}u \cdot \left(\rho_{c}^{-1} \right)^{*} \, h \, dx \, dt.
\]

(4.5)

The operator \(A(t) \) with boundary conditions (1.8)-(1.10) has, on \(L^{2}(0,l) \), the continuous inverse. Hence,

\[
A'\rho_{c}^{-1}u = A'\rho_{c}^{-1}A^{-1}Au = \Lambda_{c}Au.
\]

(4.6)

Thus, from (4.5) and (4.6), we obtain

\[
\int \int_{Q} u \cdot \frac{\partial \left(\rho_{c}^{-1} \right)^{*}}{\partial t} \, dx \, dt = \int \int_{Q} Au \cdot \left(\rho_{c}^{-1} \right)^{*} \, h \, dx \, dt + \epsilon \int \int_{Q} \Lambda_{c}Au \cdot \left(\rho_{c}^{-1} \right)^{*} \, h \, dx \, dt
\]

\[
= \int \int_{Q} Au \cdot \left(I + \epsilon \Lambda_{c}^{*} \left(\rho_{c}^{-1} \right)^{*} \right) \, h \, dx \, dt.
\]

(4.7)

Defining \(A^{-1}(t) \), we apply operator \(\mathcal{T}^{2}_{x} \) to both sides of \(A(t)u = g \). After this operation, we get

\[
\frac{\partial u}{\partial x} = \frac{1}{a(x,t)} \int_{0}^{x} (x - \xi)g(\xi,t) \, d\xi.
\]

(4.8)

We now integrate each term of (4.8) over \([0,x]\) with respect to \(\xi \). Consequently,

\[
A^{-1}(t)g = \int_{0}^{x} \frac{d\xi}{a(\xi,t)} \int_{0}^{\xi} (\xi - \eta)g(\eta,t) \, d\eta + c_{6}.
\]

(4.9)

To compute the constant \(c_{6} \) in (4.9), we multiply (4.8) by \((l-x)\) and integrate the obtained equation over \([0,l]\). Therefore,

\[
\int_{0}^{l} (l-x) \frac{\partial u}{\partial x} \, dx = \int_{0}^{l} \frac{(l-x) \, dx}{a(x,t)} \int_{0}^{x} (x - \xi)g(\xi,t) \, d\xi.
\]

(4.10)

Integration by parts of the left-hand side of (4.10), gives

\[
c_{6} = -\frac{1}{l} \int_{0}^{l} \frac{(l-x) \, dx}{a(x,t)} \int_{0}^{x} (x - \xi)g(\xi,t) \, d\xi.
\]

Note that for the determination of \(\Lambda_{c} \) and \(\Lambda_{c}^{*} \), the corresponding calculations are not difficult, but they are long. Therefore, we only give the final results of the computations:
\[\Lambda_\epsilon Au = \left(\frac{\partial^3 a(x, t)}{\partial x^3 \partial t} \rho_\epsilon^{-1} - 2 \frac{\partial^2 a(x, t)}{\partial x \partial t} \rho_\epsilon^{-1} \frac{1}{a(x, \tau)} \frac{\partial a(x, \tau)}{\partial x} + \frac{\partial a(x, t)}{\partial t} \rho_\epsilon^{-1} \frac{1}{(a(x, \tau))^2} \right) \left(\frac{\partial (a(x, \tau))}{\partial x} \right)^2 - \frac{\partial a(x, t)}{\partial t} \rho_\epsilon^{-1} \frac{1}{a(x, \tau)} \frac{\partial^2 a(x, \tau)}{\partial x^2} \right) \frac{1}{a(x, \tau)} \left(\int_0^x (x - \xi) Au(\xi, \tau) d\xi \right) \] (4.11)

\[+ 2 \left(\frac{\partial^2 a(x, t)}{\partial x \partial t} \rho_\epsilon^{-1} - \frac{\partial a(x, t)}{\partial t} \rho_\epsilon^{-1} \frac{\partial a(x, \tau)}{\partial x} \right) \frac{1}{a(x, \tau)} \left(\int_0^x Au(\xi, \tau) d\xi \right) \]

\[+ \frac{\partial a(x, t)}{\partial t} \rho_\epsilon^{-1} \frac{1}{a(x, \tau)} Au; \]

\[\Lambda_\epsilon \left(\rho_\epsilon^{-1} \right)^* h = \frac{1}{a(x, t)} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial a(x, \tau)}{\partial \tau} \left(\rho_\epsilon^{-1} \right)^* h + \int_x^l \frac{(x - \xi)}{a(\xi, t)} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial^3 a(\xi, \tau)}{\partial \tau \partial \xi^2} \] (4.12)

\[- 2 \frac{1}{a(x, t)} \frac{\partial a(\xi, t)}{\partial \xi} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial^2 a(\xi, \tau)}{\partial \tau \partial \xi} \frac{1}{a(\xi, t)} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial a(\xi, \tau)}{\partial \tau} + 2 \frac{1}{(a(\xi, t))^2} \left(\frac{\partial a(\xi, t)}{\partial x} \right)^2 \left(\rho_\epsilon^{-1} \right)^* \frac{\partial a(\xi, \tau)}{\partial \tau} \]

\[+ \frac{1}{a(\xi, t)} \frac{\partial a(\xi, t)}{\partial \xi} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial a(\xi, \tau)}{\partial \tau} \frac{1}{a(\xi, t)} \left(\rho_\epsilon^{-1} \right)^* h(\xi, \tau) d\xi \]

\[+ 2 \int_x^l \frac{1}{a(\xi, t)} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial^2 a(\xi, \tau)}{\partial \tau \partial \xi} - \frac{1}{a(\xi, t)} \frac{\partial a(\xi, t)}{\partial \xi} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial a(\xi, \tau)}{\partial \tau} \left(\rho_\epsilon^{-1} \right)^* h(\xi, \tau) d\xi. \]

The left-hand side of (4.7) shows that the mapping \(\int \int_Q Au \cdot K_\epsilon \left(\rho_\epsilon^{-1} \right)^* h dx dt \) is a continuous linear functional of \(u \), where

\[K_\epsilon \left(\rho_\epsilon^{-1} \right)^* h = (I + \epsilon \Lambda_\epsilon^*) \left(\rho_\epsilon^{-1} \right)^* h. \] (4.13)

Consequently, this assertion holds true, if the function \(K_\epsilon \) has the following properties

\[\frac{\partial K_\epsilon}{\partial x} \in L^2(Q), \frac{\partial^2 K_\epsilon}{\partial x^2} \in L^2(Q) \text{ and } \frac{\partial^3 K_\epsilon}{\partial x^3} \in L^2(Q), \]

and satisfies the following conditions:

\[K_\epsilon \left|_{x=l} = 0, \frac{\partial K_\epsilon}{\partial x} \bigg|_{x=l} = 0, \frac{\partial^2 K_\epsilon}{\partial x^2} \bigg|_{x=0} = 0 \text{ and } \frac{\partial^2 K_\epsilon}{\partial x^2} \bigg|_{x=l} = 0. \] (4.14)

From (4.12), we deduce that the operator \(\Lambda_\epsilon^* \) is bounded on \(L^2(Q) \). Hence, the norm of \(\epsilon \Lambda_\epsilon^* \) on \(L^2(Q) \) is smaller than 1 for sufficiently small \(\epsilon \). So, the operator \(K_\epsilon \) has the continuous inverse operator in \(L^2(Q) \).

From (4.12) and (4.14), we deduce that

\[\left(I + \epsilon \frac{1}{a(x, t)} \left(\rho_\epsilon^{-1} \right)^* \frac{\partial a(x, \tau)}{\partial \tau} \left(\rho_\epsilon^{-1} \right)^* h \right) \bigg|_{x=l} = 0, \] (4.15)
For each fixed $x \in [0, l]$ and sufficiently small ϵ, the operator
\[
\left(I + \epsilon \frac{1}{a(x,t)} \left(\rho^{-1} \right)^* \frac{\partial a(x, \tau)}{\partial \tau} \right) \left(\rho^{-1} \right)^* h \bigg|_{x = l} = 0,
\]
has the continuous inverse operator on $L^2(0, T)$. Hence, (4.15)-(4.18) imply that
\[
\left(\rho^{-1} \right)^* h \bigg|_{x = l} = 0, \quad \frac{\partial \left(\rho^{-1} \right)^* h}{\partial x} \bigg|_{x = l} = 0, \quad \frac{\partial^2 \left(\rho^{-1} \right)^* h}{\partial x^2} \bigg|_{x = 0} = 0,
\]
\[
\frac{\partial^2 \left(\rho^{-1} \right)^* h}{\partial x^2} \bigg|_{x = l} = 0.
\]
In other words, (4.15)-(4.18) imply that
\[
\hat{h} \bigg|_{x = l} = 0, \quad \frac{\partial \hat{h}}{\partial x} \bigg|_{x = l} = 0, \quad \frac{\partial^2 \hat{h}}{\partial x^2} \bigg|_{x = 0} = 0, \quad \frac{\partial^2 \hat{h}}{\partial x^2} \bigg|_{x = l} = 0.
\]
Set
\[
\hat{h} = \left((l - x) \hat{\tau}_x z - 2 \rho_x \hat{\tau}_x z \right).
\]
Differentiating (4.20) with respect to x, we obtain
\[
\begin{cases}
\frac{\partial \hat{h}}{\partial x} = (\rho_x \hat{\tau}_x z - (l - x)z) \in L^2(Q), \\
\frac{\partial^2 \hat{h}}{\partial x^2} = -(l - x) \frac{\partial \hat{z}}{\partial x} \in L^2(Q), \\
\frac{\partial^3 \hat{h}}{\partial x^3} = - \frac{\partial}{\partial x} \left((l - x) \frac{\partial \hat{z}}{\partial x} \right) \in L^2(Q).
\end{cases}
\]
From (4.20), (4.21), and (4.19), we deduce that the conditions
\[
\hat{\mathcal{T}}_{l} z = 0, \hat{\mathcal{T}}^{2}_{l} z = 0, (l - x) \frac{\partial \hat{z}}{\partial x} \bigg|_{x = 0} = 0, (l - x) \frac{\partial \hat{z}}{\partial x} \bigg|_{x = l} = 0
\]
are met.
In (4.2), we replace h by its representation (4.20). Consequently,

\[
\int \int_{Q} \frac{\partial u}{\partial t}((l-x)\mathcal{F}_x \mathcal{F}_z - 2\mathcal{F}_x^2 \mathcal{F}_z) dx dt = \int \int_{Q} A(t)u((l-x)\mathcal{F}_x \mathcal{F}_z - 2\mathcal{F}_x^2 \mathcal{F}_z) dx dt
\]

\[
= - \int \int_{Q} a(x,t)\frac{\partial u}{\partial x}(l-x) \frac{\partial z}{\partial x} dx dt. \tag{4.23}
\]

Substituting (2.3) in (4.23) (with $\theta = z$) and integrating by parts (with respect to x), by taking into account (4.22), we obtain

\[
\int \int_{Q} \frac{\partial u}{\partial t}((l-x)\mathcal{F}_x \mathcal{F}_z - 2\mathcal{F}_x^2 \mathcal{F}_z) dx dt = \int \int_{Q} a(x,t)\frac{\partial u}{\partial x}(l-x) \frac{\partial^2 (\rho_{\epsilon}^{-1})^z}{\partial x \partial t} dx dt
\]

\[
- \int \int_{Q} a(x,t)\frac{\partial u}{\partial x}(l-x) \frac{\partial (\rho_{\epsilon}^{-1})^z}{\partial t} dx dt. \tag{4.24}
\]

Putting

\[
u = \int \int_{Q} \left(e^{-c_t z} (\rho_{\epsilon}^{-1})^z \right) dx dt = \int_{0}^{\tau} e^{-c_t (\rho_{\epsilon}^{-1})^z} z dt \tag{4.25}
\]

in relation (4.24), where c_τ is a constant such that $c_\tau c_0 - c_2 - c_2^2 / 2 c_0 \geq 0$, and integrating by parts with respect to t on each term of the right-hand side of the obtained equality, we obtain, by taking into account (2.4) and due to $u \in D_0(L)$ that

\[
\int \int_{Q} (l-x)a(x,t) \frac{\partial u}{\partial x} \frac{\partial^2 (\rho_{\epsilon}^{-1})^z}{\partial x \partial t} dx dt = - \int \int_{Q} (l-x)e^{-c_t z} a(x,t) \left(\frac{\partial (\rho_{\epsilon}^{-1})^z}{\partial x} \right)^2 dx dt \tag{4.26}
\]

\[
- \int \int_{Q} (l-x) \frac{\partial a(x,t)}{\partial t} \frac{\partial u}{\partial x} \frac{\partial (\rho_{\epsilon}^{-1})^z}{\partial x} dx dt,
\]

\[
\int \int_{Q} (l-x)a(x,t) \frac{\partial u}{\partial x} \frac{\partial (\rho_{\epsilon}^{-1})^z}{\partial x} dx dt
\]

\[
= - \int \int_{Q} (l-x)e^{-c_t z} a(x,t) \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial x \partial t} dx dt \tag{4.27}
\]

\[
= - \frac{1}{2} \int_{0}^{l} (l-x)e^{-c_t} a(x,T) \left(\frac{\partial u(x,T)}{\partial x} \right)^2 dx
\]
Elementary calculations, starting from (4.26) and (4.27), yield the inequalities

\[
\frac{\epsilon}{2} \int \int_Q (l - x)e^{-c_T t} \left(c_T a(x, t) - \frac{\partial a(x, t)}{\partial t} \right)(\frac{\partial u}{\partial x})^2 \text{d}x \text{d}t
\]

and

\[
- \frac{c_T e^2}{4c_0} \int \int_Q (l - x)e^{-c_T t} \left(\frac{\partial u}{\partial x}\right)^2 \text{d}x \text{d}t
\]

Substituting (4.28) and (4.29) into (4.24), we get

\[
\epsilon \int \int_Q (l - x)a(x, t)\frac{\partial u}{\partial x} \cdot \frac{\partial^2 (\rho_{\epsilon}^{-1})^*}{\partial x \partial t} \text{d}x \text{d}t
\]

Hence, for sufficiently small \(\epsilon \leq 1 \), we have

\[
\frac{1}{2} \int \int_Q (l - x)\mathcal{F}_x z - 2\mathcal{F}_x^2 z \text{d}x \text{d}t
\]

Passing to the limit in the above inequality and integrating by parts with respect to \(x \), we obtain, by Lemma 4, that

\[
\frac{1}{2} \int \int_Q (l - x)\mathcal{F}_x z - 2\mathcal{F}_x^2 z \text{d}x \text{d}t \leq 0.
\]

Hence, for sufficiently small \(\epsilon \leq 1 \), we have

\[
\int \int_Q e^{c_T t}(\frac{\partial (\rho_{\epsilon}^{-1})^*}{\partial x} z((l - x)\mathcal{F}_x z - 2\mathcal{F}_x^2 z) \text{d}x \text{d}t \leq 0.
\]

Passing to the limit in the above inequality and integrating by parts with respect to \(x \), we obtain, by Lemma 4, that

\[
\int \int_Q e^{c_T t}(\mathcal{F}_x z)^2 \text{d}x \text{d}t \leq 0
\]

and thus \(z = 0 \). Hence, \(h = 0 \), which completes the proof.

Now, we return to the proof of Theorem 2. Since \(F \) is a Hilbert space, we have that \(R(L) = \mathcal{F}_x \) is equivalent to the orthogonality of vector \((h, h_0) \in F\) to the set \(R(L) \), i.e., if and only if, the relation

\[
(\mathcal{F}_x h_0, Q + \left(\frac{\partial \mathcal{F}_x h_0}{\partial x}, \frac{\partial h_0}{\partial x}\right)^2_{L^2_\sigma(0, t)} = 0,
\]
where \(u \) runs over \(B \) and \((h, h_0) \in F\), implies that \(h = 0 \) and \(h_0 = 0 \).

Putting \(u \in D_0(L) \) in (4.31), we obtain

\[
(Lu, h)_{0, Q} = 0.
\]

Hence Proposition 2 implies that \(h = 0 \). Thus, (4.31) takes the form

\[
\left(\frac{\partial^2 u}{\partial x^2}, \frac{\partial h_0}{\partial x} \right)_{L^2_0(0,1)} = 0, \quad u \in D(L).
\]

Since the range of the trace operator \(\ell \) is dense in the Hilbert space with the norm \(\| \frac{\partial h_0}{\partial x} \|_{L^2_0(0,1)} \), from the last equality, it follows that \(h_0 = 0 \) (we recall that \(h_0 \) satisfies the compatibility conditions (1.11)). Hence, \(R(L) \) is dense in \(F \). \(\square \)

References

Submit your manuscripts at http://www.hindawi.com