Research Article

Multiple Periodic Solutions to a Suspension Bridge Wave Equation with Damping

Shanshan Wang and Yukun An

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Correspondence should be addressed to Shanshan Wang, wangshanshan7233@126.com

Received 3 September 2011; Accepted 11 October 2011

Academic Editors: G. Mantica and T. Tran

Copyright © 2011 S. Wang and Y. An. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the existence of multiple periodic solutions for a suspension bridge wave equation with damping. By using Leray-Schauder degree theory, the authors prove that the damped wave equation has multiple periodic solutions.

1. Introduction

In [1], also see [2–6], the author considered a horizontal cross-section of the center span of a suspension bridge and proposed a partial differential equation model for the torsional motion of the cross-section and treated the center span of the bridge as a beam of length L and width $2l$ suspended by cables. Consider the horizontal cross-section of mass m located at position x along the length of the span. She treated this cross-section as a rod of length $2l$ and mass m suspended by cables. Let $y(x,t)$ denote the downward distance of the center of gravity of the rod from the unloaded state and let $\theta(x,t)$ denote the angle of the rod from horizontal at time t. Assume that the cables do not resist compression, but resist elongation according to Hooke’s law with spring constant K. Then the torsional and vertical motion of the span satisfy

$$
\theta_{tt} - \varepsilon_1 \theta_{xx} = \frac{3K}{ml} \cos[(y - l \sin \theta)^+ - \delta \theta] + h_1(x,t),
$$

$$
y_{tt} + \varepsilon_2 y_{xxxx} = -\frac{K}{m} [(y - l \sin \theta)^+ + (y + l \sin \theta)^+] - \delta y_t + g + h_2(x,t),
$$

$$
\theta(0,t) = \theta(L,t) = y(0,t) = y(L,t) = y_{xx}(0,t) = y_{xx}(L,t) = 0,
$$

(1.1)
where \(u^* = \max \{u, 0\}, \varepsilon_1, \varepsilon_2 \) are physical constants related to the flexibility of the beam, \(\delta \) is the damping constant, \(h_1 \) and \(h_2 \) are external forcing terms, and \(g \) is the acceleration due to gravity. The spatial derivatives describe the restoring force that the beam exerts, and the time derivatives \(\theta_t \) and \(y_t \) represent the force due to friction. The boundary conditions reflect the fact that the ends of the span are hinged.

Throughout the paper [1] the author assumes that the cables never lose tension; that is, it is assumed that \((y \pm \sin \theta) \geq 0\). In this case, we see that (1.1) becomes uncoupled, and the torsional and vertical motions satisfy, respectively,

\[
\theta_t - \varepsilon_1 \theta_{xx} = \frac{6K}{m} \cos \theta \sin \theta - \delta \theta_t + h_1(x, t),
\]

\[
\theta(0, t) = \theta(L, t) = 0,
\]

\[
y_t + \varepsilon_2 y_{xxxx} = -\frac{2K}{m} y - \delta y_t + g + h_2(x, t),
\]

\[
y(0, t) = y(L, t) = y_{xx}(0, t) = y_{xx}(L, t) = 0.
\]

In paper [1], removing the damping term; that is, let \(\delta = 0 \), changing variables, and imposing boundary and periodicity conditions, the author rewrites (1.2) as

\[
u_{tt} - u_{xx} + b \sin u = \varepsilon h(x, t),
\]

\[
u(0, t) = \nu(\pi, t) = 0,
\]

\[
u(x, 0) = \nu(x, \pi), \quad \nu_t(x, 0) = \nu_t(x, \pi),
\]

\[
u(x, t) = \nu(\pi - x, t), \quad \nu(x, t) = \nu(x, \pi - t).
\]

And it proves that (1.4) has at least two solutions in the subspace \(H \) of \(L^2 \). Where \(H \) is defined as

\[
H = \{ \nu \in L^2(\Omega) u(x, t) = u(\pi - x, t), u(x, t) = u(x, \pi - t), \; \nu \text{ is } \pi - \text{periodic in } t \}. \tag{1.5}
\]

Notice that (1.4) is particular in no damping and the selection of \(H \). Hence, in [1] the author left a problem which is relevant to this case.

Problem 1. “Under appropriate hypotheses on the forcing term, does a similar result hold for the damped equation?”

Motivated by this problem, in this paper, we suppose that the damping is present, that is, \(\delta \neq 0 \), and study the following problem:

\[
u_{tt} - u_{xx} + \delta u_t + b \sin u = \varepsilon h(x, t),
\]

\[
u(0, t) = \nu(\pi, t) = 0,
\]

\[
u(x, 0) = \nu(x, \pi), \quad \nu_t(x, t) = \nu_t(x, \pi),
\]

\[
u(x, t) = \nu(\pi - x, t).
\]

\[
\theta_t - \varepsilon_1 \theta_{xx} = \frac{6K}{m} \cos \theta \sin \theta - \delta \theta_t + h_1(x, t),
\]
2. Preliminaries

Let \(N = \{0, 1, \ldots\} \) and \(Z \) be the set of integers, \(\Lambda = N \times N \). Let \(\Omega = (0, \pi) \times (0, \pi) \) and \(L^2(\Omega) \) be the usual space of square integrable functions with usual inner product \(\langle \cdot, \cdot \rangle \) and corresponding norm \(\| \cdot \| \). For the Sobolev space \(H^1(\Omega) \), we denote the standard inner product by \(\langle u, v \rangle_1 = (u, v) + (u_x, v_x) + (u_t, v_t) \) and norm by \(\| u \|_1 \).

Define the operator \(L_\delta u = u_{tt} - u_{xx} + \delta u_t : H \to H \) by

\[
D(L_\delta) = \left\{ u \in H \mid u(x, t) = \sum_{\Lambda} u_{mn} \Phi_{mn} \sum_{\Lambda} \left(\left((2n + 1)^2 - 4m^2 \right)^2 + 4m^2 \delta^2 \right) |u_{mn}|^2 < \infty \right\},
\]

\[
L_\delta u = \sum_{\Lambda} \left((2n + 1)^2 - 4m^2 + 2m\delta \right) u_{mn} \Phi_{mn}, \quad \text{for all} \ u \in H.
\]

(2.1)

We know that the eigenvalues and corresponding eigenfunctions of \(L_\delta \) are

\[
\lambda_{mn} = (2n + 1)^2 - 4m^2 + 2m\delta, \quad (m, n) \in \Lambda,
\]

\[
\Phi_{mn}(x, t) = e^{2mti} \sin(2n + 1)x, \quad (m, n) \in \Lambda.
\]

(2.2)

In order to seek the solutions of (1.6), we first investigate the properties of operator \(L_\delta \). We have the following Lemma.

Lemma 2.1. \(L_\delta^{-1} \) exists, \(L_\delta^{-1} : H \to H \) is compact, and \(\| L_\delta^{-1} \| = 1 \).

Proof. Because we are restricted to the subspace \(H \) of \(L^2 \), and \(\lambda_{mn} \neq 0 \), we easily know \(L_\delta^{-1} \) exists.

We prove \(L_\delta^{-1} : H \to H \) is compact below. We find that

\[
L_\delta^{-1} u = \sum_{\Lambda} \frac{1}{(2n + 1)^2 - 4m^2 + 2m\delta} u_{mn} \Phi_{mn},
\]

(2.3)

for all \(u = \sum_{\Lambda} u_{mn} \Phi_{mn} \in H \). For any \((m, n) \in \Lambda \), we have

\[
\left| (2n + 1)^2 - 4m^2 + 2m\delta \right|^2 \geq 1,
\]

(2.4)

then

\[
\left\| L_\delta^{-1} u \right\|^2 = \sum_{\Lambda} \left| \frac{1}{(2n + 1)^2 - 4m^2 + 2m\delta} u_{mn} \right|^2 \leq \sum_{\Lambda} |u_{mn}|^2 = \| u \|^2.
\]

(2.5)
Hence,
\[\|L^{-1}_\delta u\| \leq \|u\|. \] (2.6)

On the other hand,
\[\left\| L^{-1}_\delta u \right\|_1^2 \leq \sum_\Lambda \left| \frac{1 + (2n + 1)^2 + 4m^2}{(2n + 1)^2 - 4m^2 + 4m^2 \delta^2} u_{mn} \right|^2, \] (2.7)

while
\[
\frac{1 + (2n + 1)^2 + 4m^2}{(2n + 1)^2 - 4m^2 + 4m^2 \delta^2} = \frac{1 + (2n + 1)^2 + 4|m|^2}{(2n + 2|m| + 1)^2 + 4|m|^2 \delta^2} \\
\leq \frac{(2n + 2|m| + 1)^2 + 1}{(2n + 2|m| + 1)^2} \\
\leq 2.
\]

Hence,
\[\left\| L^{-1}_\delta u \right\|_1^2 \leq 2 \sum_\Lambda |u|^2 = 2\|u\|. \] (2.9)

By (2.6) and (2.9), we can find that the operator \(L^{-1}_\delta : H \to H\) is compact since the embedding \(H^1 \to L^2\) is compact.

Finally, we prove \(\|L^{-1}_\delta\| = 1\). By (2.2) and
\[|\lambda_{mn}|^2 = \left| (2n + 1)^2 - 4m^2 + 2m6i \right|^2 \geq 1. \] (2.10)

Set \(u = \Phi_{00}\), such that \(\|L^{-1}_\delta u\|/\|u\| = 1\). Therefore,
\[\left\| L^{-1}_\delta \right\| = 1. \] (2.11)

Hence, we complete the proof of this lemma. \(\square\)
Definition 2.2. One says that \(u \in H \) is a solution to (1.6) if
\[
 u = L_0^{-1}(\varepsilon h - b \sin u). \tag{2.12}
\]

To establish the existence of multiple periodic solutions to (1.6), we use Leray-Schauder degree theory to prove the existence of multiple zeros of a related operator \(T_1 \). To compute the degree of \(T_1 \), we continuously deform it to a linear operator \(T_0 \), the Gâteaux derivative of \(T_1 \), and compute its degree via a direct calculation.

It is not difficult to show that the homotopy property of Leray-Schauder degree ensures that the degree of an operator \(T_1 \) is preserved as \(T_1 \) is continuously deformed to its Fréchet derivative under appropriate hypotheses. However, the nonlinear term in (1.6), \(f(u) = \sin u \), is not Fréchet differentiable in \(L^2 \) at \(u = 0 \).

There is a theorem in paper [1], in which, the author shows that, under certain conditions on the nonlinear term \(f \) and the differential operator \(L \), Leray-Schauder degree is indeed preserved under homotopy from the operator \(T_1 \) to its Gâteaux derivative \(T_0 \). This result can be used to establish multiplicity of solutions to equations of the form (1.6). The result follows.

Lemma 2.3. Let \(I_1, I_2 \) be open, bounded intervals in \(\mathbb{R} \), and define \(Q := I_1 \times I_2 \). Let \(B \) be a subspace of \(L^p(Q) \), \(p \geq 1 \), and define \(\|u\| := \|u\|_{L^p} \). Consider the problem
\[
 Lu + f(u) = \varepsilon h(x,t), \tag{2.13}
\]
where \(L, f, \) and \(h \) satisfy the following:

(H1) \(L^{-1} \) is compact;
(H2) \(\|L^{-1}\| \leq 1 \);
(H3) \(f(0) = 0 \);
(H4) \(f \) is Lipschitz with Lipschitz constant \(M \);
(H5) \(h \in B \) and \(h \leq 1 \);
(H6) the Gâteaux derivative \(df(0, u) \) exists and satisfies \(df(0, u) = \rho u \), where \(\rho > 0 \) and \(-\rho\) is not an eigenvalue of \(L \).

Define \(T_0 : B \to B \) by
\[
 T_0(u) = u + \rho L^{-1}(u), \tag{2.14}
\]
and \(T_1 : B \to B \) by
\[
 T_1(u) = u - L^{-1}(\varepsilon h - f(u)). \tag{2.15}
\]

Then for \(\varepsilon \) sufficiently small, there exists \(\gamma > 0 \) such that
\[
 \deg(T_1, B_{\gamma}(0), 0) = \deg(T, B_{\gamma}(0), 0). \tag{2.16}
\]
3. Result and Proof

The main result of this paper is as follows.

Theorem 3.1. Let \(h \in H \) with \(\| h \| \leq 1 \), and let \(b \in (-\sqrt{25 + 4\delta^2}, -\sqrt{9 + 4\delta^2}) \), \(0 < \delta^2 < 14 \). Then there exists \(\epsilon_0 > 0 \) such that if \(|\epsilon| < \epsilon_0 \), (1.6) has at least two solutions in \(H \).

Proof. Let \(L = L_\delta \) and \(f(u) = b \sin u \), it is easy to know that \(L \) and \(f \) satisfy the conditions (H1–H5) in Lemma 2.3.

Reply Lemma 2.3, we define \(T_0: H \to H \) by

\[
T_0(u) = u + bL_\delta^{-1}(u),
\]

and \(T_1: H \to H \) by

\[
T_1(u) = u - L_\delta^{-1}(\epsilon h - b \sin(u)).
\]

And note that zeros of \(T_1 \) correspond to solutions of (1.6). To prove the theorem, we will show the following:

- (C1) there exists \(R_0 > 0 \) such that for \(R > R_0 \), \(\deg(T_1, B_R(0), 0) = 1 \);
- (C2) there exists \(\gamma \in (0, R_0) \) such that \(\deg(T_1, B_\gamma(0), 0) = -1 \).

Then, since \(\deg(T_1, B_\gamma(0), 0) \neq 0 \), there exists a zero of \(T_1 \) (i.e., a solution of (1.6)) in \(B_\gamma(0) \). Moreover, by the additivity property of degree, \(\deg(T_1, B_R(0) \setminus B_\gamma(0), 0) \neq 0 \) and hence (1.6) has a second solution in the annulus \(B_R(0) \setminus B_\gamma(0) \).

To establish (C1), define

\[
T_\beta u = u - \beta L_\delta^{-1}(\epsilon h - b \sin(u)),
\]

or \(\beta \in [0, 1] \), and note that this definition of \(T_1 \) is consistent with our previous definition. Note also that \(T_0 \) is simply the identity map; hence, for any \(R > 0 \) we have \(\deg(T_0, B_R(0), 0) = 1 \).

The homotopy property of degree ensures that \(\deg(T_\beta, B_R(0), 0) \) is constant provided that

\[
0 \in T_\beta(\partial B_R(0)) \quad \text{for all} \quad \beta \in [0, 1].
\]

Fix \(\beta \in [0, 1] \) and suppose \(u \in H \) solves \(T_\beta u = 0 \). We will show that \(u \) is bounded above by some \(R_0 > 0 \) and that this bound is independent of \(\beta \).

Since \(T_\beta u = 0 \), we have

\[
\|u\| = \beta \left\| L_\delta^{-1}(\epsilon h - b \sin u) \right\| \leq \beta(\epsilon_0 + b\|\sin u\|)
\]

\[
\leq \left[\epsilon_0 + b \sin(\Omega) \right] < \left[\epsilon_0 + b \sqrt{2\pi} \right] < R_0,
\]

if we choose \(R_0 > \epsilon_0 + b \sqrt{2\pi} \).

Thus, for \(R > R_0 \), we have

\[
\deg(T_1, B_R(0), 0) = \deg(T_0, B_R(0), 0) = 1,
\]

and (C1) above holds.
To establish (C2), let \(\varepsilon < \varepsilon_0 \); we will determine the value of \(\varepsilon_0 \) later. For \(\mu \in [0, 1] \) define

\[
T_\mu u = u + (1 - \mu)L^{-1}_0(\varepsilon h - b \sin u),
\]

and note again that this definition of \(T_1 \) is consistent with our previous definitions. We will again apply the homotopy property of degree (via Lemma 2.3) and a standard degree calculation to show that for some \(\gamma > 0 \)

\[
\text{deg}(T_1, B_\gamma(0), 0) = \text{deg}(T_0, B_\gamma(0), 0) = -1.
\]

Observe that for \(L = L_\delta \) and \(f(u) := b \sin u \), hypotheses (H1)–(H5) of Lemma 2.3 are satisfied. To verify hypothesis (H6), we need to show that

\[
df(0, u) = bu.
\]

By definition of the \(Gâteaux \) derivative,

\[
df(0, u) = \frac{d}{dt}f(0 + tu)|_{t=0} = \lim_{h \to 0} \frac{f((t + h)u) - f(tu)}{h} |_{t=0} = \lim_{h \to 0} \frac{b \sin(hu)}{h}.
\]

We will show that the limit above (in \(H \)) is \(bu \).

Note first that in \(R \) we have

\[
\lim_{h \to 0} \frac{\sin(hu)}{h} = \lim_{h \to 0} \frac{\sin(hu)}{h} \cdot \frac{u}{u} = u,
\]

and hence

\[
\left| \frac{\sin(hu)}{h} - u \right|^2 \to 0,
\]

as \(h \to 0 \). Invoking the convexity of \(u^2 \), we have

\[
\left| \frac{\sin(hu)}{h} - u \right|^2 \leq 4 \left[\frac{1}{2} \left| \frac{\sin(hu)}{h} \right|^2 + \frac{1}{2} |u|^2 \right] \leq 4u^2.
\]
Since \(u \in L^2 \), \(|(\sin(hu)/h) - u|^2\) is dominated in \(L^1 \); thus by the dominated convergence theorem,
\[
\left\| \frac{b \sin(hu)}{h} - bu \right\| \to 0,
\]
(3.13)
as \(h \to 0 \); therefore (3.8) holds. Moreover, by the form of eigenvalue of \(L_\delta \) and our choice of \(b \), \(-b\) is not an eigenvalue of \(L_\delta \); therefore hypothesis (H6) of Lemma 2.3 holds. Thus, by Lemma 2.3, for sufficiently small \(\gamma, \varepsilon > 0 \), we have
\[
\deg(T_0, B_1(0), 0) = \deg(T_1, B_1(0), 0).
\]
(3.14)
Finally, we will show that
\[
\deg(T_0, B_1(0), 0) = \deg(I + bL^{-1}_\delta, B_1(0), 0) = -1.
\]
(3.15)
Consider the finite dimensional subspace \(MN = \text{span}\{\Phi_{mn}\}_{n=0}^N \) of \(H \) and recall that, by compactness, \(bL^{-1}_\delta \) can be approximated in operator norm by the operators \(B_N : M_N \to M_N \) given by
\[
B_N(u) = b \sum_{N} \sum_{N} \frac{c_{mn}}{\lambda_{mn}} \Phi_{mn}.
\]
(3.16)
By definition of Leray-Schauder degree, for \(N \) sufficiently large,
\[
\deg(T_0, B_1(0), 0) = \deg\left(I + B_N, B_1(0) \cap M_N, 0\right) = \sum_{u \in (I + B_N)^{-1}(0)} \text{sgn} J_{I + B_N}(u),
\]
(3.17)
where \(J_{\Phi}(u) \) is the Jacobian determinant of \(\Phi \) at \(u \).
Since \(I + B_N \) can be identified with an \((2N + 1)^2 \times (2N + 1)^2\) diagonal matrix whose entries are \(1 + b/\lambda_{mn} \), we have
\[
\deg\left(I + B_N, B_1(0) \cap M_N, 0\right) = \text{sgn} \prod_{m=-N}^{N} \prod_{n=-N}^{N} \left(1 + \frac{b}{\lambda_{mn}}\right).
\]
(3.18)
Now we consider the following two cases.

(D1) If \(\lambda_{mn} \) contains imaginary part, suppose a pair of conjugate complex numbers are \(a \pm ci \) (\(c \neq 0 \)), then,
\[
\left(1 + \frac{b}{a + ci}\right)\left(1 + \frac{b}{a - ci}\right) = \frac{(a + b)^2 + c^2}{a^2 + c^2} > 0.
\]
(3.19)
(D2) If λ_{mn} is real, then $m = 0$, here $\lambda_{nn} = (2n + 1)^2$.

Since $b \in (-\sqrt{25 + 4\delta^2}, -\sqrt{9 + 4\delta^2})$, and $0 < \delta^2 < 14$, the only negative value of $1 + b/(2n + 1)^2$ occurs at λ_{30}. Therefore,

$$\deg\left(I + B_N, B_T(0) \cap M_N, 0\right) = -1. \quad (3.20)$$

The proof of the theorem is complete.

References

Submit your manuscripts at
http://www.hindawi.com