Research Article

Existence for Nonoscillatory Solutions of Higher-Order Nonlinear Differential Equations

Yazhou Tian\(^1\)\(^2\) and Fanwei Meng\(^2\)

\(^1\) Department of Basic Courses, Qingdao Technological University (Linyi), Feixian 273400, Shandong, China
\(^2\) Department of Mathematics, Qufu Normal University, Qufu 273165, Shandong, China

Correspondence should be addressed to Yazhou Tian, tianyazhou369@163.com

Received 8 August 2011; Accepted 22 September 2011

Academic Editor: Z. Dosla

Copyright © 2011 Y. Tian and F. Meng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existence of nonoscillatory solutions of the higher-order nonlinear differential equation

\[
[r(t)(x(t) + P(t)x(t - \tau))^{(n-1)}] + \sum_{i=1}^{m} Q_i(t)f_i(x(t - \sigma_i)) = 0, \quad t \geq t_0,
\]

where \(m \geq 1, n \geq 2\) are integers, \(\tau > 0, \sigma_i \geq 0, r, P, Q_i \in C([t_0, \infty), R), f_i \in C(R, R), i = 1, 2, \ldots, m\), is studied. Some new sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general \(Q_i(t) (i = 1, 2, \ldots, m)\) which means that we allow oscillatory \(Q_i(t) (i = 1, 2, \ldots, m)\). In particular, our results improve essentially and extend some known results in the recent references.

1. Introduction

Consider the higher-order nonlinear neutral differential equation

\[
\left[r(t)(x(t) + P(t)x(t - \tau))^{(n-1)}\right] + \sum_{i=1}^{m} Q_i(t)f_i(x(t - \sigma_i)) = 0, \quad t \geq t_0.
\]

(1.1)

With respect to (1.1), throughout, we shall assume the following:

(i) \(m \geq 1, n \geq 2\) are integers, \(\tau > 0, \sigma_i \geq 0\),

(ii) \(r, P, Q_i \in C([t_0, \infty), R), r(t) > 0, f_i \in C(R, R), i = 1, 2, \ldots, m\).

Let \(\rho = \max_{t \in [t_0, \infty)} \{\tau, \sigma_i\}\). By a solution of (1.1), we mean a function \(x(t) \in C([t_1 - \rho, \infty), R)\) for some \(t_1 \geq t_0\) which has the property that \(x(t) + P(t)x(t - \tau) \in C^{n-1}([t_1, \infty), R)\) and \(r(t)(x(t) + P(t)x(t - \tau))^{(n-1)} \in C([t_1, \infty), R)\) and satisfies (1.1) on \([t_1, \infty)\).

A nontrivial solution of (1.1) is called oscillatory if it has arbitrarily large zeros, and, otherwise, it is nonoscillatory.
The existence of nonoscillatory solutions of higher-order nonlinear neutral differential equations received much less attention, which is due mainly to the technical difficulties arising in its analysis.

In 1998, Kulenovic and Hadziomerspahic [1] investigated the existence of nonoscillatory solutions of second-order nonlinear neutral differential equation

\[
(x(t) + cx(t - \tau))^\prime' + Q_1(t)x(t - \sigma_1) - Q_2(t)x(t - \sigma_2) = 0, \quad t \geq t_0, \quad (E_0)
\]

where \(c\) is a constant.

In 2006, Zhang and Wang [2] investigated the second neutral delay differential equation with positive and negative coefficients:

\[
[r(t)(x(t) + P(t)x(t - \tau))]' + Q_1(t)f(x(t - \sigma_1)) - Q_2(t)g(x(t - \sigma_2)) = 0, \quad t \geq t_0, \quad (E)
\]

where \(\tau > 0, \sigma_i \geq 0, Q_1, Q_2 \in \mathcal{C}([t_0, \infty), R^+), f, g \in \mathcal{C}(R, R), x f(x) > 0, x g(x) > 0, (x \neq 0)\). By using Banach contraction mapping principle, they proved the following theorem which extends the results in [1].

Theorem A ([2, Theorem 2.3]). Assume that

\((H_1)\) \(f\) and \(g\) satisfy local Lipschitz condition and \(x f(x) > 0, x g(x) > 0, \) for \(x \neq 0;\)

\((H_2)\) \(Q_i(t) \geq 0, i = 1, 2, a Q_1(t) - Q_2(t)\) is eventually nonnegative for every \(a > 0;\)

\((H_3)\) \(\int_{t_0}^{\infty} \int_{t_0}^{t} (Q_i(t)/r(s)) ds dt < \infty, i = 1, 2\) hold

if one of the following two conditions is satisfied:

\((H_4)\) \(P(t) > 1\) eventually, and \(0 < P_2 \leq P_1 < P_2 < +\infty,\)

\((H_5)\) \(P(t) < -1\) eventually, and \(-\infty < P_2 \leq P_1 < -1,\)

where \(P_1 = \limsup_{t \to \infty} P(t), P_2 = \liminf_{t \to \infty} P(t),\) then (1.1) has a nonoscillatory solution.

In 2007, Zhou [3] studies the existence of nonoscillatory solution of the following second-order nonlinear differential equation.

\[
[r(t)(x(t) + P(t)x(t - \tau))]' + \sum_{i=1}^{m} Q_i(t)f_i(x(t - \sigma_i)) = 0, \quad t \geq t_0, \quad (E')
\]

where \(f_i \in \mathcal{C}(R, R) (i = 1, 2, \ldots, m).\) By using Krasnoselskii’s fixed point theorem, they proved the following theorem.

Theorem B ([3, Theorem 1]). Assume that there exist nonnegative constants \(c_1\) and \(c_2\) such that \(c_1 + c_2 < 1, -c_2 \leq P(t) \leq c_1.\) Further, assume that

\[
\int_{t_0}^{\infty} \int_{t_0}^{t} \frac{|Q_i(t)|}{r(s)} ds dt \leq \infty, \quad i = 1, 2, \ldots, m. \quad (1.2)
\]

Then (1.1) has a bounded nonoscillatory solution.
In this paper, by using Krasnoselskii’s fixed point theorem and some new techniques, we obtain some sufficient conditions for the existence of a nonoscillatory solution of (1.1) for general $Q_i(t)$ ($i = 1, 2, \ldots, m$) which means that we allow oscillatory $Q_i(t)$ ($i = 1, 2, \ldots, m$). Meanwhile, we extend the main results of [2, 3].

2. Main Result

The following fixed point theorem will be used to prove the main results in this section.

Lemma 2.1 (see [3, Krasnoselskii’s fixed point theorem]). Let X be a Banach space, let Ω be a bounded closed convex subset of X, and let S_1, S_2 be maps of Ω into X such that $S_1x + S_2y \in \Omega$ for every pair $x, y \in \Omega$. If S_1 is a contraction and S_2 is completely continuous, then the equation

$$S_1x + S_2x = x$$

has a solution in Ω.

Theorem 2.2. Assume that there exist nonnegative constants c_1 and c_2 such that $c_1 + c_2 < 1$, $-1 < -c_2 \leq P(t) \leq c_1 < 1$. Further, assume that

$$\int_{t_0}^{\infty} \int_{t_0}^{t} \frac{s^{n-2}|Q_i(t)|}{r(s)} ds dt < \infty, \quad i = 1, 2, \ldots, m.$$

(2.2)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By interchanging the order of integral, we note that (2.2) is equivalent to

$$\int_{t_0}^{\infty} s^{n-2} \int_{t_0}^{\infty} \frac{|Q_i(t)|}{r(s)} ds dt < \infty, \quad i = 1, 2, \ldots, m.$$

(2.3)

By (2.3), we choose $T > t_0$ sufficiently large such that

$$\frac{1}{(n-2)!} \int_{t_0}^{T} s^{n-2} \int_{s}^{\infty} \frac{M}{r(s)} \sum_{i=1}^{m} |Q_i(u)| du ds < \frac{1-c_1-c_2}{4},$$

(2.4)

where $M = \max_{(1-c_1-c_2)/2 \leq x \leq 1} \{|f_i(x)| : 1 \leq i \leq m\}$.

Let $C([t_0, \infty), R)$ be the set of all continuous functions with the norm $\|x\| = \sup_{t \geq t_0} |x(t)| < \infty$. Then $C([t_0, \infty), R)$ is a Banach space. We define a bounded, closed, and convex subset Ω of $C([t_0, \infty), R)$ as follows:

$$\Omega = \left\{ x = x(t) \in C([t_0, \infty), R) : \frac{1-c_1-c_2}{2} \leq x(t) \leq 1, \ t \geq t_0 \right\}.$$

(2.5)
Define two maps S_1 and $S_2 : \Omega \rightarrow C([t_0, \infty), R)$ as follows:

\[
(S_1 x)(t) = \begin{cases}
\frac{3 + c_1 - 3c_2}{4} - P(t)x(t - \tau), & t \geq T, \\
(S_1 x)(T), & t_0 \leq t \leq T,
\end{cases}
\]

\[
(S_2 x)(t) = \begin{cases}
\frac{(-1)^{n-1}}{(n-2)!} \int_t^\infty (s-t)^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m |Q_i(u)f_i(y(u - \sigma_i))| \right) du ds, & t \geq T, \\
(S_2 x)(T), & t_0 \leq t \leq T.
\end{cases}
\] (2.6)

(i) We shall show that for any $x, y \in \Omega$, $S_1 x + S_2 y \in \Omega$.
In fact, $x, y \in \Omega$, and $t \geq T$, we get

\[
(S_1 x)(t) + (S_2 y)(t) \leq \frac{3 + c_1 - 3c_2}{4} - P(t)x(t - \tau) + \frac{1}{(n-2)!} \int_t^\infty (s-t)^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m |Q_i(u)f_i(y(u - \sigma_i))| \right) du ds
\]
\[
\leq \frac{3 + c_1 - 3c_2}{4} + c_2 + \frac{1}{(n-2)!} \int_t^\infty \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du ds
\]
\[
\leq \frac{3 + c_1 - 3c_2}{4} + c_2 + \frac{1 - c_1 - c_2}{4} = 1.
\] (2.7)

Furthermore, we have

\[
(S_1 x)(t) + (S_2 y)(t) \geq \frac{3 + c_1 - 3c_2}{4} - P(t)x(t - \tau) - \frac{1}{(n-2)!} \int_t^\infty s^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m |Q_i(u)f_i(y(u - \sigma_i))| \right) du ds
\]
\[
\geq \frac{3 + c_1 - 3c_2}{4} - c_1 - \frac{1}{(n-2)!} \int_t^\infty s^{n-2} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du ds
\]
\[
\geq \frac{3 + c_1 - 3c_2}{4} - c_1 - \frac{1 - c_1 - c_2}{4} = \frac{1 - c_1 - c_2}{2}.
\] (2.8)

Hence,

\[
\frac{1 - c_1 - c_2}{2} \leq (S_1 x)(t) + (S_2 y)(t) \leq 1, \quad \text{for } t \geq t_0.
\] (2.9)

Thus, we have proved that $S_1 x + S_2 y \in \Omega$ for any $x, y \in \Omega$.

(ii) We shall show that S_1 is a contraction mapping on Ω.
In fact, for $x, y \in \Omega$ and $t \geq T$, we have

\[
| (S_1 x)(t) - (S_1 y)(t) | \leq |P(t)||x(t - \tau) - y(t - \tau)| \leq c_0\|x - y\|,
\] (2.10)
where \(c_0 = \max\{c_1, c_2\} \). This implies that

\[
\|S_1x - S_1y\| \leq c_0\|x - y\|. \tag{2.11}
\]

Since \(0 < c_0 < 1 \), we conclude that \(S_1 \) is a contraction mapping on \(\Omega \).

(iii) We now show that \(S_2 \) is completely continuous.

First, we will show that \(S_2 \) is continuous. Let \(x_k = x_k(t) \in \Omega \) be such that \(x_k(t) \to x(t) \) as \(k \to \infty \). Because \(\Omega \) is closed, \(x = x(t) \in \Omega \). For \(t \geq T \), we have

\[
|\langle S_2x_k \rangle(t) - \langle S_2x \rangle(t)|
\leq \frac{1}{(n-2)!} \int_t^\infty s^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m |Q_i(u)||f_i(x_k(u - \sigma_i)) - f_i(x(u - \sigma_i))| \right) du \, ds \tag{2.12}
\]

Since \(|f_i(x_k(t - \sigma_i)) - f_i(x(t - \sigma_i))| \to 0 \) as \(k \to \infty \) for \(i = 1, 2, \ldots, m \), by applying the Lebesgue dominated convergence theorem, we conclude that \(\lim_{k \to \infty} \|\langle S_2x_k \rangle(t) - \langle S_2x \rangle(t)\| = 0 \). This means that \(S_2 \) is continuous.

Next, we show that \(S_2 \Omega \) is relatively compact. It suffices to show that the family of functions \(\{S_2x : x \in \Omega\} \) is uniformly bounded and equicontinuous on \([t_0, \infty) \). The uniform boundedness is obvious. For the equicontinuity, according to Levitan’s result [4], we only need to show that, for any given \(\varepsilon > 0 \), \([T, \infty) \) can be decomposed into finite subintervals in such a way that on each subinterval all functions of the family have change of amplitude less than \(\varepsilon \). By (2.3), for any \(\varepsilon > 0 \), take \(T^* \geq T \) large enough so that

\[
\frac{1}{(n-2)!} \int_{t_0}^\infty s^{n-2} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du \, ds < \frac{\varepsilon}{2}. \tag{2.13}
\]

Then, for \(x \in \Omega \), \(t_2 \geq t_1 \geq T^* \),

\[
|\langle S_2x \rangle(t_2) - \langle S_2x \rangle(t_1)| \leq \frac{1}{(n-2)!} \int_{t_1}^{t_2} s^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m |Q_i(u)||f_i(x(u - \sigma_i))| \right) du \, ds
+ \frac{1}{(n-2)!} \int_{t_1}^{t_2} s^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m |Q_i(u)||f_i(x(u - \sigma_i))| \right) du \, ds \leq \frac{1}{(n-2)!} \int_{t_1}^{t_2} s^{n-2} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du \, ds \tag{2.14}
\]

\[
+ \frac{1}{(n-2)!} \int_{t_1}^{t_2} s^{n-2} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du \, ds < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]
For $x \in \Omega$, $T \leq t_1 < t_2 \leq T^* + 1$,

$$|(S_2x)(t_2) - (S_2x)(t_1)|$$

$$\leq \frac{1}{(n-2)!} \int_{t_1}^{t_2} (s-t_1)^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m Q_i(u)f_i(x(u-\sigma_i)) \right) du \, ds$$

$$+ \frac{1}{(n-2)!} \int_{t_1}^{t_2} (s-t_2)^{n-2} - (s-t_1)^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m Q_i(u)f_i(x(u-\sigma_i)) \right) du \, ds$$

$$\leq \frac{1}{(n-2)!} \int_{t_1}^{t_2} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du |s^{n-2}\int_s^\infty$$

$$+ \frac{1}{(n-3)!} (t_2-t_1) \int_{t_1}^{t_2} (s-\xi)^{n-3} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du ds$$

$$\leq \frac{1}{(n-2)!} \int_{t_1}^{t_2} \int_s^\infty \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du ds$$

$$+ \frac{1}{(n-3)!} (t_2-t_1) \int_{t_1}^{t_2} \int_s^T \frac{M}{r(s)} \sum_{i=1}^m |Q_i(u)| du ds,$$

(2.15)

where $t_1 < \xi < t_2$.

Then there exists $\delta > 0$ such that

$$|(S_2x)(t_2) - (S_2x)(t_1)| < \epsilon, \quad \text{if} \ 0 < t_2 - t_1 < \delta.$$ (2.16)

For any $x \in \Omega$, $t_0 \leq t_1 < t_2 \leq T$, it is easy to see that

$$|(S_2x)(t_2) - (S_2x)(t_1)| = 0 < \epsilon.$$ (2.17)

Therefore, $\{S_2x : x \in \Omega\}$ is uniformly bounded and equicontinuous on $[t_0, \infty)$, and hence $S_2\Omega$ is relatively compact. By Lemma 2.1, there is $x_0 \in \Omega$ such that $S_1x_0 + S_2x_0 = x_0$. It is easy to see that $x_0(t)$ is a nonoscillatory solution of (1.1). The proof is complete. \qed

Theorem 2.3. Assume that $-\infty < c_1 \leq P(t) \leq c_2 < -1$ and (2.2) holds. Then (1.1) has a bounded nonoscillatory solution.

Proof. We choose positive constants M_1, M_2, α such that $-c_1M_1 < \alpha < (-c_2 - 1)M_2$. $c = \min\{|(\alpha + M_1c_1)c_2/c_1, ((-c_2 - 1)M_2) - \alpha\}$. Choosing $T > t_0$ sufficiently large such that

$$\frac{1}{(n-2)!} \int_{t_1}^{t_2} \int_s^\infty \frac{M'}{r(s)} \sum_{i=1}^m |Q_i(u)| du ds < c,$$

(2.18)

where $M' = \max_{M_1S \leq M_2} \{|f_i(x)| : 1 \leq i \leq m\}$.

Let $C([t_0, \infty), R)$ be the set as in the proof of Theorem 2.2. We define a bounded, closed, and convex subset Ω of $C([t_0, \infty), R)$ as follows:

$$\Omega = \{ x = x(t) \in C([t_0, \infty), R) : M_1 \leq x(t) \leq M_2, t \geq t_0 \}. \quad (2.19)$$

Define two maps S_1 and $S_2 : \Omega \to C([t_0, \infty), R)$ as follows:

$$(S_1x)(t) = \begin{cases} \frac{-\alpha}{P(t + \tau)} x(t + \tau), & t \geq T, \\ (S_1x)(T), & t_0 \leq t \leq T, \end{cases}$$

$$(S_2x)(t) = \begin{cases} \frac{(1)^{n-1}}{(n-2)!} \frac{1}{P(t + \tau)} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-2} \int_{s}^{\infty} \frac{1}{r(s)} \left(\sum_{i=1}^{m} Q_i(u)f_i(x(u-\sigma_i)) \right) du \, ds, & t \geq T, \\ (S_2x)(T), & t_0 \leq t \leq T. \end{cases} \quad (2.20)$$

(i) We shall show that for any $x, y \in \Omega$, $S_1x + S_2y \in \Omega$.
In fact, for every $x, y \in \Omega$, and $t \geq T$, we get

$$(S_1x)(t) + (S_2y)(t) \geq \frac{-\alpha}{c_1} + \frac{c}{c_2} \geq M_1,$$

$$(S_1x)(t) + (S_2y)(t) \leq \frac{-\alpha}{c_2} - \frac{M_2}{c_2} - \frac{c}{c_2} \leq M_2. \quad (2.21)$$

Thus, we have proved that $S_1x + S_2y \in \Omega$. Since $-\infty < c_1 \leq P(t) \leq c_2 < -1$, we get that S_1 is a contraction mapping. We also can prove that $\{ S_2x : x \in \Omega \}$ is uniformly bounded and equicontinuous on $[t_0, \infty)$, and hence $S_2\Omega$ is relatively compact. So by Lemma 2.1, there is $x_0 \in \Omega$ such that $S_1x_0 + S_2x_0 = x_0$. That is,

$$x_0(t) = \frac{-\alpha}{P(t + \tau)} x_0(t + \tau) - \frac{1}{P(t + \tau)} \int_{t+\tau}^{\infty} (s-t-\tau)^{n-2} \int_{s}^{\infty} \frac{1}{r(s)} \left(\sum_{i=1}^{m} Q_i(u)f_i(x_0(u-\sigma_i)) \right) du \, ds. \quad (2.22)$$

It is easy to see that $x_0(t)$ is a bounded nonoscillatory solution of (1.1).

The proof is complete. \square

Theorem 2.4. Assume that $1 < c_1 \leq P(t) \leq c_2 < +\infty$ and (2.2) holds. Then (1.1) has a bounded nonoscillatory solution.

Proof. We choose positive constants M_3, M_4, α such that $M_4 + c_2 M_3 < \alpha < c_1 M_4, c = \min\{\alpha - M_4 - c_2 M_3, c_1 M_4 - \alpha\}$. Choosing $T > t_0$ sufficiently large such that
\[
\frac{1}{(n-2)!} \int_0^\infty s^{n-2} \int_s^\infty \frac{M''}{r(s)} \sum_{i=1}^m |Q_i(u)| du \, ds < c, \tag{2.23}
\]

where \(M'' = \max_{M_i \leq x \leq M_4} \{|f_i(x)| : 1 \leq i \leq m\} \).

Let \(C([t_0, \infty), R) \) be the set as in the proof of Theorem 2.2. We define a bounded, closed, and convex subset \(\Omega \) of \(C([t_0, \infty), R) \) as follows:

\[
\Omega = \{ x = x(t) \in C([t_0, \infty), R) : M_3 \leq x(t) \leq M_4, t \geq t_0 \}. \tag{2.24}
\]

Define two maps \(S_1 \) and \(S_2 : \Omega \to C([t_0, \infty), R) \) as follows:

\[
(S_1 x)(t) = \begin{cases}
\frac{\alpha}{P(t+\tau)} \frac{x(t+\tau)}{P(t+\tau)}', & t \geq T, \\
(S_1 x)(T), & t_0 \leq t \leq T,
\end{cases}
\]

\[
(S_2 x)(t) = \begin{cases}
\frac{(-1)^{n-1}}{(n-2)!} \frac{1}{P(t+\tau)} \int_{t+\tau}^\infty (s-t-\tau)^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m Q_i(u) f_i(x(u-\sigma_i)) \right) du \, ds, & t \geq T, \\
(S_2 x)(T), & t_0 \leq t \leq T.
\end{cases} \tag{2.25}
\]

(i) We shall show that for any \(x, y \in \Omega \), \(S_1 x + S_2 y \in \Omega \).

In fact, for every \(x, y \in \Omega \) and \(t \geq T \), we get

\[
(S_1 x)(t) + (S_2 y)(t) \geq \frac{1}{c_2} (\alpha - M_4 - c) \geq M_3, \quad (S_1 x)(t) + (S_2 y)(t) \leq \frac{\alpha}{c_1} + \frac{c}{c_1} \leq M_4. \tag{2.26}
\]

Thus, we have proved that \(S_1 x + S_2 y \in \Omega \). Since \(1 < c_1 \leq P(t) \leq c_2 < +\infty \), we get \(S_1 \) is a contraction mapping. We also can prove that \(\{S_2 x : x \in \Omega\} \) is uniformly bounded and equicontinuous on \([t_0, \infty)\), and, hence, \(S_2 \Omega \) is relatively compact. So by Lemma 2.1, there is \(x_0 \in \Omega \) such that \(S_1 x_0 + S_2 x_0 = x_0 \). That is,

\[
x_0(t) = \frac{\alpha}{P(t+\tau)} \frac{x_0(t+\tau)}{P(t+\tau)}' + \frac{(-1)^{n-1}}{(n-2)!} \frac{1}{P(t+\tau)} \int_{t+\tau}^\infty (s-t-\tau)^{n-2} \int_s^\infty \frac{1}{r(s)} \left(\sum_{i=1}^m Q_i(u) f_i(x_0(u-\sigma_i)) \right) du \, ds. \tag{2.27}
\]

It is easy to see that \(x_0(t) \) is a bounded nonoscillatory solution of (1.1).

The proof is complete. \(\square \)

Remark 2.5. If we let \(n = 2 \) in Theorem 2.2, we get the Theorem 1 in [3]. In the case where \(n = 2, r(t) \equiv 1 \), Theorem 2.2 improves essentially Theorem 2.2 in [5].

Remark 2.6. The conditions of Theorem 2.4 relaxing the hypotheses \((H_k)\) of Theorem 3 in [2].
Remark 2.7. Theorems 2.3 and 2.4 improve essentially Theorem 3 in [2], we allow that $Q_i(t)$ $(i = 1, 2, \ldots, m)$ are oscillatory.

Acknowledgments

This research was supported by Natural Science Foundations of Shandong Province of China (ZR2009AM011 and ZR2009AQ010) and Doctor of Ministry of Education (20103705110003).

References

