Increasing Prevalence of Unique Mutation Patterns in H5N1 Avian Influenza Virus HA and NA Glycoproteins from Human Infections in Egypt

El-Sayed M. Abdelwhab, Hafez M. Hafez, Mona M. Aly, Christian Grund, and Timm C. Harder

1 Institute of Poultry Diseases, Free Berlin University, Koenigsweg 63-14163 Berlin, Germany
2 Animal Health Research Institute, P.O. Box 246-Dokki, Giza-12618, Egypt
3 O.I.E. and National Reference Laboratories for Avian Influenza and Newcastle Disease, Friedrich-Loeffler Institute, Suedufer 10, Isle of Riems, 17493 Greifswald, Germany

Correspondence should be addressed to Timm C. Harder, timm.harder@fli.bund.de

Received 16 April 2010; Revised 1 June 2010; Accepted 11 June 2010

Copyright © 2010 El-Sayed M. Abdelwhab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Highly pathogenic avian influenza H5N1 virus (HPAIV) continues to be a candidate of a further influenza virus pandemic. Egypt is the country worst affected by human cases of HPAIV H5N1 infection in 2009. Increased infection of preschool children and decreased mortality rates suggested subtle changes in the epidemiology of the infection. Among other factors, the evolution of several conspicuous viral genetic markers in the HA and NA genes of HPAIV H5N1 viruses of human cases from Egypt and their putative influence on biological virus characteristics described here may contribute to this situation.

From March 2006 to April 9, 2010, 34 human fatalities out of 109 cases of human highly pathogenic avian influenza virus (HPAIV) H5N1 infection have been reported from Egypt [1, 2]. Transmission has mainly been linked to close contact with infected poultry although limited human-to-human transmission within several family clusters was proposed [3]. This has caused considerable concern about the pandemic potential of HPAIV H5N1 in Egypt.

Egypt is one of the countries most severely affected by HPAIV H5N1 in the world in 2009. Despite nationwide poultry vaccination campaigns, endemicity persists and caused 39 human H5N1 infections in 2009; already 19 occurred in 2010 [1, 2]. Most of the human cases in 2009 were reported in toddlers and children less than 6 years old (n = 32; 74%). All but one of them recovered. In general, there seems to be a decreasing tendency in both age of the reported human H5N1 patient and fatality rates (2006: 10/18, 56%; 2007: 9/25, 36%, 2008: 4/8, 50%, 2009: 4/39, 10%), especially last year [1]. This has been observed earlier and changes of the HPAIV H5N1 strains infecting humans were suggested which favor a less pathogenic, and therefore clinically unremarkable, course of infection correlating with decreasing age of the patient [4, 5].

When analyzing GenBank data of HA gene sequences (n = 310; 280 used for analysis) of HPAIV H5N1 viruses from Egypt phylogenetically, sequences from human cases of year 2009 form two separate clusters together with a number of poultry viruses, mainly from ducks isolated from several Egyptian provinces (see Figure 1 in Supplementary Material available online at doi: 10.1155/2010/450823, red and blue branches; 6–8). Viruses within one of these clusters (Supplementary Figure S1, depicted by red branches) show a conspicuous deletion of amino acid 129 (Δ129) in the hemagglutinin (H) protein (H5 numbering, Table 1). S129 is part of the receptor binding site and also belongs to an antigenic site [6, 7]. This deletion is not present in the parent H5N1 A/Goose/Guangdong/1/96 virus [8] or in the H5N1 viruses originally introduced into Egypt in 2006 [9, 10]. Isolates from nonhuman mammals (felids and dogs; GenBank, n = 22) likewise do not reveal the 129-deletion. Interestingly, Δ129 viruses accounted for the majority of sequenced human infections in Egypt in 2009. This is
a significant increase in prevalence among humans: whereas the variant was not detected in 2006 (0/16), human isolates in the years 2007–2009 revealed the Δ129 deletion in 21% (5/23), 33% (2/7), and 85% (21/25) of sequenced cases, respectively. Interestingly, we found a similar deletion in the H protein at the corresponding position of all human seasonal H1N1 and H3N2 viruses. Previously, it was reported that a mutation at this site (S129L) decreased virulence of HPAIV H5N1 in mice [6]. Two further mutations concurrently present in the HA of Δ129 HPAIV H5N1 viruses are noteworthy: S120N is unique to Egyptian H5N1 strains, and I141T is also seen in all human seasonal H1N1 and H3N2 viruses. All three mutations are located in the globular head of the HA monomer as shown in Supplementary Figure 2 [6, 7]. Also, the neuraminidase (NA) protein of Egyptian H5N1 viruses of human origin is carrying two unique mutations with as yet undefined functions (D46 and F339, H5N1 numbering, Table 1) which became grossly enriched in HPAIV H5N1 in mice [6].

Despite intensified public awareness for the new pandemic H1N1 influenza virus, the looming danger of an incursion of HPAIV H5N1 viruses into the human population on a broad front has not ceased in the meantime. Defining the frontier of HPAIV H5N1 transmission from poultry to humans remains one of the most important challenges of HPAIV-control strategies. Based on the observations presented, we hypothesize that the Δ129 variant appears to represent a valuable molecular marker for further studying epidemiology of HPAIV H5N1 infections in Egypt. Further experiments using the tools of reverse genetics are needed in order to clarify the role of these genetic markers [12].

Acknowledgments

El-Sayed is funded by a grant from the German Academic Exchange Service to the Free University of Berlin. The work by the authors on Egyptian HPAIV H5N1 is cofunded in the frame of an O.I.E. Twinning project between the AHRI, Giza, and the FLI, Riems.

References

Submit your manuscripts at http://www.hindawi.com