HARMONIC CLOSE-TO-CONVEX MAPPINGS

JAY M. JAHANGIRI
Kent State University
Department of Mathematics
Burton, OH 44021-9500 USA
E-mail: jay@geauga.kent.edu

HERB SILVERMAN
College of Charleston
Department of Mathematics
Charleston, SC 29424-0001 USA
E-mail: silvermanh@cofc.edu

(Received October, 1999; Revised May, 2000)

Sufficient coefficient conditions for complex functions to be close-to-convex harmonic or convex harmonic are given. Construction of close-to-convex harmonic functions is also studied by looking at transforms of convex analytic functions. Finally, a convolution property for harmonic functions is discussed.

Key words: Harmonic, Convex, Close-to-Convex, Univalent.
AMS subject classifications: 30C45, 58E20.

1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play important roles in a variety of problems in applied mathematics. Harmonic functions have been studied by differential geometers such as Choquet [2], Kneser [7], Lewy [8], and Rado [9]. Recent interest in harmonic complex functions has been triggered by geometric function theorists Clunie and Sheil-Small [3].

A continuous function $f = u + iv$ is a complex-valued harmonic functions in a domain $D \subset C$ if both u and v are real harmonic in D. In any simply connected domain, we can write

$$f = h + \overline{g},$$

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient conditions (see [3] or [8]) for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|$ in D.

Denote by S_H the class of functions f of the form (1) that are harmonic univalent and sense-preserving in the unit disk $\Delta = \{z: |z| < 1\}$ for which $f(0) = f_{\alpha}(0) - 1 = 0$. Thus we may write

1Dedicated to KSU Professor Richard S. Varga on his seventieth birthday.
h(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_n z^n. \quad (2)

Note that S_H reduces to S, the class of normalized univalent analytic functions if the coanalytic part of f is zero. Since $h'(0) = 1 > |g'(0)| = |b_1|$ for $f \in S_H$, the function \((f - b_1 f) / (1 - b_1^2)\) is also in S_H. Therefore, we may sometimes restrict ourselves to S_H^u, the subclass of S_H for which $b_1 = f_2(0) = 0$. In [3], it was shown that S_H is normal and S_H^u is compact with respect to the topology of locally uniform convergence. Some coefficient bounds for convex and starlike harmonic functions have recently been obtained by Avci and Zlotkiewicz [1], Jahangiri [5, 6], and Silverman [14].

In this paper, we give sufficient conditions for functions in S_H to be close-to-convex harmonic or convex harmonic. We also construct close-to-convex harmonic functions by looking at transforms of convex analytic functions. Finally, we discuss a convolution property for harmonic functions.

In the sequel, unless otherwise stated, we will assume that f is of the form (1) with h and g of the form (2).

2. Convex and Close-to-Convex Mappings

Let K, K_H, and K_H^u denote the respective subclasses of S, S_H and S_H^u where the images of $f(\Delta)$ are convex. Similarly, C, C_H, and C_H^u denote the subclass of S, S_H and S_H^u where the images of $f(\Delta)$ are close-to-convex. Recall that a domain D is convex if the linear segment joining any two points of D lies entirely in D. A domain D is called close-to-convex if the complement of D can be written as a union of non-crossing half-lines. For other equivalent criteria, see [4].

Clunie and Sheil-Small [3] proved the following results.

Theorem A: If h, g are analytic in Δ with $|h'(0)| > |g'(0)|$ and $h + eg$ is close-to-convex for each ϵ, $|\epsilon| = 1$, then $f = h + \overline{g}$ is harmonic close-to-convex.

Theorem B: If $f = h + \overline{g}$ is locally univalent in Δ and $h + eg$ is convex for some ϵ, $|\epsilon| \leq 1$, then f is univalent close-to-convex.

A domain D is called convex in the direction ϕ ($0 \leq \phi < \pi$) if every line parallel to the line through 0 and $e^{i\phi}$ has a connected intersection with D. Such a domain is close-to-convex. The convex domains are those convex in every direction. We will also make use of the following result, which may be found in [3].

Theorem C: A function $f = h + \overline{g}$ is harmonic convex if and only if the analytic functions $h(z) - e^{i\phi}g(z)$, $0 \leq \phi < 2\pi$, are convex in the direction $\phi/2$ and f is suitably normalized.

The harmonic Koebe function $k_0 = h + \overline{g} \in S_H^u$ is defined by $h(z) - g(z) = z/(1 - z)^2$, $g(z) = zh(z)$, which leads to

$$h(z) = \frac{z - \frac{1}{2}z^2 + \frac{1}{3}z^3}{(1 - z)^2}, \quad g(z) = \frac{\frac{1}{2}z^2 + \frac{1}{3}z^3}{(1 - z)^2}.$$}

The function k_0 maps Δ onto the complex plane minus the real slit from $-1/6$ to $-\infty$. The coefficients of k_0 are $a_n = (2n + 1)(n + 1)/6$ and $b_n = (2n - 1)(n - 1)/6$. These coefficient bounds are known to be extremal for the subclass of S_H^u consisting of typically real functions (e.g., see [3]) and functions that are either starlike or convex in one direction (e.g., see [12]). It is not known if the coefficients of k_0 are extremal for all of S_H^u.

Necessary coefficient conditions were found in [3] for functions to be in C_H and K_H. We now give some sufficient condition for functions to be in these classes. But first we need the following results. See, for example, [13].
Lemma 1: If \(q(z) = z + \sum_{n=2}^{\infty} c_n z^n \) is analytic in \(\Delta \), then \(q \) maps onto a starlike domain if \(\sum_{n=2}^{\infty} |c_n| \leq 1 \) and onto a convex domains if \(\sum_{n=2}^{\infty} n^2 |c_n| \leq 1 \).

3. Main Results

Theorem 1: If \(f = h + \bar{g} \) with
\[
\sum_{n=2}^{\infty} n |a_n| + \sum_{n=1}^{\infty} n |b_n| \leq 1,
\] then \(f \in \mathcal{C}_\mathcal{H} \). The result is sharp.

Proof: In view of Theorem A, we need only prove that \(h + \epsilon g, |\epsilon| = 1 \), is close-to-convex. It suffices to show that
\[
t(z) = \frac{h + \epsilon g}{1 - \epsilon \bar{h}_1} = z + \sum_{n=2}^{\infty} \left(\frac{a_n + \epsilon b_n}{1 - \epsilon \bar{h}_1} \right) z^n \in \mathcal{C}.
\]
Since
\[
\sum_{n=2}^{\infty} \left| \frac{a_n + \epsilon b_n}{1 - \epsilon \bar{h}_1} \right| \leq \sum_{n=2}^{\infty} \frac{n(|a_n| + |b_n|)}{1 - |\epsilon h_1|} \leq 1
\]
if and only if (3) holds, \(t(z) \) maps \(\Delta \) onto a starlike domain and consequently \(t(z) \in \mathcal{C} \).

To see that the upper bound in (3) cannot be extended to \(1 + \delta, \delta > 0 \), we note that the function \(f(z) = z + \frac{1 + \delta}{n} z^n \) is not univalent in \(\Delta \).

Theorem 2: If \(f \) is locally univalent with \(\sum_{n=2}^{\infty} n^2 |a_n| \leq 1 \), then \(f \in \mathcal{C}_\mathcal{H} \).

Proof: Take \(\epsilon = 0 \) in Theorem B and apply Lemma 1.

Corollary: If \(\sum_{n=2}^{\infty} n^2 |a_n| \leq 1 \) and \(|g'(z)| \leq 1/2, z \in \Delta \), then \(f \in \mathcal{C}_\mathcal{H} \).

Proof: The function \(f \) is locally univalent if \(|h'(z)| > |g'(z)| \) for \(z \in \Delta \). Since
\[
2 \sum_{n=2}^{\infty} n |a_n| \leq \sum_{n=2}^{\infty} n^2 |a_n| \leq 1,
\]
we have \(h'(z) > 1 - \sum_{n=2}^{\infty} n |a_n| \geq 1/2 \).

We next give a sufficient coefficient condition for \(f \) to be convex harmonic.

Theorem 3: If
\[
\sum_{n=2}^{\infty} n^2 |a_n| + \sum_{n=1}^{\infty} n^2 |b_n| \leq 1,
\]
then \(f \in \mathcal{K}_\mathcal{H} \). The result is sharp.

Proof: By Theorem C, it suffices to show that \(h - e^{i\theta} g \) is convex in \(\Delta \). Set
\[
s(z) = \frac{h - e^{i\theta} g}{1 - e^{i\theta} b_1} = z + \sum_{n=2}^{\infty} \left(\frac{a_n - e^{i\theta} b_n}{1 - e^{i\theta} b_1} \right) z^n.
\]
Since
\[
\sum_{n=2}^{\infty} n^2 \left| \frac{a_n - e^{i\theta} b_n}{1 - e^{i\theta} b_1} \right| \leq \sum_{n=2}^{\infty} \frac{n^2(|a_n| + |b_n|)}{1 - |\epsilon h_1|} \leq 1
\]
if and only if (4) holds, we see from Lemma 1 that \(s(z) \in \mathcal{K} \) and consequently \(f \in \mathcal{K}_\mathcal{H} \).

The function \(f(z) = z + \frac{1 + \delta}{n} z^n, \delta > 0 \), shows that the upper bound in (4) cannot be improved.
Remark: The coefficient bound given in Theorem 3 can also be found in [5] and [14]. However, our approach in this paper is different from those given in [5] and [14].

Remark: The well-known results for univalent functions that f is convex if and only if $z f'$ is starlike does not carry over to harmonic univalent functions. See [12]. Hence, we cannot conclude from Theorem 3 that (3) is a sufficient condition for f to map Δ onto a starlike domain. Nevertheless, we believe this to be the case. See [5, 6, 14].

We now introduce a class of harmonic close-to-convex functions that are constructed from convex analytic functions.

Theorem 4: If $h(z) \in \mathcal{K}$ and $w(z)$ is a Schwartz function, then

$$f(z) = h(z) + \int_0^z w(t)h'(t)dt \in \mathcal{C}_H^n.$$

Proof: Write $g'(z) = w(z)h'(z)$. Now for each ϵ, $|\epsilon| = 1$, we observe that

$$\Re \left(\frac{h(z) - \epsilon g(z)}{h(z)} \right) = \Re \left(1 + \epsilon w(z) \right) \geq 1 - |z| > 0, z \in \Delta.$$

Consequently, $h + \epsilon g$ is close-to-convex and the result follows from Theorem A.

Remark: If we only require that w in Theorem 4 be analytic with $|w(z)| < 1$, $z \in \Delta$, then we may conclude that $f \in \mathcal{C}_H$.

Corollary: If $h \in \mathcal{K}$ and n is a positive integer, then

$$f_n(z) = \int_0^z \left(\frac{h(t)}{t} \right)^2 dt + \int_0^z t^{n-2}h^2(t)dt \in \mathcal{C}_H^n.$$

Proof: A result of Sheil-Small [10] shows that $\int_0^z (h(t)/t)^2 dt \in \mathcal{K}$ whenever $h \in \mathcal{K}$. Set $w(z) = z^n$ in Theorem 4, and the result follows.

We now give some examples from Theorem 4.

Example 1: Suffridge [15] showed for the partial sums $p_n(z)$ of $e^{1+z} = \sum_{k=0}^\infty (1 + z)^k/k!$ that

$$C_n(z) = \frac{p_n(z) - p_n(0)}{p_n(0)} = \sum_{k=1}^n \left(\frac{\sum_{i=0}^{k-1} z^i}{\sum_{i=0}^{k-1} i!} \right) \frac{1}{k+1} z^k \in \mathcal{K}.$$

Setting $w(z) = z$ in Theorem 4, we see that

$$f(z) = \sum_{k=1}^n \left(\frac{\sum_{i=0}^{k-1} z^i}{\sum_{i=0}^{k-1} i!} \right) \left(\frac{(k+1)z^k + k\bar{z}^{k+1}}{(k+1)!} \right) \in \mathcal{C}_H^n.$$

Example 2: Since $h_k(z) = z + z^k/k^2 \in \mathcal{K}$, we get from the Corollary that

$$f_{k,n}(z) = z + \frac{2}{k^2} z^k + \frac{1}{k^2(2k-1)} z^{2k-1} + \frac{2^n + 1}{k^2(n+1)} \frac{z^{2n+1}}{k^2(n+1)!} \in \mathcal{C}_H^n$$

for $k = 2, 3, \ldots$, and $n = 1, 2, \ldots$.

Example 3: Set $h(z) = z/(1 - z)$ and $w(z) = z$ in Theorem 4. Then

$$f(z) = \frac{z}{1-z} + \int_0^z \frac{t}{1-t} dt = 2\Re \left(\frac{z}{1-z} + \log(1 - \tau) \right) \in \mathcal{C}_H^n.$$

We can actually state a more general result for which Example 3 is a special case.
Theorem 5: If \(b(z) \) is analytic with \(|b(z)| < 1/|1 - z|^2 \), \(z \in \Delta \), then

\[
f(z) = \frac{z}{1 - z} + \int_0^z b(t)dt \in \mathcal{C}_H.
\]

Proof: Set \(h(z) = z/(1 - z) \) and \(g(z) = \int_0^z b(t)dt \). Then \(|h'(z)| = (1/|1 - z|^2) > |g'(z)| = |b(z)| \), so that \(f \) is locally univalent. Set \(\epsilon = 0 \) in Theorem B, and the result follows.

Corollary: If \(b(z) \) is analytic with \(|b(z)| \leq 1/4 \), \(z \in \Delta \), then

\[
\frac{z}{1 - z} + \int_0^z b(t)dt \in \mathcal{C}_H.
\]

4. Convolution Condition

The convolution of two harmonic functions \(f_1(z) = z + \sum_{n=2}^\infty a_n z^n + \sum_{n=1}^\infty b_n \overline{z}^n \) and \(f_2(z) = z + \sum_{n=2}^\infty A_n z^n + \sum_{n=1}^\infty B_n \overline{z}^n \) is defined by

\[
f_1(z) \ast f_2(z) = (f_1 \ast f_2)(z) = z + \sum_{n=2}^\infty a_n A_n z^n + \sum_{n=1}^\infty b_n B_n \overline{z}^n.
\]

In [3], it was shown for \(\phi \in \mathcal{K} \) and \(f \in \mathcal{K}_H \) that \((\phi + \overline{\phi}) \ast f \in \mathcal{C}_H \) (\(|\epsilon| \leq 1 \)). We given an example to show that \(\mathcal{K} \) cannot be replaced by \(S^*(\alpha) \), \(0 \leq \alpha < 1 \), the family of functions starlike of order \(\alpha \).

Set

\[
\phi(z) = z + \frac{1-\alpha}{n-\alpha} z^n \in S^*(\alpha), \quad h(z) = \frac{z-\sqrt{2}}{(1-z)^2}, \quad g(z) = \frac{-z^2}{(1-z)^2}.
\]

Then \(f = h + g \in \mathcal{K}_H \), see [3]. Setting \(\epsilon = 0 \) in \((\phi + \overline{\phi}) \ast f \) we obtain

\[
\phi \ast f = \phi \ast (h + g) = \phi \ast h = \left(z + \frac{1-\alpha}{n-\alpha} z^n \right) \ast \left(z + \sum_{n=2}^{n+1} \frac{n+1}{2} z^n \right)
\]

\[
= z + \frac{(1-\alpha)(n+1)}{2(n-\alpha)} z^n,
\]

which is not even univalent for \(n > 2\alpha/(1-\alpha) \).

References

Submit your manuscripts at http://www.hindawi.com