Research Article

Determination of Aflatoxin M₁ in Milk by ELISA Technique in Mashad (Northeast of Iran)

Ali Mohamadi Sani, Mohamad Khezri, and Halime Moradnia

1 Department of Food Science & Technology, Islamic Azad University, Quchan Branch, Quchan, Iran
2 Quality Control Laboratory of Food & Drug Administration, Mashhad University of Medical Sciences, Khurasan, Mashhad 77558 3918, Iran

Correspondence should be addressed to Ali Mohamadi Sani, mohamadisani@yahoo.com

Received 2 July 2012; Accepted 7 August 2012

1. Introduction

Mycotoxins are secondary metabolites of molds which are associated with certain disorders in animals and humans. In addition to being acutely toxic, some mycotoxins are now linked with the incidence of certain types of cancer, and it is this aspect which has evoked global concern over feed and food safety, especially for milk and milk products [1]. Aflatoxin M₁ (AFM₁) is a hepatocarcinogen found in milk of animals that have consumed feeds contaminated with aflatoxin B₁ (AFB₁), the main metabolite produced by fungi of the genus Aspergillus, particularly A. flavus, A. parasiticus, and A. nomius [2]. About 0.3–6.2% of AFB₁ in animal feed is transformed to AFM₁ in milk [3]. Due to serious health concerns, many countries have set maximum limits for aflatoxins, which vary from country to country [4]. The European Community prescribes that the maximum level of AFM₁ in liquid milk should not exceed 50 ppt. However, according to the US standard, the level of AFM₁ in liquid milk should not be higher than 500 ppt [5]. There have been several studies on AFM₁ concentration in milk samples in different regions of the world and also in Iran, but this study was done to evaluate the occurrence of AFM₁ in milk distributed in Mashad in northeast of Iran in order to evaluate the potential of changing the regional standard on AFM₁ contamination of milk.

2. Materials and Methods

2.1. Materials

2.1.1. Samples. In this study the AFM₁ content of pasteurized milk samples in retail stores in Mashad (northeast of Iran) was determined in fall 2011. Forty-two pasteurized milk samples (1000 mL milk packets, heat treated at 72–74.4°C for 15–20 seconds) from different brands were collected by simple random sampling method. The samples were transported to the laboratory in an insulated container at about 4°C and analyzed upon arrival.
2.1.2. Reagents. Most of the reagents used to detect AFM$_1$ were contained in the RIDASCREEN test kit, which included microtiter plate coated with capture antibodies, AFM$_1$ standard solutions used for the construction of the calibration curve (1.3 mL each 0, 5, 10, 20, 40, and 80 ppt), peroxidase-conjugated AFM$_1$, substrate (urea peroxidase), chromogen (tetramethylbenzidine), and stop reagent contains 1N sulphuric acid. Methanol used was of analytical grade and provided by Merck.

2.2. Methods

2.2.1. AFM$_1$ Detection. The quantitative analysis of AFM$_1$ in pasteurized milk samples was performed by competitive ELISA (RIDASCREEN AFM$_1$, R-Biopharm) procedure as described by R-biopharm GmbH [6]. Prior to analysis of the samples, the ELISA method was validated to ensure data quality. Validation of ELISA was carried out by determination of recoveries and the mean variation coefficient for fresh milk spiked with different concentrations of AFM$_1$ (5, 10, 20, 40 and 80 ppt). The results are expressed in Table 1.

Milk samples were centrifuged at 3500 g for 10 min at 10°C. The upper creamy layer was completely removed by aspirating through a Pasteur pipette and from the lower phase (defatted phase) 100 µL was directly used per well in the test. One hundred µL of the AFM$_1$ standard solutions (100 µL/well) and test samples (100 µL/well) in duplicate were added to the wells of microtiter plate and incubated for 60 min at room temperature in the dark. After the washing steps, 100 µL of the enzyme conjugate was added and incubated for 60 min at room temperature in the dark. The washing step was repeated three times. Fifty µL of substrate and 50 µL of chromogen were added to each well and mixed thoroughly and incubated for 30 min in the dark. Following the addition of 100 µL of the stop reagent to each well, the absorbance was measured at 450 nm in ELISA reader (ELX-800, Bio-Tek Instruments, USA). According to the RIDASCREEN kit guidelines, the lower detection limit is 5 ppt for milk.

2.2.2. Evaluation of AFM$_1$. The absorbance values obtained for the standards and the samples were divided by the absorbance value of the first standard (zero standards) and multiplied by 100 (percentage maximum absorbance). Therefore, the zero standard is thus made equal to 100%, and the absorbance values are quoted in percentages. The values calculated for the standards were entered in a system of coordinates on semilogarithmic graph paper against the AFM$_1$ concentration in ppt (Figure 1). The equation of the trendline in Figure 1 is as follows:

$$y = 0.016x^2 - 1.940x + 91.34.$$ \hspace{1cm} (1)

3. Statistical Analysis

Data were analysed using Excel 2007 and results reported as mean ± SD. The calibration curve and trendline equation prepared using Excel 2007.

Table 1: Validation data of the competitive ELISA for AFM$_1$.

<table>
<thead>
<tr>
<th>AFM$_1$ spiked (ppt)</th>
<th>AFM$_1$ found (ppt)</th>
<th>Recovery (%)</th>
<th>Variation coefficient (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>9.98</td>
<td>99.8</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>20.11</td>
<td>100.55</td>
<td>0.5</td>
</tr>
<tr>
<td>40</td>
<td>39.84</td>
<td>99.60</td>
<td>0.4</td>
</tr>
<tr>
<td>80</td>
<td>79.90</td>
<td>99.87</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 2: Aflatoxin M1 distribution and percentage of pasteurized milk samples.

<table>
<thead>
<tr>
<th>AFM$_1$ levels ppt in positive samples</th>
<th>(<10)</th>
<th>(10–30)</th>
<th>(30–50)</th>
<th>(50–70)</th>
<th>(>70^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N^1)</td>
<td>5</td>
<td>27</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(%^2)</td>
<td>12.3</td>
<td>65.6</td>
<td>12.3</td>
<td>7.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

\(N^1\) number of contaminated samples.
\(\%^2\) Percentage of AFM$_1$ positive samples.
*71.3 ppt in the contaminated sample.

4. Results and Discussion

The standard solutions of concentration from 5 to 80 ppt AFM$_1$ were used to find calibration/standard curve. The results showed the linearity of the standard curve over the range studied. Figure 1 gives the calibration curve of standard solutions of AFM$_1$ with concentrations of 5, 10, 20, 40, and 80 ppt by ELISA analysis.

Analytical results showed that the incidence of AFM$_1$ contamination in pasteurized milk samples was low. Although 97.6% of the samples were contaminated with AFM$_1$, the toxin concentration was lower than Iranian national standard and FDA limit (500 ppt) and only in three (1.6%) of the samples AFM$_1$ concentration was greater than the maximum tolerance limit (50 ppt) accepted by European Union and Codex Alimentarius Commission. Table 2 shows the distribution and percentage of AFM$_1$ contamination in pasteurized milk samples. The minimum and maximum contamination level of AFM$_1$ was found to be 6.4 and 71.4 ppt, respectively. The mean ± SD AFM$_1$ level in the analyzed samples of pasteurized milk was 23 ± 16 ppt.
Table 3: The incidence of milk contamination in Iran in other studies.

<table>
<thead>
<tr>
<th>Location</th>
<th>Reference</th>
<th>Method of detection</th>
<th>Sample size</th>
<th>Percent of contamination</th>
<th>Percent of contamination >50 ppt</th>
<th>AFM(_1) concentration (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mashad (north east of Iran)</td>
<td>Current study</td>
<td>ELISA</td>
<td>42</td>
<td>97.6</td>
<td>1.6</td>
<td>23.2</td>
</tr>
<tr>
<td>Mashad (north east of Iran)</td>
<td>Mohamad Sani and Nikpooyan, 2012 [8]</td>
<td>HPLC</td>
<td>60</td>
<td>100</td>
<td>1.6</td>
<td>16.16</td>
</tr>
<tr>
<td>Mashad (north east of Iran)</td>
<td>Mohamadi Sani et al., 2010 [9]</td>
<td>ELISA</td>
<td>196</td>
<td>100</td>
<td>80.6</td>
<td>77.9</td>
</tr>
<tr>
<td>Five states of Iran</td>
<td>Tajkarimi et al., 2007 [10]</td>
<td>HPLC</td>
<td>98</td>
<td>100</td>
<td>37.7</td>
<td>39</td>
</tr>
<tr>
<td>Tehran (capital of Iran)</td>
<td>Heshmati and Milani, 2010 [17]</td>
<td>ELISA</td>
<td>210</td>
<td>55.2</td>
<td>33.3</td>
<td>58</td>
</tr>
<tr>
<td>14 states of Iran</td>
<td>Tajkarimi et al., 2008 [13]</td>
<td>HPLC</td>
<td>319</td>
<td>54</td>
<td>23</td>
<td>57</td>
</tr>
<tr>
<td>Shiraz (south of Iran)</td>
<td>Alborzi et al., 2006 [12]</td>
<td>ELISA</td>
<td>624</td>
<td>100</td>
<td>17.8</td>
<td>n.r*</td>
</tr>
<tr>
<td>Ahwaz (south of Iran)</td>
<td>Rahimi et al., 2010 [16]</td>
<td>ELISA</td>
<td>311</td>
<td>42.1</td>
<td>12.5</td>
<td>43.3</td>
</tr>
<tr>
<td>Sarab (north west of Iran)</td>
<td>Kamkar 2005 [11]</td>
<td>TLC</td>
<td>111</td>
<td>76.6</td>
<td>40</td>
<td>61.4</td>
</tr>
<tr>
<td>Central part of Iran</td>
<td>Fallah 2010 [14]</td>
<td>ELISA</td>
<td>225</td>
<td>67.1</td>
<td>33.1</td>
<td>49.9</td>
</tr>
<tr>
<td>Ardabil (north west of Iran)</td>
<td>Nemati et al., 2010 [15]</td>
<td>ELISA</td>
<td>90</td>
<td>100</td>
<td>33</td>
<td>n.r*</td>
</tr>
</tbody>
</table>

*Not reported.

The mean AFM\(_1\) concentrations in milk in European, Latin American, and Far Eastern diets have been reported by the Joint FAO/WHO Expert Committee on Food Additives [7] to be 23, 22, and 360 ng/L, respectively. Thus, the observed mean AFM\(_1\) concentration in Mashad milk samples was as high as the European and Latin American and much lower than those reported for the Far Eastern diets.

On the other hand, several studies have been done to determine AFM\(_1\) contamination of milk in Iran (Table 3). The incidence of AFM\(_1\) observed in the present study was lower than the incidence of AFM\(_1\) reported by other authors [8–17], yet, in all studies, the averages of toxin concentrations are below 100 ppt. The variations may be attributed to differences in region, season, and especially analysis method.

Based on the above results, especially later studies in Mashad, the present situation is hopeful and might represent the possibility of altering standard limit of AFM\(_1\) concentration in milk in Iran. We suggest reduction of the limit as low as 100 ppt for raw milk.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgment

The authors acknowledge funding support for this study by Mashad University of Medical Sciences.

References

Submit your manuscripts at
http://www.hindawi.com