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Abstract. 
The Adomian decomposition method together with some properties of nested integrals is used to provide a solution to a class of nonlinear ordinary differential equations and a coupled system.

1. Introduction
Most scientific problems and phenomena such as heat transfer occur nonlinearly. We know that only a limited number of these problems have a precise analytical solution [1–5]. In the 1980t’s, George Adomian (1923–1996) introduced a powerful method for solving nonlinear functional equations. His method is known as the Adomian decomposition method (ADM) [6]. This technique is based on the representation of a solution to a functional equation as series of functions. Each term of the series is obtained from a polynomial generated by a power series expansion of an analytic function. Although the abstract formulation of the Adomian method is very simple, the calculations of the polynomials and the verification of convergence of the function series in specific situations are usually a difficult task [7, 8].
We will see that if the nested integral properties are used properly in the Adomian decomposition method, the analytical solution to the initial value problem is easily obtained.
Nested integrals integrals which are evaluated several times on the same variable. In contrast, multiple integrals consist of a number of integrals evaluated with respect to different variables. Concretely, if 
	
		
			

				𝑓
			

		
	
 is a continuous function defined on a (open) interval 
	
		
			
				𝕀
				⊂
				ℝ
			

		
	
 and 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝕀
			

		
	
,
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑥
				𝑥
			

			

				0
			

			

				
			

			

				𝑥
			

			

				1
			

			

				𝑥
			

			

				0
			

			

				
			

			

				𝑥
			

			

				2
			

			

				𝑥
			

			

				0
			

			
				⋯
				
			

			

				𝑥
			

			
				𝑘
				−
				1
			

			

				𝑥
			

			

				0
			

			
				𝑓
				
				𝑥
			

			

				1
			

			
				
				𝑓
				
				𝑥
			

			

				2
			

			
				
				𝑓
				
				𝑥
			

			

				2
			

			
				
				
				𝑥
				⋯
				𝑓
			

			

				𝑘
			

			
				
				𝑑
				𝑥
			

			

				𝑘
			

			
				𝑑
				𝑥
			

			
				𝑘
				−
				1
			

			
				⋯
				𝑑
				𝑥
			

			

				2
			

			
				𝑑
				𝑥
			

			

				1
			

			
				=
				1
			

			
				
			
			
				
				
				𝑘
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			
				𝑓
				(
				𝑥
			

			

				1
			

			
				)
				𝑑
				𝑥
			

			

				1
			

			

				
			

			

				𝑘
			

			

				.
			

		
	

					Also, (see [9]),
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				
			

			
				𝑥
				𝑥
			

			

				0
			

			

				
			

			

				𝑥
			

			

				𝑛
			

			

				𝑥
			

			

				0
			

			
				⋯
				
			

			

				𝑥
			

			

				2
			

			

				𝑥
			

			

				0
			

			

				
			

			

				𝑥
			

			

				1
			

			

				𝑥
			

			

				0
			

			
				𝑓
				
				𝑥
			

			

				1
			

			
				
				𝑑
				𝑥
			

			

				1
			

			
				𝑑
				𝑥
			

			

				2
			

			
				⋯
				𝑑
				𝑥
			

			
				𝑛
				−
				1
			

			
				𝑑
				𝑥
			

			

				𝑛
			

			
				=
				1
			

			
				
			
			
				
				Γ
				(
				𝑛
				+
				1
				)
			

			
				𝑥
				𝑥
			

			

				0
			

			
				(
				𝑥
				−
				𝑢
				)
			

			

				𝑛
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

2. Solution Method
Consider the IVP
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑥
				=
				𝑓
				(
				𝑥
				)
				+
				𝑒
			

			
				−
				𝑦
				(
				𝑥
				)
			

			
				
				𝑥
				;
				𝑦
			

			

				0
			

			
				
				=
				0
				,
			

		
	

					where 
	
		
			

				𝑓
			

		
	
 is a continuous function defined on an (open) interval 
	
		
			
				𝕀
				⊂
				ℝ
			

		
	
, and 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝕀
			

		
	
.

				In operator form, (2.1) becomes
						
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝐿
				𝑦
				=
				𝑓
				(
				𝑥
				)
				+
				𝑒
			

			
				−
				𝑦
				(
				𝑥
				)
			

			

				,
			

		
	

					where 
	
		
			
				𝐿
				(
				⋅
				)
				=
				(
				𝑑
				/
				𝑑
				𝑥
				)
				(
				⋅
				)
			

		
	
. Then inverse of 
	
		
			

				𝐿
			

		
	
 is, therefore, 
	
		
			

				𝐿
			

			
				−
				1
			

			
				∫
				(
				⋅
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			
				(
				⋅
				)
				𝑑
				𝑠
			

		
	
. Applying 
	
		
			

				𝑙
			

			
				−
				1
			

		
	
 to both sides of 4 we find that
						
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝑦
				
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				+
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝑦
				(
				𝑠
				)
			

			
				𝑑
				𝑠
				,
			

		
	

					where 
	
		
			
				∫
				𝐹
				(
				𝑥
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			
				𝑓
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	
.
Adomiant’s technique consists in writing the solution of (1.2) as an infinite series
						
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑥
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	

					and decomposing the nonlinear term 
	
		
			
				𝑁
				(
				𝑦
				)
				=
				𝑒
			

			
				−
				𝑦
			

		
	
 as
						
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				𝑒
			

			
				−
				𝑦
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐴
			

			

				𝑛
			

			

				,
			

		
	

					where each 
	
		
			

				𝐴
			

			

				𝑛
			

		
	
 is an Adomian polynomial depending on 
	
		
			

				𝑦
			

			

				0
			

			
				,
				𝑦
			

			

				1
			

			
				,
				…
				,
				𝑦
			

			

				𝑛
			

		
	
, which is given by
						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑛
			

			
				
				𝑦
			

			

				0
			

			
				,
				𝑦
			

			

				1
			

			
				,
				…
				,
				𝑦
			

			

				𝑛
			

			
				
				=
				1
			

			
				
			
			
				
				𝑑
				𝑛
				!
			

			

				𝑛
			

			
				
			
			
				𝑑
				𝜆
			

			

				𝑛
			

			
				𝑁
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑦
			

			

				𝑡
			

			

				𝜆
			

			

				𝑡
			

			
				
				
			

			
				𝜆
				=
				0
			

			

				.
			

		
	

					(see [6, 7]).
Substituting (2.4) and (2.5) into (2.3), we obtain
						
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑦
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				+
			

			
				𝑥
				𝑥
			

			

				0
			

			

				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐴
			

			

				𝑛
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

					This leads to the following recurrence scheme
						
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			

				𝑦
			

			

				0
			

			
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				𝑦
			

			
				𝑘
				+
				1
			

			
				
				(
				𝑥
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝐴
			

			

				𝑘
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				𝑘
				=
				0
				,
				1
				,
				2
				,
				…
				.
			

		
	

					We then define the solution 
	
		
			
				𝑦
				(
				𝑥
				)
			

		
	
 as
						
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑛
				𝑛
				→
				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑦
			

			

				𝑘
			

			
				(
				𝑥
				)
				.
			

		
	

					The following algorithm will be used in order to calculate the Adomian polynomials (see [10])
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝐴
			

			

				0
			

			
				
				𝑦
				(
				𝑥
				)
				=
				𝑁
			

			

				0
			

			
				
				𝐴
			

			

				1
			

			
				𝑑
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑁
				
				𝑦
				𝑑
				𝜆
			

			

				0
			

			
				+
				𝜆
				𝑦
			

			

				1
			

			
				
				|
				|
				|
			

			
				𝜆
				=
				0
			

			
				=
				𝑑
			

			
				
			
			
				𝑒
				𝑑
				𝜆
			

			
				−
				(
				𝑦
			

			

				0
			

			
				+
				𝜆
				𝑦
			

			

				1
			

			

				)
			

			
				|
				|
				|
			

			
				𝜆
				=
				0
			

			
				=
				𝑦
			

			

				1
			

			
				(
				𝑥
				)
				𝑁
			

			

				
			

			
				
				𝑦
			

			

				0
			

			
				
				,
				𝐴
			

			

				2
			

			
				(
				1
				𝑥
				)
				=
			

			
				
			
			
				𝑑
				2
				!
			

			

				2
			

			
				
			
			
				𝑑
				𝜆
			

			

				2
			

			
				𝑁
				
				𝑦
			

			

				0
			

			
				+
				𝜆
				𝑦
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			

				𝑦
			

			

				2
			

			
				
				|
				|
				|
				|
			

			
				𝜆
				=
				0
			

			
				=
				𝑦
			

			

				2
			

			
				(
				𝑥
				)
				𝑁
			

			

				
			

			
				
				𝑦
			

			

				0
			

			
				
				+
				1
			

			
				
			
			
				2
				𝑦
			

			
				2
				1
			

			

				𝑁
			

			
				
				
			

			
				
				𝑦
			

			

				0
			

			
				
				,
				𝐴
			

			

				3
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑑
				3
				!
			

			

				3
			

			
				
			
			
				𝑑
				𝜆
			

			

				3
			

			
				𝑁
				
			

			

				3
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝜆
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				
				|
				|
				|
				|
				|
				(
				𝑥
				)
			

			
				𝜆
				=
				0
			

			
				=
				𝑦
			

			

				3
			

			
				(
				𝑥
				)
				𝑁
			

			

				
			

			
				
				𝑦
			

			

				0
			

			
				
				+
				𝑦
			

			

				1
			

			
				(
				𝑥
				)
				𝑦
			

			

				3
			

			
				1
				(
				𝑥
				)
				+
			

			
				
			
			
				𝑦
				3
				!
			

			
				3
				1
			

			

				𝑁
			

			
				
				
				
			

			
				
				𝑦
			

			

				0
			

			
				
				,
				𝐴
			

			

				4
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑑
				4
				!
			

			

				4
			

			
				
			
			
				𝑑
				𝜆
			

			

				4
			

			
				𝑁
				
			

			

				4
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝜆
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				
				|
				|
				|
				|
				|
				(
				𝑥
				)
			

			
				𝜆
				=
				0
			

			
				=
				𝑦
			

			

				4
			

			
				(
				𝑥
				)
				𝑁
			

			

				
			

			
				
				𝑦
			

			

				0
			

			
				
				+
				
				𝑦
			

			

				1
			

			
				(
				𝑥
				)
				𝑦
			

			

				3
			

			
				1
				(
				𝑥
				)
				+
			

			
				
			
			
				2
				𝑦
			

			
				2
				2
			

			
				
				𝑁
				(
				𝑥
				)
			

			
				
				
			

			
				
				𝑦
			

			

				0
			

			
				
				+
				1
			

			
				
			
			
				2
				𝑦
			

			
				2
				1
			

			
				(
				𝑥
				)
				𝑦
			

			

				2
			

			
				(
				𝑥
				)
				𝑁
			

			
				
				
				
			

			
				
				𝑦
			

			

				0
			

			
				
				+
				1
			

			
				
			
			
				𝑦
				4
				!
			

			
				4
				1
			

			
				(
				𝑥
				)
				𝑁
			

			
				(
				4
				)
			

			

				𝑦
			

			

				0
			

			
				⋮
				.
			

		
	


				Combining this with (2.8), one obtains
						
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				0
			

			
				𝑦
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				,
			

			

				1
			

			
				
				(
				𝑥
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝐴
			

			

				0
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝑦
			

			

				0
			

			
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				𝑑
				𝑠
				,
			

		
	

					where 
	
		
			

				𝐴
			

			

				0
			

			
				(
				𝑥
				)
				=
				𝑁
				(
				𝑦
			

			

				0
			

			
				)
				=
				𝑒
			

			
				−
				𝑦
			

			

				0
			

			
				=
				𝑒
			

			
				−
				𝐹
				(
				𝑥
				)
			

		
	
.
By using
						
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				𝑑
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑁
				
				𝑦
				𝑑
				𝜆
			

			

				0
			

			
				+
				𝜆
				𝑦
			

			

				1
			

			
				
				|
				|
				|
			

			
				𝜆
				=
				0
			

			
				=
				𝑑
			

			
				
			
			
				𝑒
				𝑑
				𝜆
			

			
				−
				(
				𝑦
			

			

				0
			

			
				+
				𝜆
				𝑦
			

			

				1
			

			

				)
			

			
				|
				|
				|
			

			
				𝜆
				=
				0
			

			
				=
				−
				𝑒
			

			
				−
				𝑦
			

			

				0
			

			
				(
				𝑥
				)
			

			

				𝑦
			

			

				1
			

			
				(
				𝑥
				)
				,
			

		
	

					we find that
						
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑦
			

			

				2
			

			
				
				(
				𝑥
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝐴
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				−
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				−
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				
			

			
				𝑠
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑢
				)
			

			
				
				𝑑
				𝑢
				𝑑
				𝑠
				.
			

		
	

					Now, using property (1.1) in (2.13) yields
						
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				−
				
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				
			

			
				𝑠
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑢
				)
			

			
				
				
				𝑑
				𝑢
				𝑑
				𝑠
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			
				
				
			

			
				𝑠
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑢
				)
			

			
				
				1
				𝑑
				𝑢
				𝑑
				𝑠
				=
			

			
				
			
			
				
				
				2
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				2
			

			

				.
			

		
	

					Since
						
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			

				𝐴
			

			

				2
			

			
				(
				𝑥
				)
				=
				𝑦
			

			

				2
			

			
				(
				𝑥
				)
				𝑁
			

			

				
			

			
				
				𝑦
			

			

				0
			

			
				
				+
				1
			

			
				
			
			
				2
				𝑦
			

			
				2
				1
			

			

				𝑁
			

			
				
				
			

			
				
				𝑦
			

			

				0
			

			
				
				=
				
				−
				1
			

			
				
			
			
				2
				
				
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
				
				
				−
				𝑒
			

			
				−
				𝐹
				(
				𝑥
				)
			

			
				
				+
				1
			

			
				
			
			
				2
				
				
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				2
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑥
				)
			

			

				.
			

		
	

					One finally obtains
						
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			

				𝐴
			

			

				2
			

			
				
				
				(
				𝑥
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				2
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑥
				)
			

			

				.
			

		
	

					In order to obtain 
	
		
			

				𝑦
			

			

				3
			

		
	
, we again use (1.1) and (2.16)
						
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				3
			

			
				
				(
				𝑥
				)
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝐴
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑢
				)
			

			
				
				𝑑
				𝑢
			

			

				2
			

			
				1
				𝑑
				𝑠
				=
			

			
				
			
			
				
				
				3
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				3
			

			

				;
			

		
	

					continuing in this fashion, we obtain
						
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				(
				−
				1
				)
			

			
				𝑘
				+
				1
			

			
				
				1
			

			
				
			
			
				
				
				𝑘
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				𝑘
			

			
				
				,
				𝑘
				=
				1
				,
				2
				,
				3
				,
				…
				.
			

		
	

					The solution is given by
						
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑥
				)
				=
				𝑦
			

			

				0
			

			
				(
				𝑥
				)
				+
				𝑦
			

			

				1
			

			
				(
				𝑥
				)
				+
				𝑦
			

			

				2
			

			
				(
				𝑥
				)
				+
				⋯
				+
				𝑦
			

			

				𝑛
			

			
				(
				𝑥
				)
				+
				…
				.
			

		
	

					By replacing (2.18) into (2.19), one obtains
						
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				
				𝑦
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				+
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				1
				𝑑
				𝑠
				−
			

			
				
			
			
				
				
				2
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				2
			

			
				+
				⋯
				+
				(
				−
				1
				)
			

			
				𝑘
				+
				1
			

			
				
				1
			

			
				
			
			
				
				
				𝑘
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				𝑘
			

			
				
				+
				…
				.
			

		
	

					Or, in a more compact form,
						
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				(
				−
				1
				)
			

			
				𝑘
				+
				1
			

			
				
				1
			

			
				
			
			
				
				
				𝑘
				!
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				𝑑
				𝑠
			

			

				𝑘
			

			
				
				.
			

		
	

					The latter equation can be written as
						
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				
				
				𝑦
				(
				𝑥
				)
				=
				𝐹
				(
				𝑥
				)
				+
				l
				n
				1
				+
			

			
				𝑥
				𝑥
			

			

				0
			

			

				𝑒
			

			
				−
				𝐹
				(
				𝑠
				)
			

			
				
				.
				𝑑
				𝑠
			

		
	

					Observe that in this case, Adomiant’s method yields an exact analytical solution. The analytical solution to this probleme can be obtained by performing the substitution 
	
		
			
				𝑢
				=
				e
				x
				p
				(
				−
				𝑦
				(
				𝑥
				)
				)
			

		
	
, which leads to a Bernoulli differential equation whose solution is a straightforward exercise.
3. Examples
3.1. Example 1
Consider the nonlinear initial value problem
								
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑦
			

			
				
			
			
				=
				1
				𝑑
				𝑥
			

			
				
			
			
				𝑥
				+
				𝑒
			

			
				−
				𝑦
			

			
				,
				𝑥
				>
				0
				,
				𝑦
				(
				1
				)
				=
				0
				.
			

		
	

							In this case, 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				1
				/
				𝑥
				,
				𝑥
				>
				0
			

		
	
 and consequently 
	
		
			
				∫
				𝐹
				(
				𝑥
				)
				=
			

			
				𝑥
				1
			

			
				(
				1
				/
				𝑠
				)
				𝑑
				𝑠
				=
				l
				n
				𝑥
			

		
	
.
Thus, the analytical solution is given by
								
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				
				
				𝑦
				(
				𝑥
				)
				=
				l
				n
				𝑥
				+
				l
				n
				1
				+
			

			
				𝑥
				0
			

			

				𝑒
			

			
				−
				l
				n
				𝑠
			

			
				
				
				
				𝑑
				𝑠
				=
				l
				n
				𝑥
				+
				l
				n
				1
				+
			

			
				𝑥
				1
			

			

				1
			

			
				
			
			
				𝑠
				
				𝑑
				𝑠
				=
				l
				n
				𝑥
				+
				l
				n
				(
				1
				+
				l
				n
				𝑥
				)
				,
				𝑥
				>
				𝑒
			

			
				−
				1
			

			
				≅
				0
				.
				3
				6
				7
				8
				7
				9
				4
				4
				.
			

		
	

3.2. Example 2
Consider the nonlinear initial value problem
								
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑥
				=
				𝑥
				+
				𝑒
			

			
				−
				𝑦
			

			
				,
				𝑦
				(
				0
				)
				=
				0
				.
			

		
	

							In this case, 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝑥
			

		
	
, and therefore 
	
		
			
				𝐹
				(
				𝑥
				)
				=
				𝑥
			

			

				2
			

			
				/
				2
			

		
	
. The analytical solution is
								
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				𝑥
				𝑦
				(
				𝑥
				)
				=
			

			

				2
			

			
				
			
			
				2
				
				
				+
				l
				n
				1
				+
			

			
				
			
			

				𝜋
			

			
				
			
			
				2
				
				𝑥
				e
				r
				f
			

			
				
			
			

				√
			

			
				
			
			
				2
				
				
				,
				𝑥
				>
				−
				1
				.
				2
				7
				5
				5
				,
			

		
	

							where 
	
		
			
				√
				e
				r
				f
				(
				𝑥
				)
				=
				(
				2
				/
			

			
				
			
			
				∫
				𝜋
				)
			

			
				𝑥
				0
			

			

				𝑒
			

			
				−
				𝑡
			

			

				2
			

			
				𝑑
				𝑡
			

		
	
.
4. Application of the Method to Coupled Systems of ODE’s
Consider the coupled system
						
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑥
			

			
				
			
			
				𝑑
				𝑡
				−
				𝑎
				𝑦
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				)
				,
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				+
				𝑎
				𝑥
				(
				𝑡
				)
				=
				0
				(
				𝑎
				∈
				ℝ
				,
				𝑎
				≠
				0
				)
				.
			

		
	

					Together with the initial conditions
						
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				𝑥
				(
				0
				)
				=
				𝛼
				,
				𝑦
				(
				0
				)
				=
				𝛽
				,
			

		
	

					we shall obtain its solution by using the Dirichlet's integral formula (1.2) and the Adomian decomposition method.
Equation (4.1) in operator form takes the form
						
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			
				𝐿
				𝑥
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				)
				+
				𝑎
				𝑦
				(
				𝑡
				)
				,
				𝐿
				𝑦
				(
				𝑡
				)
				=
				−
				𝑎
				𝑥
				(
				𝑡
				)
				,
			

		
	

					where 
	
		
			
				𝐿
				(
				⋅
				)
				=
				(
				𝑑
				/
				𝑑
				𝑥
				)
				(
				⋅
				)
			

		
	
. The inverse of 
	
		
			

				𝐿
			

		
	
 is 
	
		
			

				𝐿
			

			
				−
				1
			

			
				∫
				(
				⋅
				)
				=
			

			
				𝑡
				0
			

			
				(
				⋅
				)
				𝑑
				𝑠
			

		
	
. Applying 
	
		
			

				𝐿
			

			
				−
				1
			

		
	
 to both sides of (4.3) and using (4.2), we find that
						
	
 		
 			
				(
				4
				.
				4
				)
			
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				𝛼
				+
			

			
				𝑡
				0
			

			
				
				𝑓
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑎
			

			
				𝑡
				0
			

			
				
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑦
				(
				𝑡
				)
				=
				𝛽
				−
				𝑎
			

			
				𝑡
				0
			

			
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

					In order to obtain 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
, we apply the Adomian iterative scheme
						
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			

				𝑥
			

			

				0
			

			
				
				(
				𝑡
				)
				=
				𝛼
				+
			

			
				𝑡
				0
			

			
				𝑓
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑥
			

			
				𝑘
				+
				1
			

			
				
				(
				𝑡
				)
				=
				𝑎
			

			
				𝑡
				0
			

			

				𝑦
			

			

				𝑘
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑘
				=
				0
				,
				1
				,
				2
				,
				…
			

		
	

					in (4.4).
Similarly, 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 is obtained by applying the scheme
						
	
 		
 			
				(
				4
				.
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				0
			

			
				(
				𝑡
				)
				=
				𝛽
				,
				𝑦
			

			
				𝑘
				+
				1
			

			
				
				(
				𝑡
				)
				=
				−
				𝑎
			

			
				𝑡
				0
			

			

				𝑥
			

			

				𝑘
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑘
				=
				0
				,
				1
				,
				2
				,
				…
			

		
	

					to (4.5).

				Replacing 
	
		
			

				𝑦
			

			

				0
			

			
				(
				𝑡
				)
				=
				𝛽
			

		
	
 in (4.6), we find 
	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
. In fact,
						
	
 		
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				
				(
				𝑡
				)
				=
				𝑎
			

			
				𝑡
				0
			

			

				𝑦
			

			

				0
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				𝑎
			

			
				𝑡
				0
			

			
				𝛽
				𝑑
				𝑠
				=
				𝑎
				𝛽
				𝑡
				.
			

		
	

					Also, by replacing 
	
		
			

				𝑥
			

			

				0
			

			
				∫
				(
				𝑡
				)
				=
				𝛼
				+
			

			
				𝑡
				0
			

			
				𝑓
				(
				𝑠
				)
			

		
	
 and (1.2) in (4.5), we obtain
						
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			
				
				(
				𝑡
				)
				=
				−
				𝑎
			

			
				𝑡
				0
			

			

				𝑥
			

			

				0
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				−
				𝑎
			

			
				𝑡
				0
			

			
				
				
				𝛼
				+
			

			
				𝑠
				0
			

			
				
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				𝛽
				𝑑
				𝑠
				=
				−
				𝑎
				𝛼
				𝑡
				−
				𝑎
			

			
				𝑡
				0
			

			

				
			

			
				𝑠
				0
			

			
				1
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				𝑑
				𝑠
				=
				−
				𝑎
				𝛼
				𝑡
				−
				𝑎
			

			
				
			
			
				
				Γ
				(
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

					Applying (1.2) to the right hand side of the last equation, one finds that
						
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑥
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				𝑎
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				𝑎
			

			
				𝑡
				0
			

			
				
				1
				−
				𝑎
				𝛼
				𝑠
				−
				𝑎
			

			
				
			
			
				
				Γ
				(
				2
				)
			

			
				𝑠
				0
			

			
				
				(
				𝑠
				−
				𝑢
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				𝑑
				𝑠
				=
				−
				𝑎
			

			

				2
			

			
				𝛼
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				−
				𝑎
			

			

				2
			

			

				1
			

			
				
			
			
				
				Γ
				(
				2
				)
			

			
				𝑡
				0
			

			
				
				
			

			
				𝑠
				0
			

			
				
				(
				𝑠
				−
				𝑢
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				𝑑
				𝑠
				=
				−
				𝑎
			

			

				2
			

			
				𝛼
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				−
				𝑎
			

			

				2
			

			

				1
			

			
				
			
			
				
				Γ
				(
				3
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				2
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

					To obtain 
	
		
			

				𝑦
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
, (4.8) into (4.7), and (1.2), we have
						
	
 		
 			
				(
				4
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				−
				𝑎
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				−
				𝑎
			

			
				𝑡
				0
			

			
				
				−
				𝑎
			

			

				2
			

			
				𝛼
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				−
				𝑎
			

			

				2
			

			

				1
			

			
				
			
			
				
				Γ
				(
				3
				)
			

			
				𝑠
				0
			

			
				(
				𝑠
				−
				𝑢
				)
			

			

				2
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				𝑑
				𝑠
				=
				𝑎
			

			

				3
			

			
				𝛼
				𝑡
			

			

				3
			

			
				
			
			
				3
				!
				+
				𝑎
			

			

				3
			

			

				1
			

			
				
			
			
				
				Γ
				(
				3
				)
			

			
				𝑡
				0
			

			
				
				
			

			
				𝑠
				0
			

			
				(
				𝑠
				−
				𝑢
				)
			

			

				2
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				𝑑
				𝑠
				=
				𝑎
			

			

				3
			

			
				𝛼
				𝑡
			

			

				3
			

			
				
			
			
				3
				!
				+
				𝑎
			

			

				2
			

			

				1
			

			
				
			
			
				
				Γ
				(
				4
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				3
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

					Continuing in this fashion, one arrives at the formula
						
	
 		
 			
				(
				4
				.
				1
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				𝛼
				𝑡
			

			

				𝑛
			

			
				
			
			
				𝑛
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				
				Γ
				(
				𝑛
				+
				1
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				𝑛
			

			
				
				,
				𝑦
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			
				𝑛
				+
				1
			

			
				
				𝑎
			

			

				𝑛
			

			
				𝛼
				𝑡
			

			

				𝑛
			

			
				
			
			
				𝑛
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				
				Γ
				(
				𝑛
				+
				1
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				𝑛
			

			
				
				.
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

		
	

					The solution 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 is the given by
						
	
 		
 			
				(
				4
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				)
				=
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				+
				𝑥
			

			

				3
			

			
				(
				𝑡
				)
				+
				⋯
				+
				𝑥
			

			

				𝑛
			

			
				
				(
				𝑡
				)
				+
				⋯
				=
				𝛼
				+
			

			
				𝑡
				0
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				𝑎
				𝛽
				𝑡
				+
				−
				𝑎
			

			

				2
			

			
				𝛼
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				−
				𝑎
			

			

				2
			

			

				1
			

			
				
			
			
				
				Γ
				(
				3
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				2
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				−
				𝛼
				𝑎
			

			

				3
			

			

				𝑡
			

			

				3
			

			
				
			
			
				+
				
				𝑎
				3
				!
			

			

				4
			

			
				𝛼
				𝑡
			

			

				4
			

			
				
			
			
				4
				!
				−
				𝑎
			

			

				4
			

			

				1
			

			
				
			
			
				
				Γ
				(
				5
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				4
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				…
				.
			

		
	

					Rearranging terms and writing as a single integral, we have
						
	
 		
 			
				(
				4
				.
				1
				4
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				𝛼
				1
				−
				(
				𝑎
				𝑡
				)
			

			

				2
			

			
				
			
			
				+
				2
				!
				(
				𝑎
				𝑡
				)
			

			

				4
			

			
				
			
			
				4
				!
				−
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
			

			
				
			
			
				
				
				(
				2
				𝑛
				)
				!
				+
				⋯
				+
				𝛽
				(
				𝑎
				𝑡
				)
				−
				(
				𝑎
				𝑡
				)
			

			

				2
			

			
				
			
			
				+
				3
				!
				(
				𝑎
				𝑡
				)
			

			

				4
			

			
				
			
			
				5
				!
				−
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
				+
				1
			

			
				
			
			
				
				+
				
				(
				2
				𝑛
				+
				1
				)
				!
				+
				⋯
			

			
				𝑡
				0
			

			
				
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				0
			

			
				
			
			
				−
				Γ
				(
				1
				)
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				2
			

			
				
			
			
				+
				Γ
				(
				3
				)
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				4
			

			
				
			
			
				Γ
				(
				5
				)
				−
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			
				2
				𝑛
			

			
				
			
			
				
				Γ
				(
				2
				𝑛
				+
				1
				)
				+
				⋯
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

					This is easily recognized as
						
	
 		
 			
				(
				4
				.
				1
				5
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				𝑡
				0
			

			
				c
				o
				s
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				=
				𝛼
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				∗
				c
				o
				s
				(
				𝑎
				𝑡
				)
				,
			

		
	

					where 
	
		
			

				∗
			

		
	
 denotes convolution.
The analogous process gives
						
	
 		
 			
				(
				4
				.
				1
				6
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				+
				𝑦
			

			

				3
			

			
				(
				𝑡
				)
				+
				⋯
				+
				𝑦
			

			

				𝑛
			

			
				1
				(
				𝑡
				)
				+
				⋯
				=
				𝛽
				−
				𝛼
				𝑎
				𝑡
				−
				𝑎
			

			
				
			
			
				
				Γ
				(
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				−
				𝑎
			

			

				2
			

			
				𝛽
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				+
				𝛼
				𝑎
			

			

				3
			

			

				𝑡
			

			

				3
			

			
				
			
			
				+
				1
				3
				!
			

			
				
			
			
				
				Γ
				(
				4
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				3
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				𝛼
				𝑡
			

			

				𝑛
			

			
				
			
			
				𝑛
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				
				Γ
				(
				2
				𝑛
				+
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			
				2
				𝑛
				+
				1
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				…
				.
			

		
	

					Rearranging, we obtain
						
	
 		
 			
				(
				4
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝑦
				(
				𝑡
				)
				=
				𝛽
				1
				−
				(
				𝑎
				𝑡
				)
			

			

				2
			

			
				
			
			
				+
				2
				!
				(
				𝑎
				𝑡
				)
			

			

				4
			

			
				
			
			
				4
				!
				−
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
			

			
				
			
			
				
				
				(
				2
				𝑛
				)
				!
				+
				⋯
				−
				𝛼
				(
				𝑎
				𝑡
				)
				−
				(
				𝑎
				𝑡
				)
			

			

				2
			

			
				
			
			
				+
				3
				!
				(
				𝑎
				𝑡
				)
			

			

				4
			

			
				
			
			
				5
				!
				−
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
				+
				1
			

			
				
			
			
				
				+
				
				(
				2
				𝑛
				+
				1
				)
				!
				+
				⋯
			

			
				𝑡
				0
			

			
				𝑎
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				−
			

			

				2
			

			
				
			
			
				Γ
				
				(
				3
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				2
			

			
				𝑎
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
			

			

				4
			

			
				
			
			
				Γ
				
				(
				5
				)
				(
				𝑡
				−
				𝑢
				)
			

			

				4
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				⋯
				+
				(
				−
				1
				)
			

			

				𝑛
			

			

				𝑎
			

			
				2
				𝑛
			

			
				
			
			
				
				Γ
				(
				2
				𝑛
				+
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			
				2
				𝑛
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				…
				.
			

		
	

					Writting this as a single integral, we have
						
	
 		
 			
				(
				4
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				𝛼
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				𝑡
				0
			

			
				s
				i
				n
				(
				𝑎
				(
				𝑡
				−
				𝑠
				)
				)
				𝑓
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

					And then,
						
	
 		
 			
				(
				4
				.
				1
				9
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				𝛼
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				∗
				s
				i
				n
				(
				𝑎
				𝑡
				)
				.
			

		
	

					It is important to observe that the analytical solution of the IVP given by (4.1) and (4.2) is precisely
						
	
 		
 			
				(
				4
				.
				2
				0
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				∗
				c
				o
				s
				(
				𝑎
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				𝛼
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				∗
				s
				i
				n
				(
				𝑎
				𝑡
				)
				.
			

		
	

					In particular, let us consider the forced undamped system given by
						
	
 		
 			
				(
				4
				.
				2
				1
				)
			
 		
	

	
		
			

				𝑑
			

			

				2
			

			

				𝑦
			

			
				
			
			
				𝑑
				𝑡
			

			

				2
			

			
				+
				𝑎
			

			

				2
			

			
				𝑦
				(
				𝑡
				)
				=
				c
				o
				s
				(
				𝑡
				)
				,
				𝑦
				(
				0
				)
				=
				𝛼
				,
				𝑦
			

			

				
			

			
				(
				0
				)
				=
				𝛽
				.
			

		
	

					(Note that (4.21) is equivalent to the system formed by (4.1) and (4.2) with 
	
		
			
				𝑓
				(
				𝑡
				)
				=
				c
				o
				s
				(
				𝑡
				)
			

		
	
).
There are two cases.
Case 1. 
	
		
			
				𝑎
				≠
				1
			

		
	
. In this case, we obtain the solutions
							
	
 		
 			
				(
				4
				.
				2
				2
				)
			
 		
	

	
		
			
				1
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				𝑎
				s
				i
				n
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				𝛼
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				
			
			
				1
				+
				𝑎
			

			

				2
			

			
				c
				o
				s
				(
				𝑡
				)
				.
			

		
	

						Let us observe that the solutions are bounded in this case
Case 2. 
	
		
			
				𝑎
				=
				1
			

		
	
. In this case, one obtain
							
	
 		
 			
				(
				4
				.
				2
				3
				)
			
 		
	

	
		
			
				1
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				(
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑡
				)
				+
			

			
				
			
			
				2
				
				1
				𝑡
				c
				o
				s
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				=
				𝛼
				−
			

			
				
			
			
				2
				
				1
				c
				o
				s
				(
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑡
				)
				−
			

			
				
			
			
				2
				𝑡
				s
				i
				n
				(
				𝑡
				)
				.
			

		
	

						Observe that the solutions are unbounded in this case, and we have resonance.
5. Conclusion
The results obtained in this paper show that the Adomian decomposition method is a powerful technique for finding the theoretical solutions of nonlinear initial value problems and coupled systems if properties of nested integrals are used properly. If a solution in closed form is not found, the method always provides a convergent series which solve the problem, see [11].
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