Research Article
Weak Approximation of SDEs by Discrete-Time Processes

Henryk Zähle

Faculty of Mathematics, Dortmund University of Technology, Vogelpothsweg 87, 44227 Dortmund, Germany

Correspondence should be addressed to Henryk Zähle, henryk.zaehle@math.uni-dortmund.de

Received 29 October 2007; Revised 25 January 2008; Accepted 20 February 2008

Recommended by Nikolai Leonenko

We consider the martingale problem related to the solution of an SDE on the line. It is shown that the solution of this martingale problem can be approximated by solutions of the corresponding time-discrete martingale problems under some conditions. This criterion is especially expedient for establishing the convergence of population processes to SDEs. We also show that the criterion yields a weak Euler scheme approximation of SDEs under fairly weak assumptions on the driving force of the approximating processes.

Copyright © 2008 Henryk Zähle. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that a rescaled version of the classical Galton-Watson process (GWP) with offspring variance \(\sigma^2 \) weakly converges to the unique solution of the following one-dimensional stochastic differential equation (SDE):

\[
dX_t = \sigma \sqrt{|X_t|} dW_t,
\]

where \(W \) is a one-dimensional Brownian motion (cf. [1]). One might ask whether it is possible to approximate more general SDEs, driven by a Brownian motion, by generalized GWPs. In [2] it will be shown that this is actually possible. In fact, in [2] the solution of the SDE,

\[
dX_t = \delta(t, X_t) dt + \sigma(t, X_t) \sqrt{|X_t|} dW_t,
\]

is weakly approximated by two different types of population-size-dependent GWPs (in the sense of [3–6]) with immigration, where \(\delta \) and \(\sigma \) are suitable nonnegative continuous functions...
on $\mathbb{R} \times \mathbb{R}$. Here the methods of [1] do not apply anymore (cf. Section 3). In the present article, we establish a general criterion for the weak approximation of SDEs by discrete-time processes, which is the crux of the analysis of [2].

To be exact, we focus on the following one-dimensional SDE:

$$
\text{d}X_t = b(t, X_t)\text{d}t + a(t, X_t)\text{d}W_t, \quad X_0 = x_0,
$$

where $x_0 \in \mathbb{R}$ and W is a one-dimensional Brownian motion. The coefficients a and b are continuous functions on $\mathbb{R} \times \mathbb{R}$ satisfying

$$
|a(t, x)| + |b(t, x)| \leq K (1 + |x|) \quad \forall t \in \mathbb{R}_+, \ x \in \mathbb{R},
$$

for some finite constant $K > 0$. We assume that SDE (1.3) has a weak solution. It means that there exists a triplet $(X; W; (\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}))$ where $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ is a filtered probability space with (\mathcal{F}_t) satisfying the usual conditions, $W = (W_t: \ t \geq 0)$ is an (\mathcal{F}_t)-Brownian motion, and $X = (X_t: \ t \geq 0)$ is a real-valued continuous (\mathcal{F}_t)-adapted process such that \mathbb{P}-almost surely,

$$
X_t = x_0 + \int_0^t b(r, X_r)\text{d}r + \int_0^t a(r, X_r)\text{d}W_r \quad \forall t \geq 0.
$$

Here the latter is an Itô-integral. Moreover, we require the solution to be weakly unique, which means that any two solutions coincide in law. For instance, the existence of a unique weak solution is implied by Lipschitz continuity of b in x (uniformly in t) and

$$
|a(t, x) - a(t, x')| \leq h(|x - x'|) \quad \forall t \in \mathbb{R}_+, \ x, x' \in \mathbb{R},
$$

for some strictly increasing $h: \mathbb{R}_+ \to \mathbb{R}_+$ with $\int_0^1 h^2(u)\text{d}u = \infty$. Note that (1.6) and Lipschitz continuity of b even imply the existence of a strongly unique strong solution (Yamada-Watanabe criterion [7]). But the notion of strong solutions and strong uniqueness is beyond our interest.

Our starting point is the fact that any weak solution of (1.3) is a solution of the following martingale problem and vice versa (cf. [8, Section 5.4.B], or [9, Theorem 1.27]).

Definition 1.1. A tuple $(X; (\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}))$ is said to be a solution of the (a, b, x_0)-martingale problem if $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ is a filtered probability space with (\mathcal{F}_t) satisfying the usual conditions, and $X = (X_t: \ t \geq 0)$ is a real-valued continuous (\mathcal{F}_t)-adapted process such that

$$
M_t = X_t - x_0 - \int_0^t b(r, X_r)\text{d}r
$$

provides a (continuous, mean-zero) square-integrable (\mathcal{F}_t)-martingale with compensator

$$
\langle M \rangle_t = \int_0^t a^2(r, X_r)\text{d}r.
$$

The solution is said to be unique if any two solutions coincide in law.
In view of the weak equivalence of the SDE to the martingale problem, discrete-time processes solving the discrete analogue (Definition 2.1) of the \((a, b, x_0) \)-martingale problem should approximate weakly the unique solution of SDE (1.3). Theorem 2.2 below shows that this is true under an additional assumption on the moments of the increments (condition (2.3)).

Note that the characterization of discrete or continuous population processes as solutions of martingale problems of the form (1.7)-(1.8), (2.1)-(2.2), respectively, is fairly useful and also common (see, e.g., [10–12]). Especially for real-valued discrete-time processes these characterizations are often easy to see, so that, according to the criterion, the only thing to check is condition (2.3). Also note that the conditions of the famous criterion of Stroock and Varadhan for the weak convergence of Markov chains to SDEs [13, Theorem 11.2.3] are different. In particular, in our framework we do not insist on the Markov property of the approximating processes. As the discussion at the end of Section 4). Another alternative approach to the discrete-time approximation of SDEs can be found in the seminal paper [14], see also references therein. In [14] general conditions are given, under which the convergence in distribution \((Y_\alpha, Z_\alpha) \to (Y, Z)\) in the càdlàg space implies convergence in distribution \(\int Y_\alpha dZ_\alpha \to \int YdZ\) of the corresponding stochastic integrals in the càdlàg space.

In Section 3 we will demonstrate that the criterion of Theorem 2.2 yields an easy proof of the convergence result discussed at the beginning of the Introduction. Moreover, in Section 4 we will apply our criterion to obtain a weak Euler scheme approximation of SDEs under fairly weak assumptions on the driving force of the approximating processes.

2. Main result

We will regard discrete-time processes as continuous-time càdlàg processes. For this reason we denote by \(D(\mathbb{R})\) the space of càdlàg functions from \(\mathbb{R}_+\) to \(\mathbb{R}\). We equip \(D(\mathbb{R})\) with the topology generated by the Skohorod convergence on compacts and consider it as a measurable space with respect to its Borel \(\sigma\)-algebra. Moreover, we set \(t^*_n = ne\) for every \(n \in \mathbb{N}_0\) and \(e > 0\).

For every \(a \in \mathbb{N}\) we fix some \(\epsilon_a > 0\) such that \(\epsilon_a \to 0\). For the sake of clarity, we also set \(t^*_n = t^*_n(= ne_a)\) for all \(n \in \mathbb{N}_0\). Now suppose that \(a_\alpha\) and \(b_\alpha\) are measurable functions on \(\mathbb{R}_+ \times \mathbb{R}\) such that \(||a - a_\alpha||_{\infty}\) and \(||b - b_\alpha||_{\infty}\) converge to 0 as \(\alpha \to \infty\), where \(||\cdot||_{\infty}\) is the usual supremum norm. Let \(x_\alpha \subseteq \mathbb{R}\) satisfy \(x_\alpha \to x_0\), and suppose that \(X^\alpha\) is a solution of the following \((\epsilon_\alpha, a_\alpha, b_\alpha, x_\alpha)\)-martingale problem for every \(\alpha \geq 1\). Here we write \(n_\alpha(t)\) for the largest \(n \in \mathbb{N}_0\) with \(t^*_n \leq t\).

Definition 2.1. Suppose that \(X^\alpha = (X^\alpha_t : t \geq 0)\) is a real-valued process on some probability space \((\Omega, \mathcal{F}, \mathbb{P})\) whose trajectories are constant on the intervals \([t^*_n, t^*_{n+1}])\), \(n \in \mathbb{N}_0\). Then \(X^\alpha\) is called a solution of the \((\epsilon_\alpha, a_\alpha, b_\alpha, x_\alpha)\)-martingale problem if

\[
M^\alpha_t = X^\alpha_t - x_\alpha - \sum_{i=0}^{n_\alpha(t)-1} b_\alpha(t^*_i, X^\alpha_{t^*_i}) \epsilon_\alpha
\]

(2.1)

provides a (zero-mean) square-integrable martingale (with respect to the natural filtration) with compensator

\[
\langle M^\alpha \rangle_t = \sum_{i=0}^{n_\alpha(t)-1} a_\alpha^2(t^*_i, X^\alpha_{t^*_i}) \epsilon_\alpha.
\]

(2.2)
The X^α could be defined on different probability spaces $(\Omega_\alpha, \mathcal{F}_\alpha, \mathbb{P}_\alpha)$. However, we assume without loss of generality that $\Omega_\alpha = D(\mathbb{R})$, $\mathcal{F}_\alpha = \mathcal{B}(D(\mathbb{R}))$, and X^α is the coordinate process of \mathbb{P}_α (each càdlàg process induces a corresponding law on $D(\mathbb{R})$). We further assume that there are some $q > 2$ and $\delta > 1$ such that

$$
\mathbb{E}_\alpha \left[|X^\alpha_{t_n^\alpha} - X^\alpha_{t_{n-1}^\alpha}|^q \right] \leq C_T (1 + \mathbb{E}_\alpha \left[|X^\alpha_{t_{n-1}^\alpha}|^q \right]) \epsilon_\alpha^\delta
$$

(2.3)

for every $\alpha \geq 1$ and $n \in \mathbb{N}$ with $t_n^\alpha \leq T$, where $C_T > 0$ is some finite constant that may depend on T. (By an induction on n, (2.3) implies immediately that $\mathbb{E}_\alpha[|X^\alpha|^q] < \infty$ for all α and n. Lemma 5.1 will provide an even stronger statement.) The following theorem shows that X^α converges in distribution to the unique solution of (1.3).

Theorem 2.2. Suppose SDE (1.3) subject to (1.4) has a unique weak solution, and denote by \mathbb{P} the corresponding law on $D(\mathbb{R})$. Moreover, let \mathbb{P}_α be the law (on $D(\mathbb{R})$) of X^α subject to (2.1)–(2.3). Then $\mathbb{P}_\alpha \Rightarrow \mathbb{P}$ as $\alpha \to \infty$.

Here, \Rightarrow symbolizes weak convergence. The proof of Theorem 2.2 will be carried out in Section 5. The finiteness of the qth moments for some $q > 2$ is not always necessary, it is true. From time to time the finiteness of the second moments is sufficient. However, for a general statement involving convenient moment conditions as (2.3), a weakening of $q > 2$ to $q = 2$ is hardly possible. The assumption $q > 2$ is common in the theory of functional, time-discrete approximations of SDEs, SDDEs, and SPDEs (see, e.g., [12, 15]).

3. Example 1: convergence of rescaled GWP to (1.1)

As a first application of Theorem 2.2, we show that a rescaled GWP weakly converges to Feller’s branching diffusion [16], that is, to the solution of SDE (1.1). Lindvall [1] showed this approximation via the convergence of the finite-dimensional distributions, for which the shape of the Laplace transforms of the transition probabilities is essential. Here, we will exploit the martingale property of the Galton-Watson process with offspring variance σ^2. The latter is an \mathbb{N}_0-valued Markov process $Z = (Z_n : n \in \mathbb{N}_0)$ that can be defined recursively as follows. Choose an initial state $Z_0 \in \mathbb{N}$ and set $Z_n = \sum_{i=1}^{Z_{n-1}} N_{n-1,i}$ for all $n \geq 1$, where $\{N_{n,i} : n \geq 0, i \geq 1\}$ is a family of i.i.d. \mathbb{N}_0-valued random variables with mean 1 and variance σ^2. In addition, we require that the fourth moment of $N_{1,i}$ is finite. Thereby Z_n has a finite fourth moment for every $n \in \mathbb{N}_0$. Actually, in [1] the finiteness of the fourth moments was not required. On the other hand, the methods used there break down when considering a population-size-dependent branching intensity or an additional general immigration into the system. In contrast, the procedure below still works in those cases (cf. [2]).

Setting $Z^\epsilon_{t_\alpha} = \epsilon Z_{t_\alpha}$ we obtain a rescaled version, Z^ϵ, of Z. Recall $t_\alpha^\epsilon = n\epsilon$, hence Z^ϵ is a process having $\epsilon \mathbb{N}_0 = \{0, \epsilon, 2\epsilon, \ldots\}$ as both its index set and its state space. Now pick $(\epsilon_\alpha) \subset \mathbb{R}_+$ such that $\epsilon_\alpha \to 0$, and recall our convention $t_\alpha^\epsilon = t_\alpha^\epsilon$, and that $\lfloor t \rfloor_\epsilon$ denotes the largest element s of $\epsilon \mathbb{N}_0$ with $s \leq t$. Regard the process $Z^\epsilon_{t_\alpha}$ as continuous-time process, $X^\epsilon_{t_\alpha}$ by setting $X^\epsilon_{t_\alpha} = Z^\epsilon_{\lfloor t \rfloor_\epsilon}$, and suppose that $X^\epsilon_{t_\alpha} = [x_0]_{\epsilon_\alpha}$. The latter requires that Z_0 actually depends on α. The domain of X^ϵ is denoted by $(\Omega_\epsilon, \mathcal{F}_\epsilon, \mathbb{P}_\epsilon)$. It is easy to see that M^α defined in (2.1) provides a (zero-mean) square-integrable martingale. Moreover, the compensator of M^α is given by
Lemma 3.1. Assume that \(F \) is the natural filtration induced by \(X^a \). Hence, \(X^a \) solves the \((\epsilon_{a,i}, a, b, x_{\alpha})\)-martingale problem of Definition 2.1 with \(a(t,x) = \sqrt{|x|}, b \equiv 0 \) and \(x_{\alpha} = |x_{0\alpha}| \). It remains to show \(\sigma^2 \).

Proof. By the finiteness of the fourth moments the law of total expectation yields

\[
\mathbb{E}[\left(\sum_{i=1}^{n} \xi_{i} \right)^{4}] = \sum_{n \in \mathbb{N}} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \sum_{i_{3}=1}^{n} \sum_{i_{4}=1}^{n} \mathbb{E}[\xi_{i_{1}} \xi_{i_{2}} \xi_{i_{3}} \xi_{i_{4}}] \mathbb{P}[\nu = n].
\]

(3.3)

Since the \(\xi_{i} \) are independent and centered, the summand on the right-hand side might differ from 0 only if either \(i_{1} = i_{2} = i_{3} = i_{4} \), or \(i_{1} = i_{2} \) and \(i_{3} = i_{4} \neq i_{1}, i_{2} \), or \(i_{1} = i_{3} \) and \(i_{2} = i_{4} \neq i_{1}, i_{2} \), or \(i_{1} = i_{4} \) and \(i_{2} = i_{3} \neq i_{1}, i_{2} \). Hence,

\[
\mathbb{E}[\left(\sum_{i=1}^{n} \xi_{i} \right)^{4}] \leq \sum_{n \in \mathbb{N}} \left(n + 3n(n - 1) \right) \sup_{i,j \in \mathbb{N}} \mathbb{E}[\xi_{i}^{2} \xi_{j}^{2}] \mathbb{P}[\nu = n] \leq 4 \sup_{i,j \in \mathbb{N}} \mathbb{E}[\xi_{i}^{2} \xi_{j}^{2}] \mathbb{E}[\nu^{2}].
\]

(3.4)

This yields the claim of the lemma with \(C = 4 \sup_{i,j \in \mathbb{N}} \mathbb{E}[\xi_{i}^{2} \xi_{j}^{2}] \).

With help of Lemma 3.1 we obtain

\[
\mathbb{E}_{a} \left[|X_{t_{n}}^{a} - X_{t_{n+1}}^{a} |^{4} \right] = \mathbb{E}_{a} \left[(e_{a}X_{t_{n-1}}^{a} - e_{a}N_{t_{n-1} \uparrow} - e_{a})^{4} \right]
\]

\[
= \mathbb{E}_{a} \left[(e_{a}X_{t_{n-1}}^{a} - e_{a}N_{t_{n-1} \uparrow} - 1)^{4} \right] e_{a}^{4}
\]

\[
\leq C \mathbb{E}_{a} \left[(e_{a}X_{t_{n-1}}^{a})^{2} \right] e_{a}^{4}
\]

\[
\leq C\left(1 + \mathbb{E}_{a} \left[(X_{t_{n-1}}^{a})^{4} \right] \right) e_{a}^{2}
\]

\[
\mathbb{E}_{a} \left[(X_{t_{n+1}}^{a})^{4} \right] = \mathbb{E}_{a} \left[(\epsilon_{a}X_{t_{n}}^{a})^{4} \right] e_{a}^{4}
\]

\[
\leq C\left(1 + \mathbb{E}_{a} \left[(X_{t_{n}}^{a})^{4} \right] \right) e_{a}^{2}
\]
for some suitable constant $C > 0$. This shows that (2.3) holds too. Hence, the assumptions of Theorem 2.2 are fulfilled, and the theorem implies that X^α converges in distribution to the unique solution of (1.1).

4. Example 2: weak Euler scheme approximation of (1.3)

As a second application of Theorem 2.2, we establish a weak Euler scheme approximation of SDE (1.3). Our assumptions are partially weaker than the assumptions of classical results on weak functional Euler scheme approximations. A standard reference for Euler schemes is the monograph [18]; see also references therein. As before we suppose that a and b are continuous functions on $\mathbb{R}_+ \times \mathbb{R}$ satisfying (1.4), and that SDE (1.3) possesses a unique weak solution. Now let $\epsilon > 0$, recall the notation introduced in Section 2, and consider the following stochastic difference equation (weak Euler scheme):

\[X_{t_n}^\epsilon - X_{t_{n-1}}^\epsilon = b(t_{n-1}^\epsilon, X_{t_{n-1}}^\epsilon)\epsilon + a(t_{n-1}^\epsilon, X_{t_{n-1}}^\epsilon)V_{t_n}^\epsilon, \quad X_0^\epsilon = x_0. \tag{4.1} \]

Here, (x_ϵ) is a sequence in \mathbb{R} satisfying $x_\epsilon \to x_0$ as $\epsilon \to 0$, and $V_\epsilon = \{V_{t_n}^\epsilon : n \in \mathbb{N}\}$ is a family of independent centered random variables with variance ϵ and $\mathbb{E}[V_{t_n}^\epsilon]^2 \leq Ce^{n/2}$ for all $n \in \mathbb{N}$, $\epsilon \in (0, 1]$, some $q > 2$, and some finite constant $C > 0$, where $(\Omega_\epsilon, \mathcal{F}_\epsilon, \mathbb{P}_\epsilon)$ denotes the domain of V_ϵ. For instance, one may set $V_{t_n}^\epsilon = \sqrt{\epsilon}b_n$ where $(b_n : n \in \mathbb{N})$ is a family of independent centered random variables with variance 1 and the qth moment being bounded uniformly in n. Note that we do not require that the random variables $(V_{t_n}^\epsilon : n \in \mathbb{N})$ are identically distributed. Below we will see that the independence is necessary neither.

By virtue of (1.4), $X_{t_n}^\epsilon$ has a finite qth moment if $X_{t_{n-1}}^\epsilon$ has. It follows by induction that the solution $X_\epsilon = (X_{t_n}^\epsilon : n \in \mathbb{N}_0)$ of (4.1) is q-integrable, and hence square integrable. Equation (4.1) is obviously equivalent to the stochastic sum equation

\[X_{t_n}^\epsilon = x_0 + \sum_{i=0}^{n-1} b(t_i^\epsilon, X_{t_i}^\epsilon)\epsilon + \sum_{i=0}^{n-1} a(t_i^\epsilon, X_{t_i}^\epsilon)V_{i+1}^\epsilon. \tag{4.2} \]

Suppose that (ϵ_n) is an arbitrary sequence with $\epsilon_n \in (0, 1]$ and $\epsilon_n \to 0$, set $x_\epsilon = x_{\epsilon_n}$ and recall our convention $E_\alpha = E_{\epsilon_n}, X^\alpha = X^{\epsilon_n}, t_n^\alpha = t_n^{\epsilon_n}$. Then it is easy to see that M^α defined in (2.1) provides a (mean-zero) square-integrable $(\mathcal{F}_{t_n}^\alpha)$-martingale. Moreover, $M_{t_n}^\alpha$ coincides with the second sum on the right-hand side of (4.2). Therefore, we also obtain

\[\langle M^\alpha \rangle_{t_n} = \sum_{i=1}^{n} E_\alpha \left[(a(t_i^{\alpha-1}, X_{t_i}^{\alpha})V_{t_i}^{\alpha})^2 \mid \mathcal{F}_{t_{i-1}}^{\alpha} \right] \]

\[= \sum_{i=0}^{n-1} a^2(t_i^\alpha, X_{t_i}^\alpha)E_\alpha \left[(V_{i+1}^{\alpha})^2 \right] \]

\[= \sum_{i=0}^{n-1} a^2(t_i^\alpha, X_{t_i}^\alpha)\epsilon_\alpha \tag{4.3} \]
which shows that \(X^\alpha \) solves the \((\varepsilon_\alpha, a, b, x_\alpha)\)-martingale problem of Definition 2.1. For an application of Theorem 2.2 it thus remains to show (2.3). But (2.3) follows from

\[
E_\alpha[|X^\alpha_{t_{n-1}} - X^\alpha_{t_n}|^q] \\
\leq 2^{q-1}(E_\alpha[|b(t_{n-1}, X^\alpha_{t_{n-1}})\varepsilon_\alpha|^q] + E_\alpha[|a(t_{n-1}, X^\alpha_{t_{n-1}})|^q|E_\alpha[|V^\epsilon_{t_n}|^q]]) \\
\leq 2^{q-1}(K2^{q-1}(1 + E_\alpha[|X^\alpha_{t_{n-1}}|^q]|\epsilon_\alpha|^q + K2^{q-1}(1 + E_\alpha[|X^\alpha_{t_{n-1}}|^q])C\epsilon_\alpha^{q/2})
\]

for which we used (4.1), the independence of \(X^\alpha_{t_{n-1}} \) of \(V^\epsilon_{t_n} \), (1.4), and \(E_\alpha[|V^\epsilon_{t_n}|^q] \leq C\epsilon_\alpha^{q/2} \). Hence, Theorem 2.2 ensures that \(X^\alpha \) converges in distribution to the unique solution of SDE (1.3).

As mentioned above, the independence of the random variables \(\{V^\epsilon_{t_n} : n \in \mathbb{N}\} \) is not necessary. The independence was used for (4.3), (4.4), and the martingale property of \(\nabla^\alpha \). But these relations may be valid even if the \(V^\epsilon_{t_n} \) are not independent. For instance, let \(\{\xi_n(i) : n, i \in \mathbb{N}\} \) be an array of independent centered random variables with variance 1 and \(q \)th moments being bounded above by some \(C > 0 \) uniformly in \(n, i \), for some \(q > 2 \). Then the martingale property of \(M^\alpha \) and the main statements of (4.3) and (4.4) remain true for \(V^\epsilon_{t_n} = \sqrt{\epsilon_\alpha}1(1) \) and \(V^\epsilon_{t_n} = \sqrt{\epsilon_\alpha}1(f_n(V^\epsilon_{t_1}, \ldots, V^\epsilon_{t_{n-1}})) \), \(n \geq 2 \), where \(f_n \) is any measurable mapping from \(\mathbb{R}^{n-1} \) to \(\mathbb{N} \). This follows from the following relations which can be shown easily with help of the functional representation theorem for conditional expectations respectively by conditioning

\[
E_\alpha[V^\epsilon_{t_n} | \mathcal{F}^\epsilon_{t_{n-1}}] = 0, \quad E_\alpha[(V^\epsilon_{t_n})^2 | \mathcal{F}^\epsilon_{t_{n-1}}] = \varepsilon_\alpha, \quad 1 \leq i \leq n-1, \\
E_\alpha[|a(t_{n-1}, X^\alpha_{t_{n-1}})|^q] \leq C\epsilon_\alpha^{q/2}.
\]

If the \(\xi_n(i) \) are not identically distributed, then the \(V^\epsilon_{t_n} \) are typically not independent. In particular, the approximating process \(X^\epsilon \) may be non-Markovian.

5. Proof of Theorem 2.2

Theorem 2.2 is an immediate consequence of Propositions 5.2, 5.5, and the weak equivalence of the martingale problem to the SDE. For the proofs of the two propositions we note that there exist \(K' > 0 \) and \(a_0 \geq 1 \) such that for all \(a \geq a_0, t \geq 0, \) and \(x \in \mathbb{R} \),

\[
|a(t, x)| + |b(t, x)| \leq K'(1 + |x|).
\]

This is true since we assumed (1.4) and uniform convergence of \(a_\alpha \) and \(b_\alpha \) to the coefficients \(a \) and \(b \), respectively. Throughout this section we will frequently use the well-known inequality \(|\sum_{i=1}^m y_i|^p \leq m^{p-1}\sum_{i=1}^m |y_i|^p \) for all \(m \in \mathbb{N}, p \geq 1 \) and \(y_1, \ldots, y_m \in \mathbb{R} \). As a first consequence of (5.1) we obtain Lemma 5.1. For every \(x \in \mathbb{R}_+ \), we write \(x_\epsilon \) for the largest element of \(\epsilon \mathbb{N}_0 = \{0, \varepsilon, 2\varepsilon, \ldots\} \) which is smaller than or equal to \(x \). Moreover, we assume without loss of generality that \(\varepsilon_\alpha \leq 1 \).

Lemma 5.1. For \(q > 2 \) and \(\delta > 1 \) satisfying (2.3) and every \(T > 0 \),

\[
\sup_{a \geq a_0} E_\alpha \left[\sup_{t \leq T} |X^\epsilon_t|^q \right] < \infty.
\]
Proof. First of all, note that for the proof it actually suffices to require $q \geq 2$ and $\delta \geq 1$. Set $S = \sup_{\alpha \geq a_0(t)} |x_{\alpha}|^q$ and $S^q = \mathbb{E}_t [\max_{1 \leq i \leq n(t)} |M_{\alpha_i} - M_{\alpha_{i-1}}|^q]$. Using Proposition A.1 in the appendix and (5.1) we obtain, for all $t > 0$ and $\alpha \geq a_0,$

$$\mathbb{E}_t [\sup_{i \leq n(t)} |X_{\alpha_i}|^q]$$

\[
\leq 3^{q-1} \left\{ \mathbb{E}_t \left[\sup_{i \leq n(t)} |M_{\alpha_i}^q| \right] + S + \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} b_\alpha(t^i, X_{\alpha_i}) \right)^{q/2} \right] \right\}
\]

\[
\leq 3^{q-1} C_q \left\{ \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} a_\alpha^2(t^i, X_{\alpha_i}) \right)^{q/2} \right] + S^q + S + \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} b_\alpha(t^i, X_{\alpha_i}) \right)^{q/2} \right] \right\}
\]

\[
\leq k_q \left\{ \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} (K' (1 + |X_{\alpha_i}^q|)^2 \epsilon_{\alpha_i}) \right)^{q/2} \right] + S^q + S + \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} K' (1 + |X_{\alpha_i}^q|) \epsilon_{\alpha_i} \right)^{q/2} \right] \right\},
\]

(5.3)

where C_q is independent of t and α, and $k_q = 3^{q-1} C_q$. By Hölder’s inequality we get

$$\mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} (K' (1 + |X_{\alpha_i}^q|) \epsilon_{\alpha_i}) \right)^{q/2} \right]$$

\[
\leq \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} (2 K^2 (1 + |X_{\alpha_i}^q|)^2 \epsilon_{\alpha_i}) \epsilon_{\alpha_i} \right) \left(\sum_{i=0}^{n(t)-1} \epsilon_{\alpha_i}^{(q/2)/(q/2-1)} \left(\epsilon_{\epsilon_1}^{(q/2-1)/q/2} \left(\epsilon_{\epsilon_1} \epsilon_{\alpha_i} \right) \right) \right) \right]
\]

(5.4)

\[
\leq \mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} 2^{q/2-1} (2 K^2)^{(q/2)} (1 + |X_{\alpha_i}^q|) \right)^n \alpha_i (t^{q/2-1}) \epsilon_{\alpha_i}^{q/2} \right]
\]

\[
\leq c_q t^{q/2} + c_q t^{q/2-1} \sum_{i=0}^{n(t)-1} \mathbb{E}_t \left[\sup_{j \neq i} |X_{\alpha_i}|^q \right] \epsilon_{\alpha_i}
\]

where $c_q = 2^{q/2-1} (2 K^2)^{q/2}$. Analogously, with $\mathcal{E}_{\alpha} = 2^{q-1} K^{q1}$,

$$\mathbb{E}_t \left[\left(\sum_{i=0}^{n(t)-1} K' (1 + |X_{\alpha_i}^q|) \epsilon_{\alpha_i} \right)^q \right] \leq c_q t^q + c_q t^{q-1} \sum_{i=0}^{n(t)-1} \mathbb{E}_t \left[\sup_{j \neq i} |X_{\alpha_i}|^q \right] \epsilon_{\alpha_i}.$$

(5.5)

Moreover, by (2.3) and (5.1) we obtain, for all $t \leq T$ and $\alpha \geq a_0,$

$$S_{\alpha}^q \leq \sum_{i=1}^{n(t)} \mathbb{E}_t \left[|M_{\alpha_i}^q - M_{\alpha_{i-1}}^q| \right]$$

\[
\leq 2^{q-1} \sum_{i=1}^{n(t)} \mathbb{E}_t \left[|X_{\alpha_i}^q - X_{\alpha_{i-1}}^q| \epsilon_{\alpha_i} + |b_\alpha(t^i, X_{\alpha_i})| \epsilon_{\alpha_i} \right] + \mathbb{E}_t \left[K' (1 + |X_{\alpha_i}^q|) \epsilon_{\alpha_i} \right]
\]

\[
\leq 2^{q-1} \sum_{i=1}^{n(t)-1} \{ C_T (1 + \mathbb{E}_t \left[|X_{\alpha_i}^q| \right]) \epsilon_{\alpha_i} + \mathbb{E}_t \left[K' (1 + |X_{\alpha_i}^q|) \epsilon_{\alpha_i} \right] \}
\]

\[
\leq c_q t^q + c_q T \sum_{i=0}^{n(t)-1} \mathbb{E}_t \left[\sup_{j \neq i} |X_{\alpha_i}|^q \right] \epsilon_{\alpha_i},
\]

(5.6)
where \(c_{q,\tau} = 2^{t-1}(C_T + K') \). By all account we have, for all \(t \leq T \) and \(\alpha \geq \alpha_0 \),

\[
E_\alpha \left[\sup_{i \leq n_\alpha(t)} |X_{t_i}^\alpha|^q \right] \leq k_q \left\{ S + (c_q + \overline{c}_q + c_{q,\tau}) (T^{t-1} \lor 1) \left(1 + \epsilon_\alpha \sum_{i=0}^{n_\alpha(t)-1} E_\alpha \left[\sup_{j \leq i} |X_{t_j}^\alpha|^q \right] \right) \right\}
\]

\[
\leq \left(k_q S + C_{q,\tau} \right) + C_{q,\tau} \epsilon_\alpha \sum_{i=0}^{n_\alpha(t)-1} E_\alpha \left[\sup_{j \leq i} |X_{t_j}^\alpha|^q \right],
\]

where \(C_{q,\tau} = k_q (c_q + \overline{c}_q + c_{q,\tau}) (T^{t-1} \lor 1) \). An application of Lemma A.2 yields

\[
E_\alpha \left[\sup_{s \leq t} |X_{t_i}^\alpha|^q \right] = E_\alpha \left[\sup_{i \leq n_\alpha(t)} |X_{t_i}^\alpha|^q \right] \leq \left(k_q S + C_{q,\tau} \right) (1 + C_{q,\tau} \epsilon_\alpha)^{n_\alpha(t)} + (C_{q,\tau} \epsilon_\alpha)^{n_\alpha(t)} S,
\]

where we emphasize that the constants \(k_q, S, \) and \(C_{q,\tau} \) are independent of \(t \leq T \) and \(\alpha \geq \alpha_0 \). This proves Lemma 5.1 since \(\limsup_{\alpha \to \infty} (1 + C_{q,\tau} \epsilon_\alpha)^{n_\alpha(t)} \) is bounded by \(\exp(tC_{q,\tau}) \) (note that \(n_\alpha(t) = \lfloor t/\epsilon_\alpha \rfloor \leq t/\epsilon_\alpha \)). \(\square \)

Proposition 5.2. If \((P_\alpha) \) is tight, then the coordinate process of any weak limit point, that has no mass outside of \(C(\mathbb{R}) \), is a solution of the \((a,b,x_0)\)-martingale problem of Definition 1.1.

Proof. We consider a weakly convergent subsequence whose limit, \(P \), has no mass outside of \(C(\mathbb{R}) \). By an abuse of notation, we denote this subsequence by \((P_\alpha) \) either. We further write \(X \) for the coordinate process of \(P \). Since \(X \) is \(P \)-almost surely continuous, we know [19, Theorem 3.7.8] that

\[
P_\alpha \circ \pi_{t_{i_1},t_{i_k}}^{-1} \rightarrow P \circ \pi_{t_{i_1},t_{i_k}}^{-1}
\]

for all \(t_{i_1}, \ldots, t_{i_k} \in \mathbb{R}_+ \), where \(\pi_{t_{i_1},t_{i_k}} : D(\mathbb{R}) \to \mathbb{R}^k \) is the usual coordinate projection. In the remainder of the proof we will show in three steps that \(M \) defined in (1.7) is square-integrable, provides an \((\mathcal{F}_t^X)\)-martingale and has \((M)\) defined in (1.8) as compensator. Here, \((\mathcal{F}_t^X)\) denotes the natural augmentation of the filtration \((\mathcal{F}_t^X)\) induced by \(X \).

Step 1. With help of Fatou’s lemma as well as (5.9) and (5.2) we obtain, for every \(T > 0 \),

\[
\sup_{t \leq T} E \left[|X_t^\alpha|^q \right] \leq \sup \lim \inf_{N \to \infty} \lim_{\alpha \to \infty} E_\alpha \left[|X_t^\alpha|^q \wedge N \right] \leq \sup \sup_{t \leq T} E_\alpha \left[|X_t^\alpha|^q \right] < \infty.
\]

Taking (1.4) into account we conclude that \(M \) defined in (1.7) is square-integrable.

Step 2. We next show that \(M \) is an \((\mathcal{F}_t^X)\)-martingale. It suffices to show that \(M \) is an \((\mathcal{F}_t^X)\)-martingale; see [20, page 75]. The latter is true if and only if

\[
E \left[X_{t+s} - X_t - \int_t^{t+s} b(r,X_r) \, dr \right] \prod_{i=1}^l h_i (X_{t_i}) = 0
\]

holds for all \(0 \leq t_1 < \cdots < t_l \leq t, s \geq 0, l \geq 1 \) and bounded \(h_1, \ldots, h_l \in C(\mathbb{R}) \) (do not confuse \(t_i \) and \(t_i^\alpha \)). Since \(X^\alpha \) solves the \((\epsilon_\alpha,a_\alpha,b_\alpha,x_\alpha)\)-martingale problem, we have

\[
E_\alpha \left[\left(X_{t+s}^\alpha - X_t^\alpha - \sum_{i=n_\alpha(t)}^{n_\alpha(t+s)-1} b_\alpha (t_i^\alpha, X_{t_i}^\alpha) \epsilon_\alpha \right) \prod_{i=1}^l h_i (X_{t_i}^\alpha) \right] = 0.
\]
We are going to verify (5.11) by showing that the left-hand side of (5.12) converges to the left-hand side of (5.11) as \(a \to \infty \). We begin with proving

\[
\lim_{a \to \infty} \mathbb{E}_a \left[X_u^a \prod_{i=1}^l h_i(X_{x_i}^a) \right] = \mathbb{E} \left[X_u \prod_{i=1}^l h_i(X_{x_i}) \right]
\]
(5.13)

for every \(u \geq 0 \), which together with (5.19) below implies the required convergence. To this end we set \(x^{(N)} = (-N \lor x) \land N \) for all \(x \in \mathbb{R} \) and \(N > 0 \). The right-hand side of

\[
\left| \mathbb{E}_a \left[X_u^{a,N} \prod_{i=1}^l h_i(X_{x_i}^{a,N}) \right] - \mathbb{E}_a \left[X_u^a \prod_{i=1}^l h_i(X_{x_i}^a) \right] \right| \leq \mathbb{E}_a \left[\| X_u^{a,N} - X_u^a \|_\infty \prod_{i=1}^l \| h_i \|_\infty \right]
\]
(5.14)

can be estimated, for every \(T \geq u \), by

\[
\sup_{r \leq T} \sup_{a \geq a_0} \mathbb{E}_a \left[\| X_r^a \|_1 1_{|X_r^a| > N} \prod_{i=1}^l \| h_i \|_\infty \right]
\]
(5.15)

which tends to 0 as \(N \to \infty \) since \(\{ X_r^a \, : \, r \leq T, \ a' \geq 1 \} \) is uniformly integrable by (5.2). Therefore, we have

\[
\lim_{N \to \infty} \mathbb{E}_a \left[X_u^{a,N} \prod_{i=1}^l h_i(X_{x_i}^{a,N}) \right] = \mathbb{E}_a \left[X_u^a \prod_{i=1}^l h_i(X_{x_i}^a) \right]
\]
uniformly in \(a \geq a_0 \)
(5.16)

(and uniformly in \(u \leq T \), for every \(T > 0 \)). By (5.9) we further obtain for every \(N > 0 \),

\[
\lim_{a \to \infty} \mathbb{E}_a \left[X_u^{a,N} \prod_{i=1}^l h_i(X_{x_i}^{a,N}) \right] = \mathbb{E} \left[X_u^{(N)} \prod_{i=1}^l h_i(X_{x_i}) \right]
\]
(5.17)

since the mapping \((x_1, \ldots, x_{l+1}) \mapsto x^{(N)}_{l+1} \prod_{i=1}^l h_i(x_i)\) from \(\mathbb{R}^{l+1} \) to \(\mathbb{R} \) is bounded and continuous. This is the reason why we introduced the truncation \(x^{(N)} \). By virtue of (5.10), an application of the dominated convergence theorem gives

\[
\lim_{N \to \infty} \mathbb{E} \left[X_u^{(N)} \prod_{i=1}^l h_i(X_{x_i}) \right] = \mathbb{E} \left[X_u \prod_{i=1}^l h_i(X_{x_i}) \right]
\]
(5.18)

which along with (5.16) and (5.17) implies (5.13). It remains to show

\[
\lim_{a \to \infty} \mathbb{E}_a \left[\sum_{i=n_a(t)}^{n_a(t+s)-1} b_a(t_s, X_{x_i}^a) e_a \prod_{i=1}^l h_i(X_{x_i}^a) \right] = \mathbb{E} \left[\int_t^{t+s} b(r, X_r) dr \prod_{i=1}^l h_i(X_{x_i}) \right].
\]
(5.19)

Taking (5.1) and \((n_a(t+s) - n_a(t)) e_a \leq s + e_a\) into account we obtain, analogously to (5.16) and (5.18),

\[
\lim_{N \to \infty} \mathbb{E}_a \left[\sum_{i=n_a(t)}^{n_a(t+s)-1} b_a(t_s, X_{x_i}^{a,N}) e_a \prod_{i=1}^l h_i(X_{x_i}^{a,N}) \right] = \mathbb{E}_a \left[\sum_{i=n_a(t)}^{n_a(t+s)-1} b_a(t_s, X_{x_i}^a) e_a \prod_{i=1}^l h_i(X_{x_i}^a) \right]
\]
uniformly in \(a \geq a_0 \),
(5.20)
By the uniform convergence of \(b_\alpha \) to \(b \) and \((n_\alpha(t + s) - n_\alpha(t))\epsilon_\alpha \leq s + \epsilon_\alpha\), we also have

\[
\mathbb{E}_\alpha \left[\sum_{i=n_\alpha(t)}^{n_\alpha(t+\epsilon_\alpha)-1} b_\alpha(t_i^\alpha, X_i^{\alpha,n}(N)) \epsilon_\alpha \prod_{i=1}^{l} h_i(X_i) \right] = \mathbb{E}_\alpha \left[\sum_{i=n_\alpha(t)}^{n_\alpha(t+\epsilon_\alpha)-1} b(t_i^\alpha, X_i^{\alpha,n}(N)) \epsilon_\alpha \prod_{i=1}^{l} h_i(X_i) \right] + o_\alpha(1).
\]

(5.22)

Moreover, we have

\[
\mathbb{E}_\alpha \left[\sum_{i=n_\alpha(t)}^{n_\alpha(t+\epsilon_\alpha)-1} b(t_i^\alpha, X_i^{\alpha,n}(N)) \epsilon_\alpha \prod_{i=1}^{l} h_i(X_i) \right] = \mathbb{E}_\alpha \left[\int_t^{t+s} b(r, X_r^{\alpha,n}(N)) dr \prod_{i=1}^{l} h_i(X_i) \right] + o_\alpha(1)
\]

(5.23)

which is a consequence of the dominated convergence theorem and

\[
\left| \sum_{i=n_\alpha(t)}^{n_\alpha(t+\epsilon_\alpha)-1} b(t_i^\alpha, X_i^{\alpha,n}(N)) \epsilon_\alpha - \int_t^{t+s} b(r, X_r^{\alpha,n}(N)) dr \right| \\
\leq \int_{|r|_\alpha}^{\epsilon_\alpha} \left| b(|r|_\alpha, X_r^{\alpha,n}(N)) - b(r, X_r^{\alpha,n}(N)) \right| dr + o_\alpha(1)
\]

(5.24)

together with the fact that \(b \) is bounded and uniformly continuous on \([0,t + s] \times [-N,N]\). Finally, we get by (5.9) and the dominated convergence theorem and (5.2)

\[
\lim_{d \to \infty} \mathbb{E}_\alpha \left[\int_t^{t+s} b(r, X_r^{\alpha,n}(N)) dr \prod_{i=1}^{l} h_i(X_i) \right] = \int_t^{t+s} \lim_{d \to \infty} \mathbb{E}_\alpha \left[b(r, X_r^{\alpha,n}(N)) \prod_{i=1}^{l} h_i(X_i) \right] dr \\
= \int_t^{t+s} \mathbb{E} \left[b(r, X_r^{\alpha,n}(N)) \prod_{i=1}^{l} h_i(X_i) \right] dr \\
= E \left[\int_t^{t+s} b(r, X_r^{\alpha,n}(N)) dr \prod_{i=1}^{l} h_i(X_i) \right]
\]

(5.25)

which along with (5.22) and (5.23) implies

\[
\lim_{d \to \infty} \mathbb{E}_\alpha \left[\sum_{i=n_\alpha(t)}^{n_\alpha(t+\epsilon_\alpha)-1} b_\alpha(t_i^\alpha, X_i^{\alpha,n}(N)) \epsilon_\alpha \prod_{i=1}^{l} h_i(X_i) \right] = \mathbb{E} \left[\int_t^{t+s} b(r, X_r^{\alpha,n}(N)) dr \prod_{i=1}^{l} h_i(X_i) \right].
\]

(5.26)

This, (5.20), and (5.21) ensure (5.19).
Step 3. It remains to show (1.8). By the uniqueness of the Doob-Meyer decomposition, M has the required compensator if and only if
\[
\mathbb{E} \left[\left(M^2_{t+s} - M^2_t - \int_t^{t+s} a^2(r, X_r)dr \right) \prod_{i=1}^l h_i(X_i) \right] = 0
\] (5.27)
holds for all $0 \leq t_1 < \cdots < t_l \leq t, s \geq 0, l \geq 1$ and bounded $h_1, \ldots, h_l \in C(\mathbb{R})$. Now, the discrete analogue of (5.27) for \mathbb{E}_a, a, and X^a holds. Proceeding similarly to the proof of (5.11) one can show that the left-hand side of this equation converges to the left-hand side of (5.27) as $\alpha \to \infty$. Therefore, we obtain (5.27). For the sake of brevity we omit the details. It should be mentioned, however, that we now need uniform integrability of $\{(X^a)^2 : r \leq t + s, \alpha \geq 1\}$. This is why we established (5.2) for q being strictly larger than 2.

The assumptions of Proposition 5.2 can be checked with help of the following two lemmas, where Q_a and Q refer to any laws on $D(\mathbb{R})$, and Y^a and Y are the respective coordinate processes. By an abuse of notation, we denote the corresponding expectations by Q_a and Q either. The first lemma follows from [19, Theorem 3.8.8] and [19, Theorem 3.8.6(b)\Rightarrow(a)] along with Prohorov's theorem. Lemma 5.4 is more or less standard and can be proved with help of the continuity criterion 3.10.3 in [19]; we omit the details.

Lemma 5.3. Assume that (Y^a_t) is tight in \mathbb{R} for every rational $t \geq 0$. Let $m > 0$, $\gamma > 1$, and assume for every $T > 0$ that there is some finite constant $C_T > 0$ such that for all $\alpha \geq 1$ and $t, h \geq 0$ with $0 \leq t - h$ and $t + h \leq T$,
\[
\mathbb{Q}_a \left[|Y^a_t - Y^a_{t-h}|^m/2 \right] \leq C_T h^T. \tag{5.28}
\]
Then (Q_a) is tight.

Lemma 5.4. Let $m > 0$, $\gamma > 1$, and assume for every $T > 0$ that there is some finite constant $C_T > 0$ such that for all $\alpha \geq 1$ and $0 \leq t' \leq t'' < T$,
\[
\limsup_{\alpha \to \infty} Q_a \left[|Y^a_t - Y^a_{t''}|^m \right] \leq C_T (t'' - t')^T. \tag{5.29}
\]
Then if $Q_a \Rightarrow Q$, the limit Q has no mass outside of $C(\mathbb{R})$.

Proposition 5.5. (P_a) is tight and each limit point has no mass outside of $C(\mathbb{R})$.

Proof. Let $q > 2$ and $\delta > 1$ satisfy (2.3). Using techniques as in the proof of Lemma 5.1 we can find a finite constant $C_q > 0$ such that for every $0 \leq t' \leq t''$ and $\alpha \geq \alpha_0$,
\[
\mathbb{E}_a \left[|X^n_{t'} - X^n_{t''}|^q \right] \leq C_q \left\{ \epsilon^{q/2}_a \mathbb{E}_a \left[\left(\sum_{i=1}^{n_a(t'')} (1 + |X^n_{t''}|)^2 \right)^{q/2} \right] \right.
\]
\[
\left. + \epsilon^{q}_a \mathbb{E}_a \left[\left(\sum_{i=n_a(t')}^{n_a(t'')} (1 + |X^n_{t''}|) \right)^q \right] + \sum_{i=n_a(t')}^{n_a(t'')} (1 + \mathbb{E}_a[|X^n_{t''}|^q]) \epsilon^{\delta, q}_a \right\}. \tag{5.30}
\]
Applying Hölder’s inequality to each of the first two summands on the right-hand side, using (5.2) and setting $\gamma = (q/2) \land \delta$, we may continue with

\[
\leq C_{q,T} \left\{ e_{a}^{q/2} \left(\sum_{i=n(t')}^{n(t'')} (1 + |X_{t'}^{a}|)^{2q/2} \right) \left(\sum_{i=n(t')}^{n(t'')} 1^{q/(q-2)} \right)^{q/2-1} + e_{a}^{q} \left(\sum_{i=n(t')}^{n(t'')} (1 + |X_{t'}^{a}|)^{q} \right) \left(\sum_{i=n(t')}^{n(t'')} 1^{q/(q-1)} \right)^{q-1} \right\} \\
\leq C_{q,T} \left\{ e_{a}^{q/2} (n_{a}(t'') - n_{a}(t'))^{q/2} + e_{a}^{q} (n_{a}(t'') - n_{a}(t'))^{q} + e_{a}^{\delta \land \delta} (n_{a}(t'') - n_{a}(t')) \right\} \\
\leq \mathbb{C}_{q,T} (e_{a}^{(t'' - t') + e_{a})^{\gamma}},
\]

(5.31)

where $C_{q,T}, \mathbb{C}_{q,T} > 0$ are some finite constants being independent of $t', t'' \leq T$, and $\alpha \geq \alpha_{0}$. Then Lemma 5.4 ensures that any weak limit point of (\mathbb{P}_{a}) has no mass outside of $C(\mathbb{R})$. At this point, it is essential that we required q and δ to be strictly larger than 2, 1, respectively.

Toward the verification of tightness of (\mathbb{P}_{a}) we use Hölder’s inequality to get

\[
\mathbb{E}_{a} \left[X_{t-h}^{a} - X_{t}^{a} \right]^{q/2} \left[X_{t}^{a} - X_{t+h}^{a} \right]^{q/2} \leq \mathbb{E}_{a} \left[|X_{t-h}^{a} - X_{t}^{a}|^{q} \right]^{1/2} \mathbb{E}_{a} \left[|X_{t}^{a} - X_{t+h}^{a}|^{q} \right]^{1/2}.
\]

(5.32)

If $h \geq e_{a}/2$, then (5.31) implies that both factors on the right-hand side of (5.32) are bounded by $\mathbb{C}_{q,T}(3h)^{q/2}$. If $h < e_{a}/2$, then at least one of these factors vanishes since X_{t}^{a} is constant on intervals of length e_{a}. Hence,

\[
\mathbb{E}_{a} \left[X_{t-h}^{a} - X_{t}^{a} \right]^{q/2} \left[X_{t}^{a} - X_{t+h}^{a} \right]^{q/2} \leq \left(\mathbb{C}_{q,T}^{2} 3^{q} \right) h^{q}
\]

(5.33)

for all $a \geq a_{0}$ and $t, h \geq 0$ with $t + h \leq T$. That is, (5.28) holds with $m = q$. Therefore, Lemma 5.3 ensures tightness of (\mathbb{P}_{a}). \hfill \Box

Appendix

Auxiliary Results

Here we give two auxiliary results. We first recall a square function inequality for martingales. Let $M = (M_{n} : n \in \mathbb{N}_{0})$ be an (\mathcal{F}_{n})-martingale on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The corresponding compensator is given by $(M)_{n} = \sum_{i=1}^{n} \mathbb{E}[(M_{i} - M_{i-1})^{2} | \mathcal{F}_{i-1}]$.

Proposition A.1 (see [21, Theorem 2.11]). For every $q > 0$ there is some finite constant $C_{q} > 0$ depending only on q such that

\[
\mathbb{E} \left[\max_{1 \leq i \leq n} |M_{i}|^{q} \right] \leq C_{q} \left(\mathbb{E} [(M)^{q/2}] + \mathbb{E} \left[\max_{1 \leq i \leq n} |M_{i} - M_{i-1}|^{q} \right] \right).
\]

(A.1)
The second result is a Gronwall lemma for functions with discrete domain. It can be proven by means of iterating (A.2) \(n \)-times. We omit the proof since it is more or less well known.

Lemma A.2. Suppose \(g \) is a mapping from \(\mathbb{N}_0 \) to \(\mathbb{R}_+ = [0, \infty) \) with \(g(0) < \infty \). If there are finite constants \(c_0, c_1 \geq 0 \) such that

\[
g(n) \leq c_0 + c_1 \sum_{i=0}^{n-1} g(i) \quad \forall n \leq N,
\]

then

\[
g(n) \leq c_0 (1 + c_1)^n + c_1^n g(0) < \infty \quad \forall n \leq N.
\]

Acknowledgment

The author thanks a referee for revealing a flaw of the original manuscript.

References

