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Since Lander and Botstein proposed the interval mapping method for QTL mapping data analysis in 1989, tremendous progress
has been made in the last many years to advance new and powerful statistical methods for QTL analysis. Recent research progress
has been focused on statistical methods and issues for mapping multiple QTL together. In this article, we review this progress. We
focus the discussion on the statistical methods for mapping multiple QTL by maximum likelihood and Bayesian methods and also
on determining appropriate thresholds for the analysis.
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1. INTRODUCTION

Quantitative genetics studies the variation of quantitative
traits and their genetic basis. When R. A. Fisher laid down
the basic theoretical foundations of quantitative genetics,
the focus of study was to partition the overall variation
into genetic and environmental ones. With the development
of polymorphic markers for many species, current research
interest is to partition genetic variation to individual quanti-
tative trait loci (QTL) in the genome as well as interaction
among them [1]. A QTL is a chromosomal region that is
likely to contain causal genetic factors for the phenotypic
variation under study.

The basic principle of QTL mapping has been established
in Sax’s work [2] work in beans. If there is a linkage disequi-
librium (LD) between the causal factor and a marker locus,
mean values of the trait under study will differ among subject
groups with different genotypes at the marker locus [3].
Though this idea is still directly used in certain settings (e.g.,
LD-based QTL mapping in unrelated human), the advance
of QTL mapping methodology has allowed simultaneous
use of multiple marker information to improve the accuracy
and power to estimate QTL locations and effects. Lander
and Botstein [4] presented a likelihood-based framework for
interval mapping (IM), where the putative QTL genotype
was conditional upon a pair of flanking markers’ genotypes
as well as the phenotype. A least square equivalence of

IM [5] was also proposed where phenotypic values were
regressed onto expected genetic coefficients of a putative
QTL. Motivated by the conditional independency between
marker genotypes, composite interval mapping [6] proposed
to introduce additional flanking markers as covariates into
the likelihood function to reduce the confounding effects
from nearby QTL when scanning the current interval.
However, most of these methods were still designed to detect
a single QTL at a time based on a statistical test that a
candidate position for a QTL has significant effect or not.
The test was constructed to test each position in a genome
and thus created a genome scan for QTL analysis.

Though intuitive and widely used, these methods are
still insufficient to study the genetic architecture of complex
quantitative traits that are affected by multiple QTL. When
a trait is affected by multiple loci, it is more efficient
statistically to search for those QTL together. Also in order
to study epistasis of QTL, multiple QTL need to be analyzed
together. In this setting, QTL analysis is basically a model-
selection problem. In this paper, we discuss recent research
progress and outstanding statistical issues associated with
mapping multiple QTL in experimental cross populations.

2. MULTIPLE INTERVAL MAPPING (MIM)

Multiple interval mapping is targeted to analyze multiple
QTL with epistasis together through a model selection
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procedure to search for the best genetic model for the
quantitative trait [1, 7, 8].

For m putative causal genes for the trait, the model of
MIM is specified as

yi = u +
m∑

r=1

αrx
∗
ir +

t∑

r /=s⊂(1,...,m)

βrs
(
x∗ir x

∗
is

)
+ ei, (1)

where

(i) yi is the phenotypic value of individual i, i = 1, 2,
. . . ,n;

(ii) u is the mean of the model;

(iii) αr is the main effect of the rth putative causal gene,
r = 1, . . . ,m;

(iv) x∗ir is an indicator variable denoting genotype of the
rth putative causal gene, which follows a multinomial
distribution conditional upon flanking marker geno-
types and genetic distances;

(v) βrs is the possible epistatic effect between the rth and
the sth putative causal genes, assuming there are t
such effects;

(vi) ei is an environmental effects assumed to be normally
distributed.

As shown by Kao and Zeng [7], Kao et al. [8], given
a genetic model (number, location, and interaction of
multiple QTL), this linear model suggests a likelihood
function similar to that in IM but with more complexity.
An expectation/maximmization (EM) algorithm can be used
to maximize the likelihood and obtain maximum likelihood
estimates (MLE) of parameters.

The following model-selection method is used to trans-
verse the genetic model space in QTL cartographer [1, 9, 10].

(1) Forward selection of QTL main effects sequentially.
In each cycle of selection, pick the best position of an
additional QTL, and then perform a likelihood ratio
test for its main effect. If a test statistic exceeds the
critical value, this effect is retained in the model. Stop
when no more QTL can be found.

(2) Search for epistatic effects between QTL main effects
included in the model, and perform likelihood ratio
tests on them. If a test statistic exceeds the critical
value, the epistatic effect is retained in the model.
Repeat the process until no more significant epistatic
effects can be found.

(3) Reevaluate the significance of each QTL main effect
in the model. If the test statistic for a QTL falls
below the significant threshold conditional on other
retained effects, this QTL is removed from the
model. However, if a QTL is involved in a significant
epistatic effect with other QTL, it is not subject to
this backward elimination process. This process is
performed stepwisely until no effects can be dropped.

(4) Optimize estimates of QTL positions based on the
currently selected model. Instead of performing

a multidimensional search around the regions of
current estimates of QTL positions, estimates of QTL
positions are updated in turn for each region. For
the rth QTL in the model, the region between its
two neighbor QTLs is scanned to find the position
that maximizes the likelihood (conditional on the
current estimates of positions of other QTL and
QTL epistasis). This refinement process is repeated
sequentially for each QTL position until there is no
change on estimates of QTL positions.

An important issue in model selection is the significance
level to include or eliminate effects. In regression analysis,
such threshold is usually decided based on information
criteria, which has the following general form

IC = −2
(

logLk − kc(n)
2

)
, (2)

where Lk is the likelihood of data given a genetic model with
k parameters, c(n) is a penalty function and can take a variety
of forms, such as,

(i) c(n) = log(n), which is the classical Bayesian
information criterion (BIC);

(ii) c(n) = 2, which is Akaike information criteron
(AIC);

(iii) c(n) = 2 log(log(n));

(iv) c(n) = 2 log(n);

(v) c(n) = 3 log(n).

When the penalty for an additional parameter in the
model is low, more QTL and epistatic effects are likely to
be included in the model. Thus it is particularly important
to determine an appropriate penalty function for model
selection.

Sequential genome scans require detectable main effects
for the components of interaction effect. An alternative
approach, exhaustive search of all marker combinations,
is a computational and statistical problem even in two
dimensions. From a yeast eQTL mapping data with over
6000 expression traits and 112 individuals [11], Storey
et al. [12] showed that the sequential search was more
powerful than exhaustive one to detect pair-wise QTL main
effects and interaction effects. However, in a different setting
using simulations under a series of quantitative trait model
assumptions, Evans et al. [13] showed that the exhaustive
search can be more powerful than the sequential one with
over 1000 individuals in the mapping population and a
Bonferroni correction for 100 000 tests. The inconsistency
is partially related to sample size. A larger sample can
make unadjusted P values more significant. Witte et al. [14]
showed that the required sample size increases linearly as
the number of tests increases logarithmically with a simple
Bonferroni correction.

3. THRESHOLD TO CLAIM QTL

We need to decide the threshold for declaring QTL from
the profile of test statistics across the genome. General
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asymptotic results for regression and likelihood ratio tests
are not directly applicable for genome scans given the large
number of correlated tests performed in the scans and the
limited sample size.

3.1. Type I error rate control

When markers are dense and the sample size is large, Lander
and Botstein [4] showed that an appropriate threshold for
LOD score was (2 log 10)tα, where tα solves the equation
tα = (C + 2Gtα)χ2(tα). C is the number of chromosomes of
the organism. G is the length of the genetic map, measured
in Morgans. χ2(tα) is the probability that a random variable
from a χ2

1 distribution is less than tα.
Churchill and Doerge [15] proposed a method based on

permutation tests to find an empirical threshold specifically
for a QTL mapping study. Data were shuffled by randomly
pairing one individual’s genotypes with another’s pheno-
types, in order to simulate the null hypothesis of no intrinsic
relationship between genotypes and phenotypes. Thus, this
method takes into account sample size, genome size of the
organism under study, genetic marker density, segregation
ratio distortions, and missing data.

According to Churchill and Doerge [15], the genome-
wide threshold to control type I error rate for mapping a
single trait can be found in the following procedure.

(1) Shuffle the data N times by randomly pairing trait
values with genotypes. When there are multiple traits
under study, these phenotypes should be shuffled
together to keep their correlation structure.

(2) Perform mapping analysis and obtain the maximum
test statistic in each of N shuffled data. This provides
an empirical distribution FM of the test statistic for
the genome scan at the null.

(3) The 100(1 − α) percentile of FM will provide an
estimated critical value.

This permutation procedure is equivalent to the Bonfer-
roni correction for multiple testing when test statistics are
independent. Suppose there are n such statistics ti (for i =
1, . . . ,n) from a null distribution F. FM(T), the distribution
function of maximum of the n statistics, can be expressed
as Pr(max(ti) < T) = F(T)n. When we find a threshold T ,
such that Pr(max(ti) > T) = 1 − Pr(max(ti) < T) ≤ α, it is
equivalent to require 1− F(T)n = 1− (1− Pr(ti > T))n ≤ α,
or Pr(ti > T) ≤ α/n, the Bonferroni adjusted threshold.
When test statistics are correlated, the permutation method
provides a threshold that is less than that from Bonferroni.

A related permutation procedure was also suggested by
Doerge and Churchill [16] for mapping procedures that
QTLs are declared sequentially using a forward selection
procedure. Two methods were suggested to find a genome-
wide threshold for the second QTL while controlling effects
of the first QTL.

(i) Conditional empirical threshold (CET). Mapping
subjects are put into blocks according to the geno-
type of the marker identified as (or closest to)

the first QTL. Permutation is applied within each
block. Following the procedure described above by
Churchill and Doerge [15], maximal test statistic of
each genome scan is collected and CET is obtained.
One problem of CET is that markers linked to the first
QTL will continue to show assocation with the trait
variation as in the original data. To avoid CET being
elevated by such markers, it is suggested to exclude
the complete chromosome where the first QTL is
located when collecting null statistics.

(ii) Residual empirical threshold (RET). The residues
from the genetic model with the first QTL are used as
new phenotypic values to be permuted. Maximal null
statistics from genome-wide scans are then collected
to find RET.

Applied to multiple interval mapping, Zeng et al. [1] also
suggested to use a residual permutation or bootstrap test
to estimate appropriate threshold for the model selection
in each step of sequential test. In this test, after fitting a
model with identified QTL effects, residuals of individuals
are calculated and permutated or bootstrapped to generate
a null model for the conditional test to identify additional
QTL. This threshold is more appropriate for the conditional
search, but computationally more intensive.

3.2. Score-statistic-based resampling methods

Permutation is a computationally intensive method for
generating empirical threshold. Zou et al. [17] suggested
that the genome-wide threshold could be more efficiently
computed based on score statistic and a resamplng method.
A score statistic can be computed at each genome position. If
we multiply a score function by a standard normal random
variable with mean zero and variance one, the resulting score
statistic mimics that under the null hypothesis. Thus by
multiplying a number of standard normal variables, we can
very efficiently generate an empirical distribution of score
statistic under the null. This method is flexible and can be
used to test a null hypothesis in a complex model. A similar
algorithm was also suggested by Seaman and Müller-Myhsok
[18]. Conneely and Boehnke [19] extended the approach
by replacing the resampling step with a high dimensional
numerical integration.

Unlike these approaches, Nyholt [20] suggested another
method that addresses the multiple testing issue: the number
of independent tests across the genome can be approximately
estimated as a function of eigenvalues derived from the
correlation matrix of marker genotypes.

3.3. False discovery rate (FDR)

In QTL mapping, as marker coverage in a genome increases,
it is less likely that a casual variant is not in LD with
any marker and may be missed. On the other hand, the
number of markers showing significant correlation with the
phenotype by chance is also expected to grow, if the type
I error rate for each test is controlled at a preset level. To
handle this multiple testing problem, stringent family-wise
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Table 1: Possible outcomes from m hypothesis tests.

Accepted null Rejected null Total

Null true U V m0

Alternative true T S m1

W R m

control of type I error is usually applied, which is designed to
control the probability of making at least one false discovery
in a genome-wide test. However, a more powerful approach
may be to control false discovery rate (FDR) [21], or to
control the expected proportion of false discoveries among
all the markers passing a threshold. This essentially allows
multiple false positive declarations when many “significant”
test statistics are found. Such a relaxation is driven by the
nature of the problem under study. “It is now often up to the
statistician to find as many interesting features in a data set
as possible rather than test a very specific hypothesis on one
item” [22].

According to the notation from Storey [22], Table 1
shows the possible outcomes when m hypotheses
H1,H2, . . . ,Hm are tested. For independent tests, Benjamini
and Hochberg [21] provided a procedure (known as linear
step-up procedure or BH procedure) to control expected
FDR, that is, E[(V/R) | R > 0]×Pr(R > 0) at the desired level
α(m0/m) or α (since m0 is generally unknown, a conservative
up-bound estimate m0 = m was used) as follows:

(i) sort P values from the smallest to the largest such that
P(1) ≤ P(2), . . . ,P(m);

(ii) starting from P(m), compare P(i) with α(i/m);

(iii) let k be the first time P(i) ≤ α(i/m), reject all P(1)

through P(k).

Benjamini and Yekutieli [23] showed that “if test statistics
are positively regression dependent on each hypothesis from
the subset corresponding to true null hypotheses (PRDS),
the BH procedure controls FDR at level α(m0/m).” For
QTL mapping, PRDS can be interpreted as follows [24]: if
two markers have correlated allele frequencies and neither
is related biologically to the trait, test statistics associated
with the two markers should be positively correlated. Such
positive correlation is intuitively correct and supported by
simulation results [24].

To check the performance of BH procedure on FDR con-
trol in genome-wide QTL scan for a single trait, Sabatti et al.
[24] considered a simulated case-control study in human.
Three susceptibility genes were simulated to affect the disease
status. The genes were assumed to be additive and located on
different chromosomes. The results showed that the BH pro-
cedure can control the expected value of the FDR for single-
trait genome-wide scan. For multiple-trait QTL analysis,
Benjamini and Yekutieli [25] considered 8 positively or neg-
atively correlated traits. Using simulation, they showed that
BH approach seemed to work for multiple trait analysis too.

According to Benjamini and Yekutieli [25], to control
FDR for QTL analysis in each trait at level α does not always
mean that the overall FDR for these multiple traits is also α :

if there are k independent and nonheritable traits, the overall
FDR should be 1 − (1− α)k ≈ kα. It is safer to control FDR
for all the tests simultaneously.

Yekutieli and Benjamini [26] suggested to make use
of dependency structure in data, rather than treat them
as annoying cases. They expected an increase of testing
power when using an empirical true null statistic distribution
instead of assuming some theoretical ones to get P values.
Empirical null distributions are used extensively in pFDR
and local FDR as discussed below.

Though BH approach is a handy and intuitive tool,
it should be used with caution when applied to QTL
mapping. First, BH approach controls the expected value of
FDR. Simulation studies showed that the actual FDR for a
particular QTL mapping dataset can be higher [24]. Second,
FDR = E[(V/R) | R > 0] Pr(R > 0) may be tricky to
interpret when Pr(R > 0) is far below than 1. Weller et al.
[27] are the first ones to apply FDR criteria in QTL mapping
area. They claimed that 75% of the 10 QTL declared in their
study were probably true by controlling FDR at 25% using
BH approach. Zaykin et al. [28] however objected to the
interpretation because E[(V/R) | R > 0] could be much
higher than FDR = 25% when Pr(R > 0) was much smaller
than 1. It is E[(V/R) | R > 0], also known as pFDR discussed
in Section 3.4, that really contains the information about the
proportion of false discovery. Weller [29] further argued that
if one assumes R follows a Poisson distribution, Pr(R > 0)
should be very close to 1 when they observed R = 10. In later
FDR literature, the assumption that Pr(R > 0) ≈ 1 has been
widely adopted [25, 30].

3.4. Positive discovery rate (pFDR)

pFDR, or E[(V/R) | R > 0], was considered less favorable
than FDR [21] without the additional term Pr(R > 0):
we cannot decide an arbitrary threshold α, 0 < α < 1,
and guarantee that pFDR ≤ α regardless of the actual
proportion of true null hypothesis in all tests. For example,
when m0/m = 1, pFDR is always 1 and cannot be controlled
at a small α. In this case, however, FDR = pFDR ×Pr(R > 0)
can be controlled at α by reducing the rejection region to
push Pr(R > 0), and then FDR, towards α. Thus, Benjamini
and Yekutieli [25] considered that pFDR should be only
estimated after a fixed rejection threshold was decided; or
in QTL mapping, pFDR should estimate (instead of control)
the proportion of true/false QTL, after the null hypothesis
was rejected at R linkage peaks by a certain rule (e.g., a type-I
error control procedure).

From the discussion in Section 3.3 we know that allowing
Pr(R > 0) much smaller than 1 might bring trouble in
interpreting the results; and when m0/m ≈ 1, we might want
to see an FDR measure that is close to 1 [31]. This helped
to bring up the interest in pFDR. Storey [31] presented
a Bayesian interpretation of pFDR based on P values.
Assuming there are m tests H1,H2, . . . ,Hm with associated P
values P1,P2, . . . ,P3, and

(i) Hi = 0 denots the ith null hypothesis is true, and
Hi = 1 otherwise;
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(ii) to model the uncertainty in each hypothesis test, each
Hi is viewed as an identical and independent random
variable from a Bernoulli distribution with Pr(Hi =
0) = π0 and Pr(Hi = 1) = π1 = 1− π0;

(iii) Pi follows a distribution F0 if Hi = 0 and F1 if Hi = 1;
it follows a mixed distribution unconditionally: Fm =
π0F0 + π1F1;

(iv) Γ = [0, γ] is the common rejection region for all Hi,

then

pFDR(γ) = Pr
(
Hi = 0 | Pi ∈ Γ

)
(3)

= Pr
(
Hi = 0

)
Pr
(
Pi ≤ γ | Hi = 0

)

Pr
(
Pi ≤ γ

)
Pr(R > 0)

(4)

≈ π0γ

R/m
[
1− (1− γ)m

] . (5)

Notice that, when π0 = 1 and m is reasonably large,
formula (5) is roughly equal to γ(m/R), which is the BH
approach to estimate FDR. We can also see from formula
(5) that instead of assuming π0 = 1, a data-driven estimate
of π0 will give a smaller pFDR estimate or a more powerful
procedure if π0 is estimated smaller than 1. Efron et al. [32]
gave an upper bound of π0 by assuming an “accept region”
A = [λ, 1] such that Pr(H = 0 | P ∈ A) ≈ 1:
∫
A fm(z)dz∫
A f0(z)dz

=
∫
A

[
π0 f0(z) +

(
1− π0

)
f1(z)

]
dz∫

A f0(z)dz
≥
∫
Aπ0 f0(z)dz∫
A f0(z)dz

= π0,

(6)

where f0, f1, fm are the density functions of F0, F1, Fm,
respectively. The left-hand side of this equation is equivalent
with the following estimator [30]:

π0 = #{P > λ}
m(1− λ)

. (7)

These formulas lead to q value, the minimal pFDR when
rejecting a hypothesis with P value Pi. This approach is
more powerful than the BH approach [21] in genomics
applications. An R package “q value” is available to convert
a list of P values to q values [30]. The q value approach can
actually find Γ while controlling a specific pFDR rate besides
finding pFDR given Γ. However, as discussed above, FDR
control in QTL mapping should be applied with caution.

When Pi are identical and independent distributed,
pFDR becomes identical to the definition of proportion of
false positives (PFP) [22, 33]:

PFP = E(V)
E(R)

(8)

=
∑m

i=1γ Pr
(
Hi = 0

)
∑m

i=1

[
γ Pr

(
Hi=0

)
+ Pr

(
Hi=1

)
Pr
(
Pi≤γ |Hi=1

)]

(9)

=
∑m

i=1π0∑m
i=1

[
π0+π1

(
Pr
(
Pi≤γ |Hi=1

)
/ Pr

(
Pi≤γ |Hi=0

))] ,

(10)

PFP is also estimated similarly as pFDR (cf. formula (5) [33]:

P̂FP = π0γ

R/m
. (11)

Contrary to FDR discussed in Section 3.3, PFP has a property
that when it is controlled at α for each of n sets of
independent tests, the overall PFP is still α. Pi from different
sets of tests can have different distributions. In this case, PFP
can be different from pFDR [33].

Currently available procedures to control or estimate
pFDR or PFP may have variable utility in various mapping
designs. Chen and Storey [34] noted that the threshold to
control FDR at marker level from one-dimensional genome
scan for a single trait could be “dubious” because FDR is
affected by the marker densities along the chromosomes.
Since a true discovery is to claim a QTL at a marker which is
in strong LD with a causal polymorphism, markers that are
in strong LD with the true discovery can be additional true
discoveries. Thus, FDR decreases when we genotype more
markers around a true linkage peak. Using simulations, Chen
and Storey [34] showed that the threshold is obtained by
controlling FDR varied with the marker density. However,
in real applications, people generally consider all markers
surrounding a test statistic peak as parts of one QTL, rather
than distinct positive discoveries. On the other hand, we can
still estimate FDR from P values at linkage peaks for different
traits that pass certain cutoff value. This is a common
situation from an expression QTL study where thousands of
traits are analyzed together.

Zou and Zuo [35] showed that family wise error rate
control via Bonferroni correction can be more powerful
than PFP control. In their simulation, they assumed 1 to
5 true non-null hypotheses out of 1000 independent tests,
corresponding to π1 ≤ 0.5%, which might be too pessimistic
for certain QTL mapping studies. As we can see from formula
(10), when π1 is so small, Pr(Pi ≤ γ | Hi = 1)/ Pr(Pi ≤
γ | Hi = 0) has to be very large so that its product with
π1 is considerably larger than π0 and there is an acceptable
PFP level. When the density function of Pi | Hi = 1 is
monotonously decreasing in [0, γ], which is quite common
in reality, γ has to be very small to increase the ratio of power
over type-I error. Thus, it is not surprising that such a γ from
PFP would result in a more stringent test than that under
Bonferroni correction. [36] made a similar argument and
pointed out that familywise error rate control was effective
when π1 was relatively low, and PFP or pFDR approach
can be more powerful when π1 was high. Again, expression
QTL studies stand out as an example when pFDR is more
favorable: in the yeast eQTL mapping data [11], Storey et al.
[12] estimated that π1 = 0.85 among the genome-wide
maximal test statistic for each expression trait.

3.5. Local FDR

The Bayesian interpretation of pFDR extends naturally to
local FDR [32], denoted as FDR here,

FDR(Ti) = Pr
(
Hi = 0 | Ti

)
(12)

= π0 f0
π0 f0 + π1 f1

= π0 f0
fm

, (13)
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where Ti is the test statistic associated with Hi; Hi = 0
denotes that the ith null hypothesis is true, and Hi = 1
otherwise; Ti has a density f0 if Hi = 0, and f1 if Hi = 1;
or fm = π0 f0 + π1 f1 when hypotheses are mixed together.

There is great similarity between formula (3) and for-
mula (12). Actually Efron [37] showed that q value associated
with Ti is equivalent with Et≥TiFDR(t). Storey et al. [12]
showed that FDR could be estimated within each cycle of a
sequential genome scan for thousands of expression traits;
then the average of the FDR in the rejection region was an
estimate of pFDR.

The key part in estimating FDR is to estimate f0/ fm. It
is possible to assume certain standard distribution under the
null hypothesis as f0 and estimate fm from nonparametric
regression [37]. The following procedure is modified from
[12, 32]:

(1) permute data under null hypothesis B times, and
obtain test statistics zi j , i = 1, . . . ,m, j = 1, . . . ,B;

(2) estimate f0/ fm from Ti and zi j (see below);

(3) estimate π0 using formula (7).

f0/ fm is estimated in the following way:

(1) pool all Ti and zi j into bins;

(2) create an indicator variable y, let y = 1 for each Ti

and y = 0 for each zi j , thus, Pr(y = 1) = fm/( fm +
B f0) in each bin;

(3) obtain a smooth estimate of P̂r(y = 1) in each bin
from an overall regression curve across bins, by com-
bining natural cubic spline with generalized linear
models for binomially distributed response variables;

(4) equate P̂r(y = 1) with fm/( fm + B f0), and get a
moment estimate of f0/ fm.

It is noticed that Hi and its associated Ti or Pi are
assumed to be from a mixture distribution in both pFDR
and FDR estimation. Thus, as pointed out by Storey [22],
there is a connection between multiple hypothesis testing
and classification. For each test, the test procedure is to
classify Hi as 0 or 1, or accepted or rejected. Classification
decisions can be made based upon Ti, with a rejection region
Γ: if Ti ∈ Γ, we classify Hi as 1.

4. BAYESIAN METHODS

Bayesian QTL mapping methods try to take full account
of the uncertainties in QTL number, location, and effects
by studying their joint distributions. Such a method takes
the prior knowledge about these parameters as a prior
distribution, reduces the uncertainty by integrating the
information from the data, and expresses the remaining
uncertainty as a posterior distribution of parameters.

Satagopan et al. [38] illustrated the use of Markov chain
Monte Carlo (MCMC) algorithm to generate a sequence
of samples from the joint posterior distribution of QTL
parameters conditional upon the number of QTL. Gibbs
sampling algorithm approximates the joint distribution by
sampling each parameter in turn, conditional upon the
current values of the rest of parameters. Conjugate priors

can be chosen so that most of these conditional distributions
have explicit distribution functions and can be sampled
directly. Otherwise, Metropolis-Hastings algorithm is to be
used. Point estimates of individual parameters are obtained
by taking the averages of the corresponding marginal distri-
butions. Confidence intervals are obtained as high posterior
density regions.

Sen and Churchill [39] proposed to sample QTL geno-
types from their posterior distribution conditional upon
marker genotypes and trait phenotypes. This multiple impu-
tation method offers a framework to handle several issues
in QTL mapping: nonnormal and multivariate phenotypes,
covariates, and genotyping errors. It differs from usual
MCMC procedures in that a two-step approach is used: first,
QTL genotypes are sampled conditioning only on marker
genotypes; then, weights can be calculated as the likelihood
of the phenotypes given a genotype. These genotypes and
weights are then used to estimate posterior distributions.

In both studies, MCMC simulations were conditional
upon the number of QTL (L) underlying the phenotype.
Different values of L were tried and Bayes factors were used
to decide which value of L was more plausible. Bayes factor
is the ratio of the probability density of data under two
hypotheses. It is a likelihood ratio in some simple cases. In
Bayesian QTL mapping, however, likelihoods are weighted by
prior distributions of parameters under different hypotheses
to get Bayes factors [38].

The development of reversible jump MCMC algorithm
[40] suggested one way to treat L as a parameter and
generate its posterior distribution. Satagopan and Yandell
[41] introduced this method to QTL mapping: when updat-
ing the current value of L, a single QTL may be added
or deleted from the model. Yi et al. [42] extended this
method to model interacting QTL by allowing 3 types
of transdimensional exploration: a main effect or epistatic
effect, a single QTL with its effects or a pair of QTL may be
added or deleted in one updating step. However, they also
observed low acceptance rates for transdimensional jump
proposals and hence slow mixing of the markov chains and
high computational demand associated with the algorithm.

Yi [43] introduced composite model space approach as
a unified Bayesian QTL mapping frame work. The approach
incorporates reversible jump MCMC as a special case, and
turns the transdimensional search into a fixed-dimensional
one. The central idea is to use a fixed length vector to record
the current locations of L putative QTL and another indi-
cator vector to record whether a QTL’s main or interaction
effect is included or excluded. These two vectors decide the
actual number of QTL. The fixed length sets an upper bound
for the number of detectable QTL. This approach has been
implemented in the R/qtlbim package [44, 45].

Without considering computational efficiency, the upper
bound can actually be fairly large. Unlike multiple regression
analysis based upon least square criteria, which gets in
trouble when the number of explanatory variables is larger
than the number of observations, Bayesian analysis can
handle a large number of explanatory variables through a
large number of cycles within each step of Gibbs sampling.
Xu [46] showed an example where markers across genome
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were used simultaneously in Bayesian linear regression and
suggested that the Bayesian method could result in model
selection naturally: markers with weak effects are “shrunk”
so that their posterior mean effects are around zero, markers
with strong effects remain strong.

A closely related procedure is ridge regression, where
the parameters to an usual linear model Y = Xβ + ε are

estimated as β̂ = (XTX + K)−1XTY (K = λI , ε∼N(0, σ2I),
I is an identity matrix). The estimator turns out to be
identical to a Bayesian one which assumes that β has a prior
normal distribution N(0, σ2/λ) [47]. Ridge regression was
initially applied to marker-assisted selection by Whittaker
et al. [48] to reduce the standard errors in estimation. Xu
[46] found ridge regression was not applicable to genome-
wide markers simultaneously because each marker demand a
different λ in its prior distribution variance. This problem of
ridge regression can be fixed in a generalized ridge estimator
whereK is a diagonal matrix with different diagonal elements
λ1, λ2, . . . [49]. However, an iterative procedure is required
to find these λ, which is similar to the MCMC sampling in
Bayesian analysis.

A Bayesian QTL mapping analysis usually results in a
posterior distribution over the QTL model space. Numerical
characteristics from such a distribution provide estimates for
parameters. Such an estimation is based upon entire model
space, weighted by the posterior probabilities, and hence is
more robust than usual MLE. In terms of hypothesis test,
Bayes factors, together with prior odds, are used to compare
two hypotheses. Unlike P values, Bayes factors are calculated
under both competing hypotheses; like P values, they have to
be compared with some commonly used cutoff values (like
0.05 for P values) to decide which hypothesis to prefer [50].

There is very clearly a null hypothesis and an alternative
hypothesis in single QTL scan [4]. In model selection for
a multiple QTL model, however, the number of hypotheses
in the model space is huge and the data may well support
many models for a complex trait. Posterior distribution
emphasizes such uncertainty. Picking a better supported
model to interpret mapping results may not fully convey the
uncertainty of inference. On the other hand, a pragmatic
mathematical model may choose to simplify the complexity
and present an inference with basic structural characteristics.
See Kass and Raftery [50] for more discussion.

Bayesian QTL mapping does not have the multiple
testing issue discussed above. Bayesians agree with the idea
to require very strong evidence to call QTL from genome.
However, they believe that the reason is that the genome is so
large that the prior probability that any one variant or variant
combination is causative is very low. Thus, in Bayesian QTL
mapping, the multiple testing issue is handled by the low
prior density on any one marker or low prior odds for any
one hypothesis; and such a stringent requirement is rec-
ommended even when exploring a very limited QTL model
space unless there is strong prior knowledge against that [51].

5. CONCLUSION

To document the evolution of the statistical approaches
for QTL mapping, we attempt to follow some threads

of methodological development on multiple QTL map-
ping, threshold determination, and Bayesian QTL mapping
methods. We see that this area has been advanced greatly
by the interaction between genotyping technologies and
statistical methodologies in the last several years, and will
continue to be so in the future. The availability of efficient
computational algorithms/softwares is essential to the QTL
mapping community. However, it is equally important that
these tools are applied with thorough understanding of the
genetic data and the tools themselves.
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