Research Article

Geometric Properties Solutions of a Class of Third-Order Linear Differential Equations

Afaf Ali Abubaker and Maslina Darus
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600 Bangi, Malaysia

Correspondence should be addressed to Maslina Darus, maslina@ukm.my

Received 21 September 2011; Accepted 25 October 2011

Academic Editors: H. Du and F. Lebon

Copyright © 2011 A. A. Abubaker and M. Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We aim at investigating the geometric properties of the solutions of the initial-value problem which involves the following third-order linear differential equations:

\[\frac{\omega'''}{z} + Q(z)\omega' = 0, \quad \omega(0) = 0, \quad \omega'(0) = 1, \quad \omega''(0) = 0, \]

where \(Q(z)\) is analytic in the open unit disk \(U\).

1. Introduction

Let \(A\) denote the class of functions \(f\) normalized by

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \]

which are analytic in the open unit disk \(U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}\).

Also let \(S, S^*, S^*(\alpha), C,\) and \(C(\alpha)\) denote the subclasses of \(A\) consisting of functions which are, respectively, univalent, starlike with respect to the origin, starlike of order \(\alpha\) in \(U (0 \leq \alpha < 1)\), convex with respect to the origin, and convex of order \(\alpha\) in \(U (0 \leq \alpha < 1)\) (see, for details, [1–4]). Furthermore, \(SS^*(\beta)\) and \(C^C(\beta)\) denote the subclasses of \(A\) consisting of functions which are strongly starlike of order \(\beta\) and strongly convex of order \(\beta\) in \(U, 0 < \beta \leq 1\) (see, [5, 6]).

For functions \(f \in A\) with \(f'(z) \neq 0, z \in U\), we define the Schwarzian derivative of \(f\) by

\[S(f, z) := \left(\frac{f''(z)}{f'(z)} \right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)} \right)^2, \quad (f \in A; f'(z) \neq 0, z \in U). \]
Note that Nehari [7] had proven the quotient of the linearly independent solution of (1.2) is univalent, while Robertson [8] and Miller [9] proved that the unique solution of the equation:

$$W''(z) + a(z)W(z) = 0, \quad W(0) = 0, \quad W'(0) = 1$$ \hspace{1cm} (1.3)

is starlike.

Now, let B_J denote the class of bounded functions $\omega(z) = \omega_1 z + \omega_2 z^2 + \cdots$ analytic in the unit disk U for which $|\omega(z)| < J$. If $g(z) \in B_J$, then by using the Schwarz lemma, the function $\omega(z)$ defined by

$$\omega(z) = z^{-1/2} \int_0^z g(t) t^{-1/2} dt$$ \hspace{1cm} (1.4)

is also in B_J. Thus, in terms of derivatives, we have

$$\left| \frac{1}{2} \omega'(z) + z \omega''(z) \right| < J, \quad (z \in U), \quad \implies |\omega'(z)| < J, \quad (z \in U).$$ \hspace{1cm} (1.5)

In 1999, Saitoh [10] proved that the differential equation

$$\omega''(z) + a(z)\omega'(z) + b(z)\omega(z) = 0,$$ \hspace{1cm} (1.6)

where $a(z)$ and $b(z)$ are analytic in the unit disc U, has a solution $\omega(z)$ univalent and starlike in U under some conditions. Then in 2004, Owa et al. [11] studied geometric properties of the solutions of initial-value problem (1.6) and later, Saitoh [12] studied geometric properties of the solutions of the following second-order linear differential equation:

$$\omega''(z) + P_n(z)\omega(z) = 0,$$ \hspace{1cm} (1.7)

where $P_n(z)$ is nonconstant polynomial of degree $n \geq 1$.

In this work, we aim at studying certain geometric properties of the solutions of the following initial-value problem:

$$\omega''(z) + Q(z)\omega'(z) = 0, \quad \omega(0) = 0, \quad \omega'(0) = 1, \quad \omega''(0) = 0,$$ \hspace{1cm} (1.8)

where $Q(z) = \sum_{n=0}^{\infty} b_n z^n$ is analytic in U.

In order to prove our main results, we need the following definitions and theorems.

Definition 1.1 (see [13]). Let H_J be the set of complex functions $h(u, v)$ satisfying the following:

(i) $h(u, v)$ is continuous in a domain $D \subset \mathbb{C} \times \mathbb{C}$;
(ii) $(0, 0) \in D$ and $|h(0, 0)| < J$;
(iii) $|h(Je^{i\theta}, Ke^{i\theta})| \geq J$ when $(Je^{i\theta}, Ke^{i\theta}) \in D$, θ is real and $K \geq J$.

Definition 1.2 (see [13]). Let $h \in H_f$ with corresponding domain D. We denote by $B_f(h)$ those functions $\omega(z) = \omega_1z + \omega_2z^2 + \cdots$ which are analytic in U satisfying

(i) $(\omega(z), zw'(z)) \in D,$
(ii) $|h(\omega(z), zw'(z))| < J(z \in U).

Theorem 1.3 (see [10]). For any $h \in H_f,$

$$B_f(h) \subset B_f, \quad (h \in H_f; J > 0). \quad (1.9)$$

Theorem 1.4 (see [10]). Let $h \in H_f$ and $b(z)$ be an analytic function in U with $|b(z)| < J$. If the differential equation

$$h(\omega(z), zw'(z)) = b(z), \quad \omega(0) = 0, \quad \omega(0) = 1 \quad (1.10)$$

has a solution $\omega(z)$ analytic in U, then $|\omega(z)| < J$.

2. Main Results

Theorem 2.1. Let $Q(z) = \sum_{n=0}^{\infty} b_n z^n$ be analytic in U with

$$\sum_{n=0}^{\infty} |b_n| < J \quad (z \in U, J > 0), \quad (2.1)$$

and let $\omega(z)$ denote the solution of the initial value problem (1.8) in U. Then

$$1 - J < \Re \left\{ 1 + \frac{z\omega''(z)}{\omega'(z)} \right\} > 1 + J \quad (z \in U, J > 0). \quad (2.2)$$

Proof. If we let

$$u(z) = \frac{z\omega''(z)}{\omega'(z)}, \quad (2.3)$$

then $u(z)$ is analytic in U, such that $u(0) = 0$ and (1.8) becomes

$$[u(z)]^2 - u(z) + z u'(z) = -z^2 \sum_{n=0}^{\infty} b_n z^n \quad (2.4)$$

or, equivalently,

$$h(u(z), zu'(z)) = -z^2 \sum_{n=0}^{\infty} b_n z^n, \quad (2.5)$$

where, for convenience,

$$h(\xi, \eta) = \xi^2 - \xi + \eta. \quad (2.6)$$
From assumption, we have
\[\sum_{n=0}^{\infty} |b_n| < J \quad (z \in \mathcal{U}, J > 0). \] (2.7)

By using Theorem 1.4, we have
\[|u(z)| < J \] (2.8)

which, in view of the relationship (2.3), yields
\[\left| \frac{z\omega''(z)}{\omega'(z)} \right| < J, \] (2.9)

that is,
\[1 - J < \Re \left\{ 1 + \frac{z\omega''(z)}{\omega'(z)} \right\} > 1 + J \quad (z \in \mathcal{U}, J > 0). \] (2.10)

Letting \(J = 1 \) in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let \(Q(z) = \sum_{n=0}^{\infty} b_n z^n \) be analytic in \(\mathcal{U} \) with
\[\sum_{n=0}^{\infty} |b_n| < 1. \] (2.11)

Let \(\omega(z) \) be the solution of the initial-value problem in (1.8) in \(\mathcal{U} \). Then \(\omega(z) \) is convex in \(\mathcal{U} \).

Example 2.3. Let \(Q(z) = 1 \) in Corollary 2.2; the solution of the following initial-value problem:
\[\omega'''(z) + \omega'(z) = 0, \quad \omega(0) = 0, \quad \omega'(0) = 1, \quad \omega''(0) = 0 \] (2.12)

is given by
\[\omega(z) = \sin z \in \mathbb{C}. \] (2.13)

Theorem 2.4. Let \(Q(z) = \sum_{n=0}^{\infty} b_n z^n \) be analytic in \(\mathcal{U} \) with
\[\sum_{n=0}^{\infty} |b_n| < J \quad (z \in \mathcal{U}, 0 < J \leq 1). \] (2.14)
Let $\omega(z)$ be the solution of the initial-value problem in (1.8) in U. Then $\omega(z)$ is strongly convex of order α, that is,

$$\left| \arg \left(1 + \frac{z \omega''(z)}{\omega'(z)} \right) \right| < \frac{\pi}{2} \alpha$$

(2.15)

for some α ($0 < \alpha \leq 1$) and

$$\alpha = \frac{2}{\pi} \sin^{-1} J \quad (0 < J \leq 1).$$

(2.16)

Proof. By using the same technique as in the proof of Theorem 2.1, the required result is obtained.

Remark 2.5. Putting $\alpha = 1$ in Theorem 2.4, we have Corollary 2.2.

Acknowledgment

The work presented here was partially supported by UKM-ST-FRGS-0244-2010.

References

