Research Article

Analytical Solution for the Differential Equation Containing Generalized Fractional Derivative Operators and Mittag-Leffler-Type Function

V. B. L. Chaurasia and Ravi Shanker Dubey

Department of Mathematics, University of Rajasthan, Jaipur 302004, India

Correspondence should be addressed to Ravi Shanker Dubey, ravishankerdubey@indiatimes.com

Received 26 March 2011; Accepted 10 May 2011

Academic Editor: M. F. El-Sayed

Copyright © 2011 V. B. L. Chaurasia and R. S. Dubey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss and derive the analytical solution for the fractional partial differential equation with generalized Riemann-Liouville fractional operator $D_{\alpha,\beta}^{\mu}$ of order α and β. Here, we derive the solution of the given differential equation with the help of Laplace and Hankel transform in terms of Fox’s H-function as well as in terms of Fox-Wright function ψ.

1. Introduction, Definition, and Preliminaries

Applications of fractional calculus require fractional derivatives of different kinds [1–9]. Differentiation and integration of fractional order are traditionally defined by the right-sided Riemann-Liouville fractional integral operator I_{a+}^{μ} and the left-sided Riemann-Liouville fractional integral operator I_{a-}^{μ}, and the corresponding Riemann-Liouville fractional derivative operators D_{a+}^{μ} and D_{a-}^{μ}, as follows [10, 11]:

$$\left(I_{a+}^{\mu}f \right)(x) = \frac{1}{\Gamma(\mu)} \int_{a}^{x} \frac{f(t)}{(x-t)^{1-\mu}} dt \quad (x > a; R(\mu) > 0), \quad (1.1)$$

$$\left(I_{a-}^{\mu}f \right)(x) = \frac{1}{\Gamma(\mu)} \int_{x}^{a} \frac{f(t)}{(t-x)^{1-\mu}} dt \quad (x < a; R(\mu) > 0), \quad (1.2)$$

$$\left(D_{a+}^{\mu}f \right)(x) = \left(\pm \frac{d}{dx} \right)^{n} \left(I_{a+}^{\mu-n}f \right)(x) \quad (R(\mu) \geq 0; n = [R(\mu)] + 1), \quad (1.3)$$
where the function \(f \) is locally integrable, \(R(\mu) \) denotes the real part of the complex number \(\mu \in \mathbb{C} \) and \([R(\mu)] \) means the greatest integer in \(R(\mu) \).

Recently, a remarkable large family of generalized Riemann-Liouville fractional derivatives of order \(\alpha \) (\(0 < \alpha < 1 \)) and type \(\beta \) (\(0 \leq \beta \leq 1 \)) was introduced as follows [1–3, 5, 6, 8].

Definition 1.1. The right-sided fractional derivative \(D^a_{\alpha+} \) and the left-sided fractional derivative \(D^a_{\alpha-} \) of order \(\alpha \) (\(0 < \alpha < 1 \)) and type \(\beta \) (\(0 \leq \beta \leq 1 \)) with respect to \(x \) are defined by

\[
\left(D^a_{\alpha \pm} f \right)(x) = \left(\pm \int_{a \pm} f^{(1-\alpha)} \frac{d}{dx} f^{(1-\alpha)}(x) \right)(x),
\]

whenever the second number of (1.4) exists. This generalization (1.4) yields the classical Riemann-Liouville fractional derivative operator when \(\beta = 0 \). Moreover, for \(\beta = 1 \), it gives the fractional derivative operator introduced by Liouville [12] which is often attributed to Caputo now-a-days and which should more appropriately be referred to as the Liouville-Caputo fractional derivative. Several authors [7, 9] called the general operators in (1.4) the Hilfer fractional derivative operators. Applications of \(D^a_{\alpha \pm} \) are given [3].

Using the formulas (1.1) and (1.2) in conjunction with (1.3) when \(n = 1 \), the fractional derivative operator \(D^a_{\alpha \pm} \) can be written in the following form:

\[
\left(D^a_{\alpha \pm} f \right)(x) = \left(\pm \int_{a \pm} f^{(1-\alpha)} \left(D^a_{\alpha \pm - a\beta} f \right) \right)(x).
\]

The difference between fractional derivatives of different types becomes apparent from their Laplace transformations. For example, it is found for \(0 < \alpha < 1 \) that [1, 2, 9]

\[
L\left(\left(D^a_{0+} f \right)(x) \right)(s) = s^{\alpha} L[f(x)](s) - s^{\beta(s-1)} \left(I_{0+} (1-\beta)(1-\alpha) f \right)(0+) \quad (0 < \alpha < 1),
\]

where \((I_{0+}^{(1-\beta)(1-\alpha)} f)(0+) \) is the Riemann-Liouville fractional integral of order \((1-\beta)(1-\alpha) \) evaluated in the limit as \(t \to 0+ \), it being understood (as usual) that [13],

\[
L[f(x)](s) := \int_0^\infty e^{-sx} f(x) dx := F(s),
\]

provided that the defining integral in (1.7) exists.

The familiar Mittag-Leffler functions \(E_\mu(z) \) and \(E_{\mu,v}(z) \) are defined by the following series:

\[
E_\mu(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\mu n + 1)} := E_{\mu,1}(z) \quad (z \in \mathbb{C}; R(\mu) > 0), \quad (1.8)
\]

\[
E_{\mu,v}(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\mu n + v)} \quad (z, v \in \mathbb{C}; R(\mu) > 0), \quad (1.9)
\]
respectively. These functions are natural extensions of the exponential, hyperbolic, and trigonometric functions, since

\[E_1(z) = e^z, E_2(z^2) = \cosh z, E_2(-z^2) = \cos z, \]

\[E_{1,2}(z) = \frac{e^z - 1}{z}, E_{2,2}(z^2) = \frac{\sinh z}{z}. \] (1.10)

For a detailed account of the various properties, generalizations, and applications of the Mittag-Leffler functions, the reader may refer to the recent works by, for example, Gorenflo et al. [15–17]. The Mittag-Leffler function (1.1) and some of its various generalizations have only recently been calculated numerically in the whole complex plane [18, 19]. By means of the series representation, a generalization of the Mittag-Leffler function \(E_{\mu,\nu}(z) \) of (1.2) was introduced by Prabhakar [20] as follows:

\[E_{\mu,\nu}^\lambda(z) = \sum_{n=0}^{\infty} \frac{(\lambda)_n}{\Gamma(\mu n + \nu)} \frac{z^n}{n!} \quad (z, \nu, \lambda \in \mathbb{C}; R(\mu) > 0), \] (1.11)

where \((\lambda)_n\) denotes the familiar Pochhammer symbol, defined (for \(\lambda, \nu \in \mathbb{C}\) and in terms of the familiar Gamma function) by

\[(\lambda)_n := \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases} 1, & (\nu = 0; \lambda \in \mathbb{C} \setminus \{0\}) \\ \lambda(\lambda + 1) \cdots (\lambda + n - 1), & (\nu = n \in \mathbb{N}; \lambda \in \mathbb{C}). \end{cases} \] (1.12)

Clearly, we have the following special cases:

\[E_{1,\nu}^\lambda(z) = E_{\mu,\nu}(z), \quad E_{1,1}^\lambda(z) = E_{\mu}(z). \] (1.13)

Indeed, as already observed earlier by Srivastava and Saxena [21], the generalized Mittag-Leffler function \(E_{\mu,\nu}^\lambda(z) \) itself is actually a very specialized case of a rather extensively investigated function \(p \Psi_q \) as indicated below [17]:

\[E_{\mu,\nu}^\lambda(z) = \frac{1}{\Gamma(\lambda)} \Psi_1 \begin{bmatrix} (\lambda, 1); \\
(\nu, u); \end{bmatrix} \left(\frac{z}{\nu} \right). \] (1.14)

Here and in what follows, \(p \Psi_q \) denotes the Wright (or more appropriately, the Fox-Wright) generalized of the hypergeometric \(p \Gamma_q \) function, which is defined as follows [12]:

\[p \Psi_q = \begin{bmatrix} (a_1, A_1), \ldots, (a_p, A_p); \\
(b_1, B_1), \ldots, (b_q, B_q); \end{bmatrix} z = \sum_{k=0}^{\infty} \Gamma(a_1 + A_1 k) \cdots \Gamma(a_p + A_p k) z^k \Gamma(b_1 + B_1 k) \cdots \Gamma(b_q + B_q k) k! \quad \left(R(A_j) > 0 \ (j = 1, \ldots, p); R(B_j) > 0 \ (j = 1, \ldots, q); 1 + R \left(\sum_{j=1}^{q} B_j - \sum_{j=1}^{p} A_j \right) \geq 0 \right), \] (1.15)
in which we assumed in general that

\[a_j, A_j \in C \quad (j = 1, \ldots, p), \quad b_j, B_j \in C \quad (j = 1, \ldots, q). \tag{1.17} \]

In application of Mittag-Leffler function, it is useful to have the following Laplace inverse transform formula:

\[
L^{-1} \left\{ \frac{S^{\gamma - \beta}}{(S + A)^{k+1}} \right\} = \frac{1}{k!} t^{k+\beta-1} E_{1,\beta}^k(-A t), \tag{1.18}
\]

where \(E_{1,\beta}^k(z) = (d^k/dz^k)E_{1,\beta}(z) \).

2. Fox’s \(H \)-function

The Fox function, also referred as the Fox’s \(H \)-function, generalizes the Mellin-Barnes function. The importance of the Fox function lies in the fact that it includes nearly all special functions occurring in applied mathematics and statistics as special cases. Fox \(H \)-function is defined as

\[
H_{p,q}^{1,p} \left[-x \begin{matrix} (1-a_1, A_1), \ldots, (1-a_p, A_p) \\ (0,1), (1-b_1, B_1), \ldots, (1-b_q, B_q) \end{matrix} \right] = \sum_{k=0}^{\infty} \frac{\Gamma(a_1 + A_1 k) \cdots \Gamma(a_p + A_p k)}{k! \Gamma(b_1 + B_1 k) \cdots \Gamma(b_q + B_q k)} x^k. \tag{2.1}
\]

We need this relation

\[
E_{\alpha,\beta}^k(x) = \sum_{n=0}^{\infty} \frac{n! x^{n-k}}{(n-k)! \Gamma(an+\beta)} = \sum_{j=0}^{\infty} \frac{\Gamma(j+k+1) x^j}{j! \Gamma(aj+ak+\beta)}. \tag{2.2}
\]

3. Finite Hankel Transform

If \(f(r) \) satisfies Dirichlet conditions in closed interval \((0, a)\) and if its finite Hankel transform is defined to be

\[
H[f(r)] = \tilde{f}(\lambda_n) = \int_0^a f(r) J_0(r \lambda_n) dr, \tag{3.1}
\]

where \(\lambda_n \) are the roots of the equation \(J_0(r) = 0 \). Then at each point of the interval at which \(f(r) \) is continuous:

\[
f(r) = \frac{2}{a^2} \sum_{n=1}^{\infty} \frac{f(\lambda_n) J_0(\lambda_n r)}{J_1^2(\lambda_n a)}, \tag{3.2}
\]
where the sum is taken over all positive roots of \(J_0(r) = 0 \), \(J_0 \) and \(J_1 \) are Bessel functions of first kind.

In application of the finite Hankel transform to physical problems, it is useful to have the following formula [23]

\[
H \left[\frac{d^2 f}{dr^2} + \frac{1}{r} \frac{df}{dr} \right] = -\lambda_n^2 f(r) + a\lambda_n f(a) J_1(\lambda_n a). \tag{3.3}
\]

Example 3.1. Solve the differential equation

\[
D_{0,\frac{\alpha}{2}}^{2\alpha,\beta} u(r, t) + aD_{0,\frac{\beta}{2}}^{2\beta,\alpha} u(r, t) = d \left(\frac{\partial^2 u(r, t)}{\partial r^2} + \frac{1}{r} u(r, t) \right) + f(t), \tag{3.4}
\]

where \(0 < \alpha \leq 1/2 \) and \(0 \leq \beta \leq 1 \) with initial condition

\[
I_{t}^{(1-\beta)(1-2\alpha)} u(r, 0) = \phi_1(r),
\]

\[
I_{t}^{(1-\beta)(1-\alpha)} u(r, 0) = \phi_2(r),
\]

\[
u(r, t) = 0 \quad \text{everywhere for } t < 0,
\]

\[
u(r, t) = 0 \quad \text{for } r = 1, \ t > 0,
\]

\[
u(r, t) = \text{finite} \quad \text{at } r = 0, \ t > 0.
\]

Solution 1. Taking Laplace transform of (3.4), we get

\[
s^{2\alpha} \tilde{u}(r, s) - s^{\beta(2\alpha-1)} \tilde{\phi}_1(r) + as^\alpha \tilde{u}(r, s) - as^{\beta(\alpha-1)} \tilde{\phi}_2(r) = d \left[\frac{\partial^2 \tilde{u}(r, s)}{\partial r^2} + \frac{1}{r} \tilde{u}(r, s) \right] + \tilde{f}(s). \tag{3.6}
\]

Taking Hankel transform on both side of the above equation, we get

\[
s^{2\alpha} \tilde{u}(r, s) - s^{\beta(2\alpha-1)} \tilde{\phi}_1(r) + as^\alpha \tilde{u}(r, s) - as^{\beta(\alpha-1)} \tilde{\phi}_2(r) = d \left[-\lambda_n^2 \tilde{u}(r, s) \right] + \tilde{f}(s) \frac{I_1(\lambda_n)}{\lambda_n}, \tag{3.7}
\]
then we get

\[\tilde{u}(r, s) = \frac{s^{\beta(2a-1)}\tilde{\phi}_1(r)}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)} + \frac{as^{\beta(a-1)}\tilde{\phi}_2(r)}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)} + \frac{f(s)}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)} \frac{J_1(\lambda_n)}{\lambda_n}, \]
(3.8)

\[\tilde{u}(r, s) = \tilde{G}_1\tilde{\phi}_1(r) + a\tilde{G}_2\tilde{\phi}_2(r) + \tilde{G}_3\tilde{f}(s) \frac{J_1(\lambda_n)}{\lambda_n}, \]
(3.9)

where

\[\tilde{G}_1 = \frac{s^{\beta(2a-1)}}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)}, \]
(3.10)

\[\tilde{G}_2 = \frac{s^{\beta(a-1)}}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)}, \]
(3.11)

\[\tilde{G}_3 = \frac{1}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)}. \]
(3.12)

On taking Laplace inverse of (3.10), (3.11), and (3.12), respectively,

\[L^{-1}\left\{ \frac{s^{\beta(2a-1)}}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)} \right\} = \sum_{m=0}^{\infty} \frac{(-1)^m t^{\alpha+2a\beta-m-1}}{m!} E_{\alpha+\beta-m-2a}^m \left(\frac{-d\lambda_n^2}{a} t^\alpha \right), \]
(3.13)

\[L^{-1}\left\{ \frac{s^{\beta(a-1)}}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)} \right\} = \sum_{m=0}^{\infty} \frac{(-1)^m t^{\alpha-a\beta-m-1}}{m!} E_{\alpha+\beta-m-2a}^m \left(\frac{-d\lambda_n^2}{a} t^\alpha \right), \]
(3.14)

\[L^{-1}\left\{ \frac{1}{(s^{2\alpha} + as^\alpha + d\lambda_n^2)} \right\} = \sum_{m=0}^{\infty} \frac{(-1)^m t^{\alpha-ma-1}}{m!} E_{\alpha-ma}^m \left(\frac{-d\lambda_n^2}{a} t^\alpha \right). \]
(3.15)

After taking Inverse Laplace and Hankel transform of (3.9) put the value (3.13) through (3.15) in (3.9), we get

\[u(r, t) = 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1} \lambda_n^{m+1}} J_0(\lambda_n r) \phi_1(r) t^{-2a\beta-ma+\alpha+\beta-1} \sum_{j=0}^{\infty} \frac{(j + m + 1)!(d\lambda_n^2 t^\alpha/a)^j}{j! \Gamma(j + \alpha + \beta - 2a\beta - 2ma)}, \]
(3.16)

\[+ 2a \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1} \lambda_n^{m+1}} J_0(\lambda_n r) \phi_2(r) t^{-a\beta-ma+\alpha+\beta-1} \sum_{j=0}^{\infty} \frac{(j + m + 1)!(d\lambda_n^2 t^\alpha/a)^j}{j! \Gamma(j + \alpha + \beta - \alpha\beta + ma)}, \]
(3.17)

\[+ 2a \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1} \lambda_n^{m+1}} \frac{J_0(\lambda_n r)}{\lambda_n} J_1(\lambda_n) \int_0^t u^{-a-ma-1} \sum_{j=0}^{\infty} \frac{(j + m + 1)!(d\lambda_n^2 u^\alpha/a)^j}{j! \Gamma(j + \alpha - ma)} f(t-u)du. \]
(3.18)
\[
\begin{align*}
 u(r, t) &= 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1}} \frac{J_0(\lambda_n r)}{f_1^2(\lambda_n)} \phi_1(r) t^{-2\alpha \beta + \alpha + \beta - 1} \\
 \cdot H_{1,2}^1 \left[\frac{d\lambda_n^2 \mu^a}{a} \right] (0,1), (1 - \alpha - \beta + 2 \alpha \beta + 2 m \alpha, \alpha) \\
 + 2 a \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1}} \frac{J_0(\lambda_n r)}{f_1^2(\lambda_n)} \phi_2(r) t^{-2\alpha \beta + \alpha + \beta - 1} \\
 \cdot H_{1,2}^1 \left[\frac{d\lambda_n^2 \mu^a}{a} \right] (0,1), (1 - \alpha - \beta + \alpha \beta + m \alpha, \alpha) \\
 + 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^m \frac{J_0(\lambda_n r)}{\lambda_n f_1(\lambda_n)} \int_0^t u^{\alpha - m - 1} u^{2 m - 1} H_{1,2}^1 \left[\frac{d\lambda_n^2 \mu^a}{a} \right] (0,1), (1 - \alpha - m \alpha, \alpha) f(t-u) \, du. \\
\end{align*}
\]}

(3.17)

Example 3.2. Solve the differential equation (3.4) with initial condition

\[
\begin{align*}
 i^{(1-\beta)(1-2\alpha)} u(r, 0) &= 0, \\
 i^{(1-\beta)(1-\alpha)} u(r, 0) &= 0, \\
 u(r,t) &= 0 \quad \text{everywhere for } t \leq 0, \\
 u(r,t) &= 0 \quad \text{for } r = 1, \ t > 0, \\
 u(r,t) &= \text{finite at } r = 0, t > 0. \\
\end{align*}
\]

(3.18)

Solution 2. Taking Laplace and Hankel transform of (3.4), we get

\[
\tilde{u}(r,s) = \frac{f_1(\lambda_n)}{\lambda_n} \frac{\tilde{f}(s)}{s^{2\alpha} + a s^\alpha + d \lambda_n^2}.
\]

(3.19)

on taking Inverse Laplace transform of equation (3.19), we get

\[
\tilde{u}(r,t) = L^{-1} \left\{ \tilde{f}(s) \frac{f_1(\lambda_n)}{\lambda_n} \right\} L^{-1} \left\{ \frac{1}{s^{2\alpha} + a s^\alpha + d \lambda_n^2} \right\}.
\]

(3.20)

By using convolution theorem for Laplace transform and taking inverse Hankel transform, we get

\[
\begin{align*}
 u(r,t) &= 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^m \frac{J_0(\lambda_n r)}{\lambda_n f_1(\lambda_n)} \int_0^t u^{\alpha - m - 1} u^{2 m - 1} E_{a,2^m a - 2 m a} \left(\frac{-d \lambda_n^2 \mu^a}{a} \right) f(t-u) \, du, \\
\end{align*}
\]}

(3.21)
or

\[
\begin{align*}
 u(r, t) &= 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1}} \frac{J_0(\lambda_n r)}{\lambda_n J_1(\lambda_n)} \int_0^t u^{a-ma-1} \sum_{j=0}^{\infty} \frac{(j+m+1)!}{(j)!} \frac{(-d\lambda_n^2 u^a / a)^j}{\Gamma(a+j+a-ma)}. \\
&= 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1}} \frac{J_0(\lambda_n r)}{\lambda_n J_1(\lambda_n)} \int_0^t u^{a-ma-1} \frac{d\lambda_n^2 u^a}{a} \left[\psi_a(\alpha-2ma, \alpha); \psi_a(\alpha-1, 1) \right] f(t-u) du.
\end{align*}
\]

By using the relation (2.2)

\[
\begin{align*}
 u(r, t) &= 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1}} \frac{J_0(\lambda_n r)}{\lambda_n J_1(\lambda_n)} \int_0^t u^{a-ma-1} H_{1,2}^{1,1} \left[\frac{d\lambda_n^2 u^a}{a} \right] (0,1), (1-a+ma, a) \right] f(t-u) du, \\
&= 2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^m}{a^{m+1}} \frac{J_0(\lambda_n r)}{\lambda_n J_1(\lambda_n)} \int_0^t u^{a-ma-1} \frac{1}{\Gamma(m)} \left[\psi_a(\alpha-2ma, \alpha); \psi_a(\alpha-1, 1) \right] f(t-u) du.
\end{align*}
\]

which is the required solution.

References

Submit your manuscripts at http://www.hindawi.com