Research Article

Some New Identities on the q-Genocchi Numbers and Polynomials with Weight α

Seog-Hoon Rim and Joohee Jeong

Department of Mathematics Education, Kyungpook National University, Daegu 702-701, Republic of Korea

Correspondence should be addressed to Joohee Jeong, jhjeong@knu.ac.kr

Received 20 September 2011; Accepted 15 November 2011

Academic Editor: A. Bellouquid

Copyright © 2011 S.-H. Rim and J. Jeong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We construct a new type of q-Genocchi numbers and polynomials with weight α. From these q-Genocchi numbers and polynomials with weight α, we establish some interesting identities and relations.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p will, respectively denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = 1/p$. When one talks of q-extension, q is variously considered as an indeterminate, a complex $q \in \mathbb{C}$, or a p-adic number q. In this paper, we assume that $q \in \mathbb{C}_p$ with $|1-q|_p < 1$. As a definition of q-numbers, we use the notation of q-number of

$$[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (q)^x}{1 + q} \quad (1.1)$$

(cf. [1–11]). Note that $\lim_{q \to 1} [x]_q = x$. Let $C(\mathbb{Z}_p)$ be the space of continuous functions on \mathbb{Z}_p. For $f \in C(\mathbb{Z}_p)$, the p-adic invariant integral on \mathbb{Z}_p is defined by Kim [1, 3],

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N-1} f(x) (-q)^x. \quad (1.2)$$
From (1.2), we have the well-known integral equation

\[
q^n L_1(f_n) + (-1)^{n-1} I_q(f) = [2]_q \sum_{l=0}^{n-1} (-1)^l q^l f(l)
\]

(1.3)

(see [1, 3]), where \(f_n(x) = f(x + n), (n \in \mathbb{N}). \)

For \(\alpha \in \mathbb{N}, \) in [11], the \(q \)-Genocchi polynomials with weight \(\alpha \) are introduced by

\[
t \int_{\mathbb{Z}_p} e^{[x+y]_{q^\alpha}} d\mu_{-q}(y) = \sum_{n=0}^{\infty} \tilde{G}_{n,q}^{(\alpha)}(x) \frac{t^n}{n!}.
\]

(1.4)

By comparing the coefficients of both sides of (1.4), we have

\[
\tilde{G}_{0,q}^{(\alpha)}(x) = 0,
\]

\[
\frac{\tilde{G}_{n+1,q}^{(\alpha)}(x)}{(n + 1)} = \int_{\mathbb{Z}_p} [x + y]_q^n d\mu_{-q}(y), \quad \text{for } n \in \mathbb{N}.
\]

(1.5)

In the special case, \(x = 0, \tilde{G}_{n,q}^{(\alpha)}(0) = \tilde{G}_{n,q}^{(\alpha)} \) are called the \(n \)th \(q \)-Genocchi numbers with weight \(\alpha. \)

2. \(q \)-Genocchi Numbers and Polynomials with Weight \(\alpha \)

In this section, we show some new identities on the \(q \)-Genocchi numbers and polynomials with weight \(\alpha. \) And we establish the distribution relation for \(q \)-Genocchi polynomials with weight \(\alpha. \)

From (1.5), we can easily see that

\[
\frac{\tilde{G}_{n+1,q}^{(\alpha)}(x)}{n + 1} = \frac{[2]_q}{[\alpha]_q (1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{alx} \frac{q_1}{1 + q_1l+1}.
\]

(2.1)

From (1.5) and (2.1), we note that

\[
\frac{\tilde{G}_{n+1,q}^{(\alpha)}(x)}{n + 1} = \int_{\mathbb{Z}_p} [x + y]_q^n d\mu_{-q}(y)
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} [x]_{q^l} q^{alx} \int_{\mathbb{Z}_p} [y]_q^l d\mu_{-q}(y)
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} [x]_{q^l} q^{alx} \tilde{G}_{n+1,q}^{(\alpha)}(x) \frac{q_1}{1 + q_1l+1}
\]

(2.2)
Theorem 2.1. For $\alpha \in \mathbb{N}$ and $n \in \mathbb{Z}_+$, one has

$$q^{ax}\tilde{G}_{n+1,q}^{(a)}(x) = (n + 1)q^{ax}(x)_q^{n+1}$$

$$= \sum_{l=0}^{n+1} \binom{n+1}{l} (x)_q^n q^{alx} \tilde{G}_{l+1,q}^{(a)}$$

with the usual convention of replacing $(\tilde{G}_q^{(a)})^n$ by $(\tilde{G}_q^{(a)})$.

Thus, by (2.3), we have a theorem.

Theorem 2.1. For $\alpha \in \mathbb{N}$ and $n \in \mathbb{Z}_+$, one has

$$q^{ax}\tilde{G}_{n+1,q}^{(a)}(x) = (n + 1)q^{ax}(x)_q^{n+1}$$

In (1.3), if we take $n = 1$,

$$qI_{-1}(f_1) + I_{-1}(f) = [2]_q.$$

We apply $f(x) = e^{[x]_q}a^x$ with (1.5), and we have the following:

$$[2]_q = \sum_{n=0}^{\infty} \left(q \int_{\mathbb{Z}_q} [x + 1]_q^n d\mu_{-q}(x) + \int_{\mathbb{Z}_q} [x]_q^n d\mu_{-q}(x) \right) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(q^{\tilde{G}_{n+1,q}^{(a)}(1)} + \frac{\tilde{G}_{n+1,q}^{(a)}}{n+1} \right) \frac{t^n}{n!}.$$

By comparing the coefficients on both the sides in (2.6), we get

$$q^{\tilde{G}_{n+1,q}^{(a)}(1)} + \frac{\tilde{G}_{n+1,q}^{(a)}}{n+1} = \begin{cases} [2]_q & \text{if } n = 0, \\ 0 & \text{if } n > 0. \end{cases}$$
From (2.2) and (2.7), we can derive the following:

\[
\tilde{G}_{1,q}^{(\alpha)}(1) = 1, \\
q^{1-a} \left(q^n\tilde{G}_{q}^{(\alpha)} + 1 \right)^n + \tilde{G}_{n,q}^{(\alpha)} = 0 \quad \text{if } n \in \mathbb{N},
\]

(2.8)

with the usual convention of replacing \((\tilde{G}_{q}^{(\alpha)})^n\) by \(\tilde{G}_{n,q}^{(\alpha)}\).

For a fixed odd positive integer \(d\) with \((p,d) = 1\), we set

\[
X = X_d = \lim_{\longrightarrow} \frac{\mathbb{Z}}{dp^N \mathbb{Z}}, \quad X_1 = \mathbb{Z}_p, \\
X^* = \bigcup_{0 < a < dp, (a,p) = 1} (a + dp \mathbb{Z}_p),
\]

(2.9)

\[
a + dp^N \mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \},
\]

where \(a \in \mathbb{Z}\) satisfies the condition \(0 \leq a < dp^N\). For the distribution relation for the \(q\)-Genocchi polynomials with weight \(\alpha\), we consider the following:

\[
\int_{\mathbb{Z}_p} [x + y]_q^n d\mu_q(y) = \int_{\mathbb{Z}_p} [n + y]_q^n d\mu_q(y) \\
= \frac{[d]^n}{[d]_q} \sum_{a=0}^{d-1} (-1)^a q^a \int_{\mathbb{Z}_p} \left[\frac{x + a}{d} + y \right]_q^n d\mu_q(y).
\]

(2.10)

By (1.5) and (2.10), we get a theorem.

Theorem 2.2. For \(\alpha \in \mathbb{N}\) and \(n \in \mathbb{Z}_+\), \(d \in \mathbb{N}\) with \(d \equiv 1(\mod 2)\), one has

\[
\tilde{G}_{n+1,q}^{(\alpha)}(\chi) = \frac{[d]^n}{[d]_q} \sum_{a=0}^{d-1} (-1)^a q^a \tilde{G}_{n+1,q}^{(\alpha)} \left(\frac{x + a}{a} \right).
\]

(2.11)

3. Higher-Order \(q\)-Genocchi Numbers and Polynomials with Weight \(\alpha\)

In this section, we define higher-order \(q\)-Genocchi polynomials \(\tilde{G}_{n+1,q}^{(\alpha)}(h,k \mid x)\) and numbers \(\tilde{G}_{n+1,q}^{(\alpha)}(h,k)\) with weight \(\alpha\). We find an integral equation for higher-order \(q\)-Genocchi numbers with weight \(\alpha\). And we establish a combination property.
Let $\alpha \in \mathbb{Z}$ and $h, k \in \mathbb{Z}_+$, for $n \in \mathbb{Z}_+$, then we define higher-order q-Genocchi polynomials with weight α as follows:

$$
\tilde{G}_{n+1,q}(h, k | x) = \left[\sum_{j=0}^{k} \left(\frac{2}{[\alpha]_q^n (1-q^n)_{[n]}} \sum_{l=0}^{\infty} \frac{(n)_l (-1)^{l \cdot n} q^{n \cdot l}}{(1 + q^{l+1}) (1 + q^{l+1})} \right) \right]
$$

$$
= \left[\frac{2}{[\alpha]_q^n (1-q^n)} \sum_{l=0}^{\infty} \frac{(n)_l (-1)^{l \cdot n} q^{n \cdot l}}{(1 + q^{l+1}) (1 + q^{l+1})} \right]
$$

$$
= \left[\frac{2}{[\alpha]_q^n (1-q^n)} \sum_{l=0}^{\infty} \frac{(n)_l (-1)^{l \cdot n} q^{n \cdot l}}{(1 + q^{l+1}) (1 + q^{l+1})} \right]
$$

where $(x: q)_n = \prod_{j=0}^{n-1} (1 - x q^j)$.

In the special case, $x = 0$, $\tilde{G}_{n+1,q}(h, k | 0) = \tilde{G}_{n+1,q}(h, k)$ are called the $(n+1)$th (h, k)-Genocchi numbers with weight α.

In (3.1), apply the following identity:

$$
[x_1 + x_2 + \cdots + x_k]_q (1 - q^n) + q^n (x_1 + x_2 + \cdots + x_k) = 1,
$$

and we have a theorem.

Theorem 3.1. For $\alpha \in \mathbb{N}$ and $h, k \in \mathbb{Z}_+$, one has

$$
\frac{\tilde{G}_{n+1,q}(h, k)}{n+1} = \frac{\tilde{G}_{n+2,q}(h, k)}{n+2} + \frac{\tilde{G}_{n+1,q}(h + \alpha, k)}{n+1}.
$$

We consider, for $\alpha \in \mathbb{N}$ and $h, k \in \mathbb{Z}_+$,

$$
\sum_{j=0}^{i} \binom{i}{j} (q^a - 1)^j \frac{\tilde{G}_{n+1,q}(h, k)}{n+j-i+1}
$$

$$
= \sum_{j=0}^{i} \binom{i}{j} (q^a - 1)^j \left[\sum_{\ell=1}^{k} \left[\sum_{\ell=1}^{k} x_{\ell} \right]^{n+j-i} q^{\sum_{\ell=1}^{k} (h-a+c) x_{\ell}} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k) \right]
$$

$$
= \sum_{j=0}^{i} \binom{i}{j} (q^a - 1)^j \left[\sum_{\ell=1}^{k} \left[\sum_{\ell=1}^{k} x_{\ell} \right]^{n+j-i} q^{\sum_{\ell=1}^{k} (h-c) x_{\ell}} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k) \right]
$$

$$
= \sum_{j=0}^{i} \binom{i}{j} (q^a - 1)^j \frac{\tilde{G}_{n+1,q}(h, k)}{n+j-i+1}.
$$

Therefore, we obtain the following combinatorial property.

Theorem 3.2. For $\alpha \in \mathbb{N}$ and $h, k \in \mathbb{Z}_+$, one has

\[
\sum_{j=0}^{i-1} \binom{i}{j} (q^a - 1)^j \frac{\tilde{C}^{(a)}_{n+j-i+1}(h - \alpha, k)}{n + j - i + 1} = \sum_{j=0}^{i-1} \binom{i-1}{j} (q^a - 1)^j \frac{\tilde{C}^{(a)}_{n+j-i+1}(h, k)}{n + j - i + 1}.
\] (3.5)

References

Submit your manuscripts at
http://www.hindawi.com