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Two artificial neural networks (ANN), back-propagation neural network (BPNN) and the radial basis function neural network
(RBFNN), are proposed to predict the carbonation depth of prestressed concrete. In order to generate the training and testing data
for the ANNs, an accelerated carbonation experiment was carried out, and the influence of stress level of concrete on carbonation
process was taken into account especially. Then, based on the experimental results, the BPNN and RBFNN models which all
take the stress level of concrete, water-cement ratio, cement-fine aggregate, cement-coarse aggregate ratio and testing age as input
parameters were built and all the training and testing work was performed in MATLAB. It can be found that the two ANN models
seem to have a high prediction and generalization capability in evaluation of carbonation depth, and the largest absolute percentage
errors of BPNN and RBFNN are 10.88% and 8.46%, respectively. The RBFNN model shows a better prediction precision in
comparison to BPNN model.
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1. Introduction

In general, properly designed and constructed prestressed,
posttensioned concrete (PC) structures have been considered
highly durable because of their excellent performance.
Recently, however, these concrete structures have been
thought to be threatened by certain premature performance
impairments worldwide, predominately when defects were
present. These problems may continue to manifest them-
selves [1]. Initiating mechanisms and particular forms of
corrosion affecting PC structures include concrete carbon-
ation effects, chlorides and corrosion, influence of concrete
cracking, stress corrosion cracking and steel embrittlement,
and fatigue [2]. Obviously, the concrete carbonation may be
the common degradation mechanism affecting prestressed
concrete structures.

The carbonation of concrete is a natural phenomenon
that is commonly defined as the chemical reaction between
carbon dioxide (CO2) and the cement hydration products
such as Ca(OH)2 and calcium–silicate–hydrate (C-S-H)
[3]. The process of carbonation affects all concretes and
cementitious materials exposed to carbon dioxide in the
atmosphere or to carbon dioxide dissolved in solutions in

contact with steel. The process of concrete carbonation com-
mences at exposed surfaces immediately upon exposure to
CO2 and carbonation rates increase for poor quality, porous
concretes, and grouts. As a result of carbonation, calcium
carbonate (CaCO3) is formed and the pore solution pH
(around 13) drops down to 9. When the depth of concrete’s
carbonation reaches the reinforcement, passivity is lost and
metal’s corrosion can proceed unimpeded in the presence of
moisture and oxygen [4]. Usually, the carbonation depths
correspond to a pH value roughly equal to 9 and are
applied either on cores of real structures or on specimens
carbonated in laboratory conditions. This colorimetric test is
commonly linked with concrete carbonation models, which
are based on the diffusion process with the concentration
gradient of the exposed CO2 as the driving force in the
porous material and usually expressed by a square-root (

√
t)

law [5–7]. However, actual buildings consist of composite
materials combined with exterior finishing materials, and it
is difficult to apply this square-root law to two- or three-
dimensional objects. Hence, more sophisticated models,
which take account of not only the diffusion process but also
the noninstantaneous chemical reactions [8, 9], have been
developed.



2 Advances in Artificial Neural Systems

Even so, it is still difficult to build a calculated model
of carbonation depth that can describe all conditions of
concrete carbonation, on account of the complexity of
carbonation process. On the other hand, when the prior
knowledge of the behavior of concrete carbonation is not
available, the conventional model cannot be employed either.
In such situations, artificial neural network (ANN) is a viable
solution and can effectively be used to assess the carbonation
depths. ANN is an information processing paradigm that
is inspired by the way biological nervous systems, such
as the brain, process information. It is composed of a
large number of highly interconnected processing elements
(neurons) working in unison to solve specific problems. A
trained neural network can be thought of as an “expert” in
the category of information it has been given to analyze. This
expert can then be used to provide projections for given new
situations of interest [10].

Recently, ANNs have been successfully applied to many
applications in civil engineering and structural engineering
[11]. Jeyasehar et al. [10] designed and carried out an exper-
imental program to induce the desired extents of damages
in the prestressed concrete beams and generate the training
and test data for a feed forward ANN and demonstrated
the feasibility of using an ANN trained with only natural
frequency data to assess the damage in prestressed concrete
beams. Parthiban et al. [12] analyzed the corrosion of steel
in concrete using NN, and they observed that the error
encountered was only 5% for the predictions made from the
NN model. Peng et al. [13] used a neural network to analyze
the chloride diffusion in concrete and they found that the
predictions given by the NN with cascade-correlation algo-
rithm were in good agreement with the test results in both
steady and unsteady states. Kewalramani and Gupta [14]
conducted a study for prediction of compressive strength of
concrete which was done using multiple regression analysis
and artificial neural networks. A comparison between two
methods depicted that artificial neural networks can be used
to predict the compressive strength of concrete effectively. All
these above studies indicate that artificial neural networks
offer a powerful and reliable tool for solving some problems
in civil engineering.

This paper reports a study with an objective of employing
ANNs to estimate the carbonation depth in the prestressed
concrete beams, and two feed forward neural networks of
Back Propagation Neural Network (BPNN) and Radial Basis
Function Neural Network (RBFNN) are applied here. The
BPNN, trained using the standard error back-propagation
algorithm, is widely used in many applications [11]. How-
ever, one major limitation of this training algorithm is that
the architecture of the network has to be fixed in advance,
while the RBFNN, whose nodes in hidden layer are described
by radial basis function, can automatically synthesize suitable
network architecture with K-Nearest Neighbor algorithm.
In general, the BPNN can better construct the global
approximations to the input–output mapping, whereas an
RBFNN employs the exponentially decaying localized input–
output mapping which can effectively model the large
variation locally [11]. In this study, the two abovementioned
ANNs are used to predict the depth of concrete carbonation.

Besides, in order to get the train and test data, an accelerated
carbonation experiment of prestressed concrete is carried
out. Next, we explain the data generation for the two ANNs
from the experimental results and perform the training and
testing work using MATLAB. The conclusions of the present
study are presented at last, and they prove that the ANN is an
effective tool to predict the carbonation depth in concrete.

2. Experimental Investigation

2.1. Preparation of Specimens. In order to clarify the influ-
ence of stress states of prestressed concrete on carbonation,
three series of concrete prisms, Series A, Series B, and Series
C, were subjected to rapid carbonation experiment. Series
A and Series B were employed to clarify the influence of
compressive stress and tensile stress on concrete carbonation
depth, respectively. Series C was used as referential specimens
with no stress in concrete. All of these test prisms were cast
in a laboratory using high-early-strength Portland cement
52.5R, provided by China Jiangnan Cement Co., Ltd, and
locally available crushed gravel (20 mm maximum size and
1550 kg/m3 density) and natural sand (fineness modulus of
2.40) as coarse and fine aggregates, respectively. The concrete
mix was prepared in accordance with Chinese Standard,
JGJ/T55-96 [15]. Both aggregates were pre soaked in water
before batching. All batched aggregates were stored in
airtight containers to ensure no moisture loss before mixing.
At the same time, moisture contents of the aggrebbbgates
were determined and adjustments were then made to the mix
proportions. The design strength of concrete was specified as
40MPa which is usually used for actual PC structures. Details
of the mix proportions are given in Table 1.

All prestressed concrete prisms, 150× 150× 400 mm for
Series A and 100×100×400 mm for Series B and C, were cast
in two layers, and each layer was compacted using a vibrating.
For each prism of Series A, a circle hole, at the center of cross
section, was left with a diameter of 32 mm. All mixing and
casting were carried out in a standard laboratory condition
at 23 ± 2◦C and 50 ± 5% RH. After formwork removal at
24 hours, all specimens were covered with wet sacking and
plastic sheets for a further 2 days and then were nature-cured
indoors up to 28 days of age.

Figures 1 and 2 show the methods to induce different
stress in concrete for Series A and Series B, respectively.
For Series A, three different compression stress levels were
designed and performed by drawing the prestressing wire in
the prepared hole, as shown in Figure 1. The tensile strength
of the wire, a diameter of 6 mm, is 1570 N/mm2. while, in
order to produce different tension stress states in concrete
of Series B, an equivalent setup in which two beams were
loaded in a four-point flexure was adopted, and its schematic
diagram is shown in Figure 2. Details of stress states for Series
A and B are given in Table 2.

In order to analyze the influence of stress state on
carbonation depth, an index, stress level λσ , is defined as the
ratio of the real stress value in concrete to the design value of
concrete strength, expressed as

λσ =
σc(t)
fc(t)

, (1)
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Table 1: Mix proportion of concrete.

Grade W/C Cement (kg/m3) Water (kg/m3)
Fine aggregate

(kg/m3)
Coarse aggregate

(kg/m3)
Water reducing
admixture (%)

28-day
compressive

strength (MPa)

C40 0.40 450 180 672.6 1097.4 0.45 42.4

Note that W/C is the ratio of water to cement in 1 m3 concrete.
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Figure 1: Compressive configuration for Series A beams.
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Figure 2: Tensile configuration for Series B beams.

where fc is the designed compressive strength of concrete in
Chinese Standard 50010–2002 [16], fc = 0.67 fc,cube150/1.4,
and fc,cube150 is the 150 mm-cubic compressive strength of
concrete; ft is the designed tensile strength of concrete, ft ≈
0.09 ∼ 0.10 fc; σc is the applied compressive stress in concrete
and marked as a negative value; σt is the applied tensile stress
in concrete which is measured at ultimate fiber concrete in
middle tensile zones; that is, the measuring position is near
the centerline I-I in Figure 2.

2.2. Accelerated Carbonation Test. The natural carbonation
process of concrete is rather slow due to the low concen-
tration of carbon dioxide in the environment, which is only
about 0.03%–0.05% by volume. The process may last more
than ten years in a good quality concrete. In the experimental
work, it is desirable to accelerate the process to shorten the
duration of testing. Here, an accelerated carbonation test
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Figure 3: Relationship between carbonation depth and testing
time.

was conducted by increasing the concentration of CO2 in
the carbonation box, in which the CO2 concentration was
20 ± 3% by volume, with 20 ± 5◦C and 70 ± 5% relative
humidity. The accelerated test was performed in accordance
with Chinese Standard, GBJ82-85 [17], and the total period
of the test was 3 months.

Before testing, five surfaces of all specimens were coated
with epoxy resin, and only one tested surface was opened
to expose the accelerated carbonation environment. When
the samples reach the carbonated age to be tested, a number
of 50 mm long, 50 mm diameter, small cylinders were cut
from the specimens, and then the cylinders’ surfaces were
sprayed with phenolphthalein indicator. Measurements of
the depth of carbonation were performed at 3 points and the
averaged depths were obtained finally. Then the specimens
were repaired and put into carbonation box again.

3. Elements of Neural Network

3.1. Brief Introduction of Artificial Neural Network. The
Back Propagation (BP) Neural Network is a multilayer
feed-forward network with a back-propagation learning
algorithm, which consists of an input layer, one or more
hidden layer(s), and an output layer. One major limitation of
this training algorithm is that the architecture of the network
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Table 2: Stress states and carbonation depths of all specimens.

Stress states in concrete
Testing age
(days)

Carbonation
depth (mm)Number W/C fc(t) Applied stress Stress level

(MPa) σc(t) (MPa) λσ

Specimens of Series A

A1 0.4 20.30 −6.27 −0.309 30 23.20

A2 0.4 20.30 −6.27 −0.309 60 31.90

A3 0.4 20.30 −6.27 −0.309 90 34.45

A4 0.4 20.30 −10.45 −0.515 30 22.50

A5 0.4 20.30 −10.45 −0.515 60 26.38

A6 0.4 20.30 −10.45 −0.515 90 31.56

A7 0.4 20.30 −14.64 −0.721 30 19.95

A8 0.4 20.30 −14.64 −0.721 60 25.13

A9 0.4 20.30 −14.64 −0.721 90 29.19

Specimens of Series B

B10 0.4 1.84 0.576 0.313 45 29.60

B11 0.4 1.84 0.576 0.313 90 37.50

B12 0.4 1.84 1.036 0.563 45 30.20

B13 0.4 1.84 1.036 0.563 90 39.10

B14 0.4 1.84 1.290 0.701 45 31.15

B15 0.4 1.84 1.290 0.701 90 40.50

Specimens of Series C

C16 0.4 — 0 0 30 25.45

C17 0.4 — 0 0 45 29.10

C18 0.4 — 0 0 60 31.92

C19 0.4 — 0 0 90 36.45
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Figure 4: Fit curve for non stress specimen C.

has to be fixed in advance. This means that the end user
must design a suitable architecture by a costly trial-and-error
approach. If the architecture is too small, the network may
not have sufficient degrees of freedom to correctly learn the
carbonation depth. On the other hand, if the network is too
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Figure 5: Relationship between the two ANNs’ training and testing
results and the experiment results.

large, then it may not converge during training, or it may
overfit the data and memorize the depth history rather than
generalize it [13]. Therefore, the key problem encountered by
BPNN is to determine the network structure in the number
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Figure 6: Percentage error of the training and testing results of two
ANNs.

of hidden layers and the number of hidden neurons in each
layer. This means that the end user must design a suitable
architecture by a costly trial-and-error approach.

The Radial Basis Function (RBF) neural network is
also a kind of feed forward network architecture with only
one hidden layer. The RBFNN belongs to the group of
kernel function nets that utilize simple kernel functions as
the hidden neurons, distributed in different neighborhoods
of the input space, and whose responses are essentially
local in nature. The RBF produces a significant nonzero
response only when the input falls within a small-localized
region of the input space [18, 19]. In RBF nets, learning is
generally a two-stage process involving first the recruitment
of the necessary number of hidden neurons, to reflect the
distribution of training data in the input space. Then the
connections between hidden and output layers are adjusted
for optimal fit to the data. This is done in a supervised
manner. These two operations are automated in the learning
algorithm [11]. In MATLAB, learning is started from zero
neuron at first. By comparing the output error, the number
of neuron is added automatically until the error requirement
is matched.

3.2. Application of ANN. The main objective of this study is
to predict carbonation depth of prestressed concrete under
different stress states. And, an experimental research was
performed to obtain practical carbonation results. As seen in
Table 2, stress level of concrete (SL) and testing age (TA) had
significant influences on carbonation depth of the concretes.
Therefore, these two very important parameters are taken
into account in the proposed ANN model. Additionally,
some very important concrete mixture parameters such
as water-cement ratio (W/C), cement-fine aggregate ratio
(C/FA), and cement-coarse aggregate ratio (C/CA) are also

defined as the other input parameters of the proposed
ANN model. Meanwhile, the depth of carbonation (DC) is
selected as the output parameter of the proposed model.
In order to eliminate the influence of different parameters’
dimension and acquire accurate results, some input and
output parameters should be normalized in the range of
[0 : 1] via (2). In this study, parameters of SL, W/C, C/FA,
and C/CA are all in the range of −1 to 1, while the TA and
DC parameters are beyond this range greatly and should be
normalized. All input and output parameters are given in
Table 3:

αi = xi − xmin

xmax − xmin
, (2)

where αi represents parameters used in the ANN training
process; xi is the ith value of input/output parameter
xmax, xmin the maximum and minimum values of the ith
parameter, respectively.

To BPNN model, a three-layer neuron network is chosen
and it is essential to determine the number of hidden layer
neuron rationally. After trial and error, a 5-10-1 neuron
network is adopted to develop the BPNN model. That means
that there are 5 nodes in the input layer, corresponding
to 5 factors of SL, TA, W/C, C/FA and C/CA, one hidden
layer with 10 nodes, and one node in the output layer
corresponding to DC, while, in the RBFNN, the input and
output parameters are the same with BPNN and the node
number of hidden layer need not be confirmed. All the
training and testing work are done by using MATLAB.

4. Results and Discussion

4.1. Experimental Results and Discussion. The results of
accelerated carbonation experiment are also listed in Table 2.
Figure 3 distinctly shows the relationship between carbon-
ation depths and carbonation periods for concretes with
different stress levels. The depths of carbonation were
observed after the period of 30, 45, 60, and 90 days.

As generally known, the carbonation depth in a given
concrete progresses with exposure duration. However, the
rate of carbonation, in the cases of accelerated carbona-
tion conditions and natural exposure conditions, reduces
with respect to time period and is usually considered as
proportional to the square root of exposure period [5–7].
According to square root theory, the depth of carbonation, x,
can be considered related to the exposure duration, t(a), in
accordance with Fick’s first law of diffusion [5–7], expressed
as

x = k
√
t. (3)

Here, k is the accelerated carbonation coefficient (mm
/
√
a), usually considering these factors including environ-

mental conditions, material property and concentration of
CO2, and so forth. But, the stress level of concrete is scarcely
taken into account.

From Figure 3, however, it can be concluded that the
stress level in concrete has significant influence on con-
crete carbonation process and its depth. Under the same



6 Advances in Artificial Neural Systems

conditions, the carbonation rate in tensile concrete is faster
than that in none stress concrete, while the carbonation
rate in compressive concrete is slower than that in none
stress concrete. For example, at the total time period of
90 days, the depth of carbonation in the tensile specimen
(λσ = 0.701) is 1.39 times higher than that of compressive
specimen (λσ = −0.721). The possible reason for this would
be that tensile stress in concrete will damage the aggregate-
paste interface and increase the connectivity of pores and
the permeability of concrete, so that the diffusion speed of
CO2 and carbonation rate will be expedited [20] and that
the compressive stresses in concrete impede CO2 diffusion,
which can be attributed to the reduction in the porosity of
the concrete because the compressive stresses may partially
close some microcracks in concrete.

So, to prestressed concrete structures, the stress level of
concrete should be considered when the depth of carbon-
ation is calculated. Based on (3), the depth of carbonation
considering the stress level of concrete could be described as

x = K
√
t = k · kσ ·

√
t, (4)

where kσ is an influenced coefficient of stress level of
concrete; K represented the integrated coefficient of carbon-
ation, which also takes the stress level into account (mm
/
√
a).
The coefficient k can be obtained from the accelerated

experiment results of none stress specimen, and the average
value of k got from our experiment is 78.23 mm/

√
a (see

Figure 4). But, it should be noticed that the carbon dioxide
concentration (c0) contained in the conventional environ-
ment is normally about 0.03%, whereas the concentration of
20% was performed in the accelerated test. Hence, the ratio
of carbonation coefficient of the two cases could be expressed
in terms of carbon dioxide concentration as shown in (5)
[21]. It meant that the carbonation rate under environmental
conditions is approximately 25.82 times slower than that of
the accelerated carbonation test carried out in this study:

kacc

kenv
=
√
c0,acc√
co,env

≈
√

20%√
0.03%

= 25.82. (5)

The coefficient kσ could be assumed as a polynomial
relation with the stress level as shown in (6):

kσ = 1 + α

(
σc(t)
fc(t)

)
+ β

(
σc(t)
fc(t)

)2

= 1 + α · λσ + β · λ2
σ . (6)

Here, α and β are two recursive coefficients. Based on the
results of our accelerated carbonation test, two parameters
of α and β are obtained. And the depths of carbonation,
x (mm), related to the exposure time, t (d), in this study can
be expressed as follows:

Compression : x = 78.23× (1 + 0.0604λσ − 0.3843λ2
σ

)
·
√
t/360,

(7)

Tension : x = 78.23× (1 + 0.0518λσ + 0.1153λ2
σ

)
·
√
t/360.

(8)

4.2. ANN Training and Testing Results and Discussion. The
training and testing results based on proposed BPNN and
RBFNN models are listed in Table 3. Figure 5 distinctly
shows the relationships between the prediction results of two
above ANNs and the experimental results of our accelerated
carbonation test. The percentage errors of training and
testing results are given in Figure 6.

From Figures 5 and 6, it can be obtained that the
predictions of two proposed ANNs are perfect, and that the
maximum absolute percentage errors of BPNN and RBFNN
are 10.88% and 8.46% for both training and testing data sets,
respectively. Therefore, the two ANNs appear to have a high
generalization capability in the prediction of carbonation
depth in prestressed concrete, and it is concluded that
artificial neural network (ANN) technology is a feasible way
to analyze and predict carbonation depth in concrete.

Besides, based on the prediction results of two ANNs,
the RBFNN model shows a better prediction precision in
comparison to the proposed 5-10-1 BPNN model. It is
known that the precision of BPNN model may be pertinent
to the network architecture, mainly the number of hidden
layer. That is, the prediction precision of our given BPNN
maybe can be improved by adding the number of hidden
layers appropriately, which may be higher than that of
RBFNN. This issue is just about one major limitation of BP
neural network mentioned in the initial discussion. There-
fore, based on two aspects including prediction precision
and application convenience, it is commendatory to choose
RBFNN to predict the carbonation depth of concrete and
solve other problems in civil engineering.

5. Conclusion

In this study, two artificial neural network (ANN) models,
BPNN and RBFNN, are built to predict the depth of
carbonation of prestressed concrete based on our accelerated
carbonation test. The following conclusions are drawn from
this study.

(i) Accelerated carbonation test results indicate that
stress level of prestressed concrete has a significant
influence on concrete carbonation process. Tension
stress in concrete will damage the aggregate-paste
interface, increase the connectivity of pores, and
finally improve the carbonation rate. In contrast,
compression stress in concrete will reduce the poros-
ity of the concrete, increase the compactness of
concrete, and finally slow the carbonation process.
And this influence could be expressed by the stress
level, σc/ fc or σt/ ft, of concrete.

(ii) It is found that the two ANN models, BPNN and
RBFNN, seem to have a high prediction and gener-
alization capability in the prediction of carbonation
depth of prestressed concretes in terms of stress
level of concrete, water-cement ratio, cement-fine
aggregate ratio, cement-coarse aggregate ratio, and
testing age. For both training and testing data sets,
the maximum absolute percentage errors of BPNN
and RBFNN are 10.88% and 8.46%, respectively. On
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Table 3: Normalized input/output pairs and the training and testing results.

Number
Input Output/DC(mm)

SL TA W/C C/FA C/CA Experiment BPNN RBFNN

Training

A1 −0.309 0 0.4 0.669 0.410 23.20 23.47 23.57

A3 −0.309 1.0 0.4 0.669 0.410 34.45 34.62 34.10

A5 −0.515 0.5 0.4 0.669 0.410 26.38 26.38 28.23

A6 −0.515 1.0 0.4 0.669 0.410 31.56 32.17 31.37

A7 −0.721 0 0.4 0.669 0.410 19.95 21.22 20.38

A8 −0.721 0.5 0.4 0.669 0.410 25.13 24.62 25.84

B10 0.313 0.25 0.4 0.669 0.410 29.60 30.07 29.28

B12 0.563 0.25 0.4 0.669 0.410 30.20 30.35 29.92

B13 0.563 1.0 0.4 0.669 0.410 39.10 39.03 38.54

B15 0.701 1.0 0.4 0.669 0.410 40.50 40.43 40.22

C17 0 0.25 0.4 0.669 0.410 29.10 29.80 28.87

C19 0 1.0 0.4 0.669 0.410 36.45 36.23 36.69

Testing

A2 −0.309 0.5 0.4 0.669 0.410 31.90 28.43 30.47

A4 −0.515 0 0.4 0.669 0.410 22.50 22.31 22.06

A9 −0.721 1.0 0.4 0.669 0.410 29.19 31.21 28.50

B11 0.313 1.0 0.4 0.669 0.410 37.50 37.15 37.69

B14 0.701 0.25 0.4 0.669 0.410 31.15 30.24 31.48

C16 0 0 0.4 0.669 0.410 25.45 27.26 24.73

C18 0 0.5 0.4 0.669 0.410 31.92 31.10 32.43

account of the complexity of carbonation process,
these errors are acceptable in civil engineering.
Therefore, ANN is an effective tool to predict the
carbonation depth in concrete.

(iii) The precision of BPNN model may be pertinent
to the network architecture, and the end user must
design a suitable architecture by a costly trial-and-
error approach, while the node number of hidden
layer in RBFNN is adjusted automatically in the
learning algorithm. Based on prediction accuracy and
convenience of application, it is commendatory to
choose RBFNN to predict the carbonation depth of
concrete and solve other problems in civil engineer-
ing.

(iv) Using ANN to solve any problem, it is very significant
to obtain enough training and testing data to build a
perfect neural network. In our study, some specimens
with W/C = 0.5 were abandoned because they were
carbonated completely in the accelerated experiment.
Therefore, further study will be performed to gain
more carbonation data and formulate a better pro-
cedure to predict carbonation depth in prestressed
concrete beams using ANNs. The optimized program
developed by using ANN technology can provide
a new practical approach to analysis the issue of
concrete carbonation.
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