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Abstract. 
We aim at investigating the geometric properties of the solutions of the initial-value problem which involves the following third-order linear differential equations: 
	
		
			

				𝜔
			

			
				
				
				
			

			
				(
				𝑧
				)
				+
				𝑄
				(
				𝑧
				)
				𝜔
			

			

				
			

			
				(
				𝑧
				)
				=
				0
			

		
	
,
				
	
		
			
				𝜔
				(
				0
				)
				=
				0
			

		
	
,
				
	
		
			

				𝜔
			

			

				
			

			
				(
				0
				)
				=
				1
			

		
	
,
				
	
		
			

				𝜔
			

			
				
				
			

			
				(
				0
				)
				=
				0
			

		
	
, where 
	
		
			
				𝑄
				(
				𝑧
				)
			

		
	
 is analytic in the open unit disk 
	
		
			

				𝑈
			

		
	
.


1. Introduction
Let 
	
		
			

				𝐴
			

		
	
 denote the class of functions 
	
		
			

				𝑓
			

		
	
 normalized by
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				,
			

		
	

					which are analytic in the open unit disk 
	
		
			

				𝑈
			

		
	
 
	
		
			

				=
			

		
	
 
	
		
			
				{
				𝑧
			

		
	
: 
	
		
			
				𝑧
				∈
				ℂ
			

		
	
 and 
	
		
			
				|
				𝑧
				|
			

		
	
 
	
		
			
				<
				1
				}
			

		
	
.
 Also let 
	
		
			

				𝑆
			

		
	
, 
	
		
			

				𝑆
			

			

				∗
			

		
	
, 
	
		
			

				𝑆
			

			

				∗
			

			
				(
				𝛼
				)
			

		
	
, 
	
		
			

				𝐶
			

		
	
, and 
	
		
			
				𝐶
				(
				𝛼
				)
			

		
	
 denote the subclasses of 
	
		
			

				𝐴
			

		
	
 consisting of functions which are, respectively, univalent, starlike with respect to the origin, starlike of order 
	
		
			

				𝛼
			

		
	
 in 
	
		
			

				𝑈
			

		
	
 (
	
		
			
				0
				≤
				𝛼
				<
				1
			

		
	
), convex with respect to the origin, and convex of order 
	
		
			

				𝛼
			

		
	
 in 
	
		
			

				𝑈
			

		
	
 (
	
		
			
				0
				≤
				𝛼
				<
				1
			

		
	
) (see, for details, [1–4]). Furthermore, 
	
		
			
				𝑆
				𝑆
			

			

				∗
			

			
				(
				𝛽
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				∗
			

			
				𝐶
				(
				𝛽
				)
			

		
	
 denote the subclasses of 
	
		
			

				𝐴
			

		
	
 consisting of functions which are strongly starlike of order 
	
		
			

				𝛽
			

		
	
 and strongly convex of order 
	
		
			

				𝛽
			

		
	
 in 
	
		
			

				𝑈
			

		
	
, 
	
		
			
				0
				<
				𝛽
				≤
				1
			

		
	
 (see, [5, 6]).
 For functions 
	
		
			
				𝑓
				∈
				𝐴
			

		
	
 with 
	
		
			

				𝑓
			

			

				
			

			
				(
				𝑧
				)
				≠
				0
			

		
	
 (
	
		
			
				𝑧
				∈
				𝑈
			

		
	
), we define the Schwarzian derivative of 
	
		
			

				𝑓
			

		
	
 by
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				
				𝑓
				𝑆
				(
				𝑓
				,
				𝑧
				)
				∶
				=
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑓
			

			

				
			

			
				
				(
				𝑧
				)
			

			

				
			

			
				−
				1
			

			
				
			
			
				2
				
				𝑓
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑓
			

			

				
			

			
				
				(
				𝑧
				)
			

			

				2
			

			
				,
				
				𝑓
				∈
				𝐴
				;
				𝑓
			

			

				
			

			
				
				.
				(
				𝑧
				)
				≠
				0
				,
				𝑧
				∈
				𝑈
			

		
	

					Note that Nehari [7] had proven the quotient of the linearly independent solution of (1.2) is univalent, while Robertson [8] and Miller [9] proved that the unique solution of the equation:
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑊
			

			
				
				
			

			
				(
				𝑧
				)
				+
				𝑎
				(
				𝑧
				)
				𝑊
				(
				𝑧
				)
				=
				0
				,
				𝑊
				(
				0
				)
				=
				0
				,
				𝑊
			

			

				
			

			
				(
				0
				)
				=
				1
			

		
	

					is starlike.
 Now, let 
	
		
			

				𝐵
			

			

				𝐽
			

		
	
 denote the class of bounded functions 
	
		
			
				𝜔
				(
				𝑧
				)
				=
				𝜔
			

			

				1
			

			
				𝑧
				+
				𝜔
			

			

				2
			

			

				𝑧
			

			

				2
			

			
				+
				⋯
			

		
	
 analytic in the unit disk 
	
		
			

				𝑈
			

		
	
 for which 
	
		
			
				|
				𝜔
				(
				𝑧
				)
				|
				<
				𝐽
			

		
	
. If 
	
		
			
				𝑔
				(
				𝑧
				)
				∈
				𝐵
			

			

				𝐽
			

		
	
, then by using the Schwarz lemma, the function 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 defined by
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				𝜔
				(
				𝑧
				)
				=
				𝑧
			

			
				−
				1
				/
				2
			

			

				
			

			
				𝑧
				0
			

			
				𝑔
				(
				𝑡
				)
				𝑡
			

			
				−
				1
				/
				2
			

			
				𝑑
				𝑡
			

		
	

					is also in 
	
		
			

				𝐵
			

			

				𝐽
			

		
	
. Thus, in terms of derivatives, we have
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				1
			

			
				
			
			
				2
				𝜔
				(
				𝑧
				)
				+
				𝑧
				𝜔
			

			

				
			

			
				|
				|
				|
				|
				|
				|
				|
				(
				𝑧
				)
				<
				𝐽
				,
				(
				𝑧
				∈
				𝑈
				)
				,
				⟹
				𝜔
				(
				𝑧
				)
				<
				𝐽
				,
				(
				𝑧
				∈
				𝑈
				)
				.
			

		
	

					In 1999, Saitoh [10] proved that the differential equation
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
				+
				𝑎
				(
				𝑧
				)
				𝜔
			

			

				
			

			
				(
				𝑧
				)
				+
				𝑏
				(
				𝑧
				)
				𝜔
				(
				𝑧
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				𝑎
				(
				𝑧
				)
			

		
	
 and 
	
		
			
				𝑏
				(
				𝑧
				)
			

		
	
 are analytic in the unit disc 
	
		
			

				𝑈
			

		
	
, has a solution 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 univalent and starlike in 
	
		
			

				𝑈
			

		
	
 under some conditions. Then in 2004, Owa et al. [11] studied geometric properties of the solutions of initial-value problem (1.6) and later, Saitoh [12] studied geometric properties of the solutions of the following second-order linear differential equation:
						
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			

				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
				+
				𝑃
			

			

				𝑛
			

			
				(
				𝑧
				)
				𝜔
				(
				𝑧
				)
				=
				0
				,
			

		
	

					where 
	
		
			

				𝑃
			

			

				𝑛
			

			
				(
				𝑧
				)
			

		
	
 is nonconstant polynomial of degree 
	
		
			
				𝑛
				≥
				1
			

		
	
.
 In this work, we aim at studying certain geometric properties of the solutions of the following initial-value problem:
						
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			

				𝜔
			

			
				
				
				
			

			
				(
				𝑧
				)
				+
				𝑄
				(
				𝑧
				)
				𝜔
			

			

				
			

			
				(
				𝑧
				)
				=
				0
				,
				𝜔
				(
				0
				)
				=
				0
				,
				𝜔
			

			

				
			

			
				(
				0
				)
				=
				1
				,
				𝜔
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				∑
				𝑄
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
 is analytic in 
	
		
			

				𝑈
			

		
	
.
 In order to prove our main results, we need the following definitions and theorems.
Definition 1.1 (see [13]). Let 
	
		
			

				𝐻
			

			

				𝐽
			

		
	
 be the set of complex functions 
	
		
			
				ℎ
				(
				𝑢
				,
				𝑣
				)
			

		
	
 satisfying the following: (i)
	
		
			
				ℎ
				(
				𝑢
				,
				𝑣
				)
			

		
	
 is continuous in a domain 
	
		
			
				𝐷
				⊂
				ℂ
				×
				ℂ
			

		
	
;(ii)
	
		
			
				(
				0
				,
				0
				)
				∈
				𝐷
			

		
	
 and 
	
		
			
				|
				ℎ
				(
				0
				,
				0
				)
				|
				<
				𝐽
			

		
	
;(iii)
	
		
			
				|
				ℎ
				(
				𝐽
				𝑒
			

			
				𝑖
				𝜃
			

			
				,
				𝐾
				𝑒
			

			
				𝑖
				𝜃
			

			
				)
				|
				≥
				𝐽
			

		
	
 when 
	
		
			
				(
				𝐽
				𝑒
			

			
				𝑖
				𝜃
			

			
				,
				𝐾
				𝑒
			

			
				𝑖
				𝜃
			

			
				)
				∈
				𝐷
			

		
	
, 
	
		
			

				𝜃
			

		
	
 is real and 
	
		
			
				𝐾
				≥
				𝐽
			

		
	
.
Definition 1.2 (see [13]). Let 
	
		
			
				ℎ
				∈
				𝐻
			

			

				𝐽
			

		
	
 with corresponding domain 
	
		
			

				𝐷
			

		
	
. We denote by 
	
		
			

				𝐵
			

			

				𝐽
			

			
				(
				ℎ
				)
			

		
	
 those functions 
	
		
			
				𝜔
				(
				𝑧
				)
				=
				𝜔
			

			

				1
			

			
				𝑧
				+
				𝜔
			

			

				2
			

			

				𝑧
			

			

				2
			

			
				+
				⋯
			

		
	
 which are analytic in 
	
		
			

				𝑈
			

		
	
 satisfying (i)
	
		
			
				(
				𝜔
				(
				𝑧
				)
				,
				𝑧
				𝜔
			

			

				
			

			
				(
				𝑧
				)
				)
				∈
				𝐷
			

		
	
,(ii)
	
		
			
				|
				ℎ
				(
				𝜔
				(
				𝑧
				)
				,
				𝑧
				𝜔
			

			

				
			

			
				(
				𝑧
				)
				)
				|
				<
				𝐽
			

		
	
 
	
		
			
				(
				𝑧
				∈
				𝑈
				)
			

		
	
.
Theorem 1.3 (see [10]).  For any 
	
		
			
				ℎ
				∈
				𝐻
			

			

				𝐽
			

		
	
,
							
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝐽
			

			
				(
				ℎ
				)
				⊂
				𝐵
			

			

				𝐽
			

			
				,
				
				ℎ
				∈
				𝐻
			

			

				𝐽
			

			
				
				.
				;
				𝐽
				>
				0
			

		
	

Theorem 1.4 (see [10]).  Let 
	
		
			
				ℎ
				∈
				𝐻
			

			

				𝐽
			

		
	
 and 
	
		
			
				𝑏
				(
				𝑧
				)
			

		
	
 be an analytic function in 
	
		
			

				𝑈
			

		
	
 with 
	
		
			
				|
				𝑏
				(
				𝑧
				)
				|
				<
				𝐽
			

		
	
. If the differential equation
							
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				ℎ
				
				𝜔
				(
				𝑧
				)
				,
				𝑧
				𝜔
			

			

				
			

			
				
				(
				𝑧
				)
				=
				𝑏
				(
				𝑧
				)
				,
				𝜔
				(
				0
				)
				=
				0
				,
				𝜔
				(
				0
				)
				=
				1
			

		
	

						has a solution 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 analytic in 
	
		
			

				𝑈
			

		
	
, then 
	
		
			
				|
				𝜔
				(
				𝑧
				)
				|
				<
				𝐽
			

		
	
.
2. Main Results
Theorem 2.1.  Let 
	
		
			
				∑
				𝑄
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
 be analytic in 
	
		
			

				𝑈
			

		
	
 with
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				<
				𝐽
				(
				𝑧
				∈
				𝑈
				,
				𝐽
				>
				0
				)
				,
			

		
	

						and let 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 denote the solution of the initial value problem (1.8) in 
	
		
			

				𝑈
			

		
	
. Then
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				
				1
				−
				𝐽
				<
				ℜ
				1
				+
				𝑧
				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜔
			

			

				
			

			
				
				(
				𝑧
				)
				>
				1
				+
				𝐽
				(
				𝑧
				∈
				𝑈
				,
				𝐽
				>
				0
				)
				.
			

		
	

Proof. If we let
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑧
				)
				=
				𝑧
				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜔
			

			

				
			

			
				,
				(
				𝑧
				)
			

		
	

						then 
	
		
			
				𝑢
				(
				𝑧
				)
			

		
	
 is analytic in 
	
		
			

				𝑈
			

		
	
, such that 
	
		
			
				𝑢
				(
				0
				)
				=
				0
			

		
	
 and (1.8) becomes
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				[
				]
				𝑢
				(
				𝑧
				)
			

			

				2
			

			
				−
				𝑢
				(
				𝑧
				)
				+
				𝑧
				𝑢
			

			

				
			

			
				(
				𝑧
				)
				=
				−
				𝑧
			

			
				2
				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	

						or, equivalently,
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				ℎ
				
				𝑢
				(
				𝑧
				)
				,
				𝑧
				𝑢
			

			

				
			

			
				
				(
				𝑧
				)
				=
				−
				𝑧
			

			
				2
				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				,
			

		
	

						where, for convenience,
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				ℎ
				(
				𝜉
				,
				𝜂
				)
				=
				𝜉
			

			

				2
			

			
				−
				𝜉
				+
				𝜂
				.
			

		
	

						From assumption, we have
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				<
				𝐽
				(
				𝑧
				∈
				𝑈
				,
				𝐽
				>
				0
				)
				.
			

		
	

						By using Theorem 1.4, we have
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑢
				(
				𝑧
				)
				<
				𝐽
			

		
	

						which, in view of the relationship (2.3), yields
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑧
				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜔
			

			

				
			

			
				|
				|
				|
				|
				(
				𝑧
				)
				<
				𝐽
				,
			

		
	

						that is,
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				
				1
				−
				𝐽
				<
				ℜ
				1
				+
				𝑧
				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜔
			

			

				
			

			
				
				(
				𝑧
				)
				>
				1
				+
				𝐽
				(
				𝑧
				∈
				𝑈
				,
				𝐽
				>
				0
				)
				.
			

		
	

Letting 
	
		
			
				𝐽
				=
				1
			

		
	
 in Theorem 2.1, we have the following corollary.
Corollary 2.2.  Let  
	
		
			
				∑
				𝑄
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
 be analytic in  
	
		
			

				𝑈
			

		
	
 with 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				<
				1
				.
			

		
	

						Let 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 be the solution of the initial-value problem in (1.8) in 
	
		
			

				𝑈
			

		
	
. Then 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 is convex in 
	
		
			

				𝑈
			

		
	
.
Example 2.3. Let 
	
		
			
				𝑄
				(
				𝑧
				)
				=
				1
			

		
	
 in Corollary 2.2; the solution of the following initial-value problem:
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝜔
			

			
				
				
				
			

			
				(
				𝑧
				)
				+
				𝜔
			

			

				
			

			
				(
				𝑧
				)
				=
				0
				,
				𝜔
				(
				0
				)
				=
				0
				,
				𝜔
			

			

				
			

			
				(
				0
				)
				=
				1
				,
				𝜔
			

			
				
				
			

			
				(
				0
				)
				=
				0
			

		
	

						is given by
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝜔
				(
				𝑧
				)
				=
				s
				i
				n
				𝑧
				∈
				𝐶
				.
			

		
	

Theorem 2.4.  Let 
	
		
			
				∑
				𝑄
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
 be analytic in 
	
		
			

				𝑈
			

		
	
 with
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				<
				𝐽
				(
				𝑧
				∈
				𝑈
				,
				0
				<
				𝐽
				≤
				1
				)
				.
			

		
	

						Let 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 be the solution of the initial-value problem in (1.8) in 
	
		
			

				𝑈
			

		
	
. Then 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
 is strongly convex of order 
	
		
			

				𝛼
			

		
	
, that is,
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				a
				r
				g
				1
				+
				𝑧
				𝜔
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜔
			

			

				
			

			
				
				|
				|
				|
				|
				<
				𝜋
				(
				𝑧
				)
			

			
				
			
			
				2
				𝛼
			

		
	

						for some 
	
		
			

				𝛼
			

		
	
 (
	
		
			
				0
				<
				𝛼
				≤
				1
			

		
	
) and
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				2
				𝛼
				=
			

			
				
			
			
				𝜋
				s
				i
				n
			

			
				−
				1
			

			
				𝐽
				(
				0
				<
				𝐽
				≤
				1
				)
				.
			

		
	

Proof. By using the same technique as in the proof of Theorem 2.1, the required result is obtained.
Remark 2.5. Putting 
	
		
			
				𝛼
				=
				1
			

		
	
 in Theorem 2.4, we have Corollary 2.2.
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