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Abstract. 
The vibration characteristics of ring stiffened cylindrical shells are analyzed. These shells are assumed to be structured from functionally graded materials (FGM) and are stiffened with isotropic rings. The problem is formulated by coupling the expressions for strain and kinetic energies of a circular cylindrical shell with those for rings. The Lagrangian function is framed by taking difference of strain and kinetic energies. The Rayleigh-Ritz approach is employed to obtain shell dynamical equations. The axial model dependence is approximated by characteristic beam functions that satisfy the boundary conditions. The validity and efficiency of the present technique are verified by comparisons of present results with the previous ones determined by other researchers.


1. Introduction
Circular cylindrical shells stiffened by rings are widely used in many structural applications such as airplanes, marine crafts, pressure vessels, silos, core barrels of pressurized water reactors, submarine hulls, offshore drilling rings, and construction buildings. Usually cylinders are stiffened by rings or strings to increase the stiffness and strength, reduce the weight structure to be designed. In designing these shells, it is vital to know their resonant frequencies because excessive vibrations can lead to fatigue rupture.
First proper shell theory was proposed by Love [1]. This theory was based on Rayleigh [2] approximations for plates. Arnold and Warburton [3, 4] solved the shell problem for various physical parameters and interpreted the dip in the frequency curve on the basis of shell energy variations. They used Lagrange equations with strain and kinetic energy expressions to derive these equations. Forsberg [5] studied shell equations to scrutinize the effect of boundary conditions on vibration characteristics of circular cylindrical shells. Exponential axial model dependence was measured in this work. Bonger and Archer [6] showed that axisymmetric modes of a general shell revolution are orthogonal for clamped, simply supported, and free end. Tso [7] illustrated that the vibrational modes are orthogonal if the displacements or their corresponding natural forces vanish on the shell by using the Hamilton’s principle.  Sewall and Naumann  [8] studied that stiffened cylindrical shells problem experimentally and analytically. They approximated the shell displacement deformations by the beam functions and used Rayleigh-Ritz method to derive shell frequency equation in the eigenvalue form. The shells are stiffened periodically to increase the stability and efficiency. Wang et al. [9] transform vibration analysis of shell eigen-frequency equation in the general eigenvalue problem. They used Ritz polynomial functions for the axial deformation displacements by considering boundary condition equations. They designed three types of shells by the locations of isotropic rings. Sharma and Johns [10] applied Rayleigh-Ritz method for theoretical analysis of vibrating clamped-free and clamped-stiffened shell using Flugge’s shell theory for a variety of choices of axial model shape. Swaddiwudhipong et al. [11] presented an excellent study on vibrations of cylindrical shells with intermediate supports. They adopted an automated Rayleigh-Ritz method to evaluate the natural frequencies and the mode shapes of shells. Loy and Lam [12] studied the vibration of thin cylindrical shell with ring supports. The study was carried out using Sander’s shell theory. The governing equations were obtained using energy functional with the Ritz method.
There is bulk of studies on isotropic homogeneous materials and the studies on new invented composite materials such as functionally graded materials (FGMs) have been carried out by many researchers. In this material compositions and functions are varying continuously from one side to the other side. For example, one side may have high mechanical strength and the other side may have high thermal resistant property; thus, there are “two aspects” in one material. In FGMs, change of compositions is continuous and it does not come out from simply “bonding individual substances.” This generates boundaries among the bonded ones. They are all  considered by  mechanically and chemically. Koizumi [13] and other Japanese materialists gave the idea of fabrication of this material. Benachour et al. [14] gave refined plate theory with four variables for the study of free vibrations of functionally graded plates with arbitrary gradient. Loy et al. [15] have analyzed frequency spectrum of FGM cylindrical shells for simply supported boundary conditions. An FGM cylindrical shell composed of stainless steel and nickel as constituent materials was considered. The material properties are graded in the thickness direction in accordance with a volume fraction law. Ng et al. [16] introduced a formulation for the dynamic stability analysis of functionally graded material (FGM) cylindrical shells under harmonic axial loading. Li and Batra [17] have studied bucking aspect of three layer circular cylindrical shells under axial compressive load  by  simply supported boundary condition. The middle layer of the cylindrical shell was assumed to be of functionally graded material. Benyoucef et al. [18] investigated the bending behavior of thick functionally graded plates resting on Winkler-Pasternak elastic foundations. 


Although an extensive amount of research work has been carried out to study the vibration characteristics of isotropic as well as composite cylindrical shells, there is no evidence of work on vibration of functionally graded cylindrical shells stiffener with ring support. The present study is concerned with analysis of the vibration characteristics of functionally graded cylindrical shell stiffened with isotropic ring on the outer surface of the shell. The Rayleigh-Ritz method is used to formulate the shell eigen-frequency equation. 
2. Theoretical Consideration
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Figure 1: Cylindrical shell with Ring-Stiffeners. 









For a thin cylindrical shell, plane stress condition is assumed and the constitutive relation for a thin cylindrical shell is given by
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				4
				𝑅
				𝜕
				𝑢
			

			
				
			
			
				
				𝜕
				𝜃
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				×
				𝑅
				𝑑
				𝜃
				𝑑
				𝑥
				.
			

		
	
The strain energy 
	
		
			

				𝑆
			

			

				𝑘
			

		
	
 of the 
	
		
			

				𝑘
			

		
	
th ring-stiffener is given by  Galletly [17] as
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑆
			

			

				𝑘
			

			
				=
				
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐸
			

			

				𝑘
			

			

				𝐼
			

			
				𝑧
				𝑘
			

			
				
			
			
				2
				
				𝑅
				+
				𝑒
			

			

				𝑘
			

			
				
				
				𝜕
				𝑤
			

			

				𝑘
			

			
				
			
			
				+
				1
				𝜕
				𝑥
			

			
				
			
			
				𝑅
				+
				𝑒
			

			

				𝑘
			

			

				𝜕
			

			

				2
			

			

				𝑢
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝜃
			

			

				2
			

			

				
			

			

				2
			

			
				+
				𝐸
			

			

				𝑘
			

			

				𝐼
			

			
				𝑥
				𝑘
			

			
				
			
			
				2
				
				𝑅
				+
				𝑒
			

			

				𝑘
			

			

				
			

			

				3
			

			
				
				𝑤
			

			

				𝑘
			

			
				+
				𝜕
			

			

				2
			

			

				𝑤
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝜃
			

			

				2
			

			

				
			

			

				2
			

			
				+
				𝐸
			

			

				𝑘
			

			

				𝐴
			

			

				𝑘
			

			
				
			
			
				2
				
				𝑅
				+
				𝑒
			

			

				𝑘
			

			
				
				
				𝜕
				𝑣
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝜃
				−
				𝑤
			

			

				𝑘
			

			

				
			

			

				2
			

			
				+
				𝐺
			

			

				𝑘
			

			

				𝐽
			

			

				𝑘
			

			
				
			
			
				2
				
				𝑅
				+
				𝑒
			

			

				𝑘
			

			
				
				
				−
				𝜕
			

			

				2
			

			

				𝑤
			

			

				𝑘
			

			
				
			
			
				+
				1
				𝜕
				𝑥
				𝜕
				𝜃
			

			
				
			
			
				𝑅
				+
				𝑒
			

			

				𝑘
			

			
				𝜕
				𝑢
			

			

				𝑘
			

			
				
			
			
				
				𝜕
				𝜃
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				𝑑
				𝜃
				,
			

		
	
where 
	
		
			

				𝑒
			

			

				𝑘
			

		
	
 is the eccentricity of the ring stiffener and is given by 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝑘
			

			
				=
				ℎ
				+
				𝑑
			

			

				𝑘
			

			
				
			
			
				2
				𝑒
				f
				o
				r
				e
				x
				t
				e
				r
				n
				a
				l
				l
				y
				e
				c
				c
				e
				n
				t
				r
				i
				c
				s
				t
				i
				ﬀ
				e
				n
				e
				r
				,
			

			

				𝑘
			

			
				𝑒
				=
				0
				f
				o
				r
				c
				o
				n
				c
				e
				n
				t
				r
				i
				c
				s
				t
				i
				ﬀ
				e
				n
				e
				r
				,
			

			

				𝑘
			

			
				=
				−
				ℎ
				+
				𝑑
			

			

				𝑘
			

			
				
			
			
				2
				f
				o
				r
				i
				n
				t
				e
				r
				n
				a
				l
				l
				y
				e
				c
				c
				e
				n
				t
				r
				i
				c
				s
				t
				i
				ﬀ
				e
				n
				e
				r
				.
			

		
	

					The second moment of areas 
	
		
			

				𝐼
			

			
				𝑧
				𝑘
			

		
	
, 
	
		
			

				𝐼
			

			
				𝑥
				𝑘
			

		
	
, cross-sectional area 
	
		
			

				𝐴
			

			

				𝑘
			

		
	
, and the torsional constant 
	
		
			

				𝐽
			

			

				𝑘
			

		
	
 are furnished by
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑧
				𝑘
			

			
				=
				𝑏
			

			
				𝑘
				3
			

			

				𝑑
			

			

				𝑘
			

			
				
			
			
				1
				2
				,
				𝐼
			

			
				𝑥
				𝑘
			

			
				=
				𝑏
			

			

				𝑘
			

			

				𝑑
			

			
				𝑘
				3
			

			
				
			
			
				1
				2
				,
				𝐴
			

			

				𝑘
			

			
				=
				𝑏
			

			

				𝑘
			

			

				𝑑
			

			

				𝑘
			

			
				,
				𝐽
			

			

				𝑘
			

			
				=
				1
			

			
				
			
			
				3
				
				1
				−
				1
				9
				2
				𝑏
			

			

				𝑘
			

			
				
			
			

				𝜋
			

			

				5
			

			

				𝑑
			

			
				𝑘
				∞
			

			

				
			

			
				𝑛
				=
				1
				,
				3
				,
				5
			

			

				1
			

			
				
			
			

				𝑛
			

			

				5
			

			
				t
				a
				n
				h
				𝑛
				𝜋
				𝑑
			

			

				𝑘
			

			
				
			
			
				2
				𝑏
			

			

				𝑘
			

			
				
				𝑏
			

			
				𝑘
				3
			

			

				𝑑
			

			

				𝑘
			

			

				.
			

		
	

					The kinetic energy 
	
		
			

				𝐾
			

			

				𝑘
			

		
	
 of the 
	
		
			

				𝑘
			

		
	
th stiffener is given by:
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐾
			

			

				𝑘
			

			
				=
				𝜌
			

			

				𝑘
			

			
				
			
			
				2
				
			

			
				0
				2
				𝜋
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝐴
			

			

				𝑘
			

			
				
				
				𝜕
				𝑢
			

			

				𝑘
			

			
				
			
			
				
				𝜕
				𝑡
			

			

				2
			

			
				+
				
				𝜕
				𝑣
			

			

				𝑘
			

			
				
			
			
				
				𝜕
				𝑡
			

			

				2
			

			
				+
				
				𝜕
				𝑤
			

			

				𝑘
			

			
				
			
			
				
				𝜕
				𝑡
			

			

				2
			

			
				
				+
				
				𝐼
			

			
				𝑥
				𝑘
			

			
				+
				𝐼
			

			
				𝑧
				𝑘
			

			
				
				
				𝜕
			

			

				2
			

			

				𝑤
			

			

				𝑘
			

			
				
			
			
				
				𝜕
				𝑡
				𝜕
				𝑥
			

			

				2
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				
				𝑅
				+
				𝑒
			

			

				𝑘
			

			
				
				𝑑
				𝜃
				.
			

		
	

					From geometric considerations, the relationships between the displacements 
	
		
			
				(
				𝑢
			

			

				𝑘
			

			
				,
				𝑣
			

			

				𝑘
			

			
				,
				𝑤
			

			

				𝑘
			

			

				)
			

		
	
 of the kth stiffener and the displacements 
	
		
			
				(
				𝑢
				,
				𝑣
				,
				𝑤
				)
			

		
	
 of the shell at the position of the stiffener at 
	
		
			
				𝑥
				=
				𝑎
			

			

				𝑘
			

			

				𝐿
			

		
	
 are given by 
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑘
			

			
				=
				𝑢
				+
				𝑒
			

			

				𝑘
			

			
				𝜕
				𝑤
			

			

				𝑘
			

			
				
			
			
				,
				𝑣
				𝜕
				𝑥
			

			

				𝑘
			

			
				
				𝑒
				=
				𝑣
				1
				+
			

			

				𝑘
			

			
				
			
			
				𝑅
				
				+
				𝑒
			

			

				𝑘
			

			
				
			
			
				𝑅
				𝜕
				𝑤
			

			
				
			
			
				,
				𝑤
				𝜕
				𝜃
			

			

				𝑘
			

			
				=
				𝑤
				.
			

		
	

					Combining the strain and kinetic energies of the cylindrical shell and the 
	
		
			

				𝑘
			

		
	
th stiffener, the Lagrangian functional is formulated in the following form:
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				=
				
				𝐾
				+
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				1
			

			
				
				𝐾
			

			

				𝑘
			

			
				
				
				−
				
				𝑆
				+
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				1
			

			
				
				𝑆
			

			

				𝑘
			

			
				
				
				.
			

		
	

3. Solution Procedure 
The Rayleigh-Ritz approach is employed to analyze vibrational behaviour of stiffened functionally graded circular cylindrical shells. The use of Ritz method provides a rapid convergence and excellent accuracy. The following displacement functions 
	
		
			
				𝑢
				,
				𝑣
				,
				𝑤
			

		
	
 are adopted to separate the spatial variables 
	
		
			
				𝑥
				,
				𝜃
			

		
	
 and time variable 
	
		
			

				𝑡
			

		
	
 in the following form:
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				𝜃
				,
				𝑡
				)
				=
				𝐴
			

			

				𝑚
			

			
				𝑈
				(
				𝑥
				)
				c
				o
				s
				(
				𝑛
				𝜃
				)
				s
				i
				n
				(
				𝜔
				𝑡
				)
				,
				𝑣
				(
				𝑥
				,
				𝜃
				,
				𝑡
				)
				=
				𝐵
			

			

				𝑚
			

			
				𝑉
				(
				𝑥
				)
				s
				i
				n
				(
				𝑛
				𝜃
				)
				s
				i
				n
				(
				𝜔
				𝑡
				)
				,
				𝑤
				(
				𝑥
				,
				𝜃
				,
				𝑡
				)
				=
				𝐶
			

			

				𝑚
			

			
				𝑊
				(
				𝑥
				)
				c
				o
				s
				(
				𝑛
				𝜃
				)
				s
				i
				n
				(
				𝜔
				𝑡
				)
				,
			

		
	

					where 
	
		
			

				𝑛
			

		
	
 is the number of circumferential modes; 
	
		
			

				𝜔
			

		
	
 is the circular frequency of the vibrating shell; and 
	
		
			
				𝑈
				(
				𝑥
				)
				,
				𝑉
				(
				𝑥
				)
			

		
	
, and 
	
		
			
				𝑊
				(
				𝑥
				)
			

		
	
 represents the axial modal dependence in the axial, circumferential, and radial directions, respectively. 
	
		
			

				𝐴
			

			

				𝑚
			

			
				,
				𝐵
			

			

				𝑚
			

			
				,
				𝐶
			

			

				𝑚
			

		
	
 are the vibrating amplitudes.
Using the expressions for the functions 
	
		
			

				𝑢
			

		
	
, 
	
		
			

				𝑣
			

		
	
, and 
	
		
			

				𝑤
			

		
	
 given in 
	
		
	
 and their partial derivatives in the expressions for 
	
		
			
				𝐾
				,
				𝑆
				,
				𝑆
			

			

				𝑘
			

			
				,
				𝐾
			

			

				𝑘
			

		
	
 given in (11), (13), (14), and (17), respectively, and employing the principle of minimum energy, we obtain the following form of the Lagrangian functional:
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				=
				𝐾
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				a
				x
			

			

				,
			

		
	

					where 
	
		
			

				𝐾
			

			
				m
				a
				x
			

		
	
 and 
	
		
			

				𝑆
			

			
				m
				a
				x
			

		
	
 are the sum of maximum kinetic and strain energies, respectively, of stiffened functionally graded cylindrical shell. To derive frequency equation, the Lagrangian functional is extremized with respect to the amplitude coefficients 
	
		
			

				𝐴
			

			

				𝑚
			

			
				,
				𝐵
			

			

				𝑚
			

		
	
, and 
	
		
			

				𝐶
			

			

				𝑚
			

		
	
. This yields a set of three homogeneous simultaneous equations
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝜕
				∏
			

			
				
			
			
				𝜕
				𝐴
			

			

				𝑚
			

			
				=
				𝜕
				∏
			

			
				
			
			
				𝜕
				𝐵
			

			

				𝑚
			

			
				=
				𝜕
				∏
			

			
				
			
			
				𝜕
				𝐶
			

			

				𝑚
			

			
				=
				0
				.
			

		
	

					Rearranging the terms in (22), we get the following eigenvalue equation to find the shell natural frequencies and mode shapes:
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				[
				𝑆
				]
				+
				
				𝑆
			

			

				𝑘
			

			
				
				
				−
				𝜔
			

			

				2
			

			
				
				[
				𝐾
				]
				+
				
				𝐾
			

			

				𝑘
			

			
				[
				0
				]
				.
				
				
				𝑋
				=
			

		
	

					or
						
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				[
				𝐶
				]
				−
				𝜔
			

			

				2
			

			
				[
				𝐷
				]
				
				[
				0
				]
				,
				𝑋
				=
			

		
	

					where 
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				[
				𝐶
				]
				=
				
				[
				𝑆
				]
				+
				
				𝑆
			

			

				𝑘
			

			
				,
				[
				𝐷
				]
				=
				
				[
				𝐾
				]
				+
				
				𝐾
				
				
			

			

				𝑘
			

			
				,
				
				
			

		
	

					where 
	
		
			
				[
				𝑆
				]
			

		
	
 and 
	
		
			
				[
				𝐾
				]
			

		
	
 are stiffness and mass matrices of the cylindrical shell, respectively, and 
	
		
			
				[
				𝑆
			

			

				𝑘
			

			

				]
			

		
	
 and 
	
		
			
				[
				𝐾
			

			

				𝑘
			

			

				]
			

		
	
 are the corresponding matrices of the 
	
		
			

				𝑘
			

		
	
th ring stiffener, and 
	
		
			
				[
				𝑋
				=
			

			

				𝐴
			

			

				𝑚
			

			

				𝐵
			

			

				𝑚
			

			

				𝐶
			

			

				𝑚
			

			

				]
			

			

				𝑇
			

		
	
 The expression for the matrices 
	
		
			
				[
				𝐶
				]
			

		
	
 and 
	
		
			
				[
				𝐷
				]
			

		
	
 are given in the appendix. This is an eigenvalue problem and is solved by using Matlab software package. Equation (24) is true for both isotropic as well as FGM cylindrical shells. For isotropic cylindrical shells the coupling stiffness 
	
		
			

				𝐵
			

			
				𝑖
				𝑗
			

		
	
 is zero whereas it is non-zero for FGM cylindrical shells. Eigenvalues correspond to the natural frequencies and eigenvectors to the corresponding mode shapes of shells respectively.





4. Functionally Graded Materials
The FGMs are much advanced materials and are used in engineering science and technology. Material properties of an FGM are the functions of the temperature and the position. These properties of a constituent material are managed by a volume fraction. If 
	
		
			

				𝑃
			

			

				𝑖
			

		
	
 represents a material property of the 
	
		
			

				𝑖
			

		
	
th constituent material of an FGM consisting of 
	
		
			

				𝑘
			

		
	
 constituent materials, then the effective materials property 
	
		
			

				𝑃
			

		
	
 of the FGM is written as                 
						
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑃
				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑃
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

			

				,
			

		
	

					where 
	
		
			

				𝑉
			

			

				𝑖
			

		
	
 is the volume fraction of the 
	
		
			

				𝑖
			

		
	
th constituent material. Also, the sum of volume fractions of the constituent materials is equal to 1. That is,
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑉
			

			

				𝑖
			

			
				=
				1
				.
			

		
	

					The volume fraction depends upon the thickness variable and is defined as 
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				=
				
				𝑍
				−
				𝑅
			

			

				𝑖
			

			
				
			
			

				𝑅
			

			

				𝑜
			

			
				−
				𝑅
			

			

				𝑖
			

			

				
			

			

				𝑁
			

		
	

					for a cylindrical shell. 
	
		
			

				𝑅
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑅
			

			

				𝑜
			

		
	
 denote inner and outer radii of the shell, respectively, and 
	
		
			

				𝑧
			

		
	
 is the thickness variable in the radial direction. 
	
		
			

				𝑁
			

		
	
 is known as the power law exponent. It is a nonnegative real number and lies between zero and infinity. For a cylindrical shell, the volume fraction is assumed as
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝑖
			

			
				=
				
				𝑍
				+
				0
				.
				5
				ℎ
			

			
				
			
			
				ℎ
				
			

			

				𝑁
			

			

				,
			

		
	

					where 
	
		
			

				ℎ
			

		
	
 is the shell uniform thickness. When the shell is considered to consist of two materials, the effective Young’s modulus 
	
		
			

				𝐸
			

		
	
, the poisson ratio 
	
		
			

				𝜐
			

		
	
 and the mass density 
	
		
			

				𝜌
			

		
	
 are given by 
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
				𝐸
				𝐸
				=
			

			

				1
			

			
				−
				𝐸
			

			

				2
			

			
				
				
				Z
				+
				0
				.
				5
				ℎ
			

			
				
			
			
				ℎ
				
			

			

				𝑁
			

			
				+
				𝐸
			

			

				2
			

			
				,
				
				𝑛
				𝜐
				=
				𝑛
				𝜐
			

			

				1
			

			
				−
				𝑛
				𝜐
			

			

				2
			

			
				
				
				Z
				+
				0
				.
				5
				ℎ
			

			
				
			
			
				ℎ
				
			

			

				𝑁
			

			
				+
				𝑛
				𝜐
			

			

				2
			

			
				,
				
				𝜌
				𝜌
				=
			

			

				1
			

			
				−
				𝜌
			

			

				2
			

			
				
				
				Z
				+
				0
				.
				5
				ℎ
			

			
				
			
			
				ℎ
				
			

			

				𝑁
			

			
				+
				𝜌
			

			

				2
			

			

				.
			

		
	

5. Results and Discussion
Numerical technique known as the Rayleigh-Ritz method has been employed to study the vibration characteristics of functionally graded circular cylindrical shells with ring- stiffeners. To confirm the efficiency and validity of the present method, the frequencies of cylindrical shells with and without ring-stiffeners are compared with those values found in the literature.
In Table 1, a comparison of frequency parameters 
	
		
			
				Ω
				=
				𝜔
				𝑅
				√
			

			
				
			
			
				(
				1
				−
				𝜈
			

			

				2
			

			
				)
				𝜌
				/
				𝐸
			

		
	
 calculated by Loy et al. [15] is done with those values obtained by the present procedure using the Rayleigh-Ritz method for an isotropic cylindrical shell simply supported at both ends. Shell parameters are given in Table 1. Two sets of frequency parameters are very close to each other and a good agreement is observed between them. The minimum frequency parameter occurs at 
	
		
			
				𝑛
				=
				2
			

		
	
 and is less than, by 0.061%, its corresponding value in Loy et al. [15]. The frequency parameters for 
	
		
			
				𝑛
				=
				1
				,
				3
				,
				a
				n
				d
				4
			

		
	
 are 0.006%, 0.01%, and 0.002% lower and the frequency parameters for circumferential wave numbers 
	
		
			
				𝑛
				=
				7
				,
				8
				,
				9
				,
				a
				n
				d
				1
				0
			

		
	
 are 0.0007%, 0.001%, 0.0009%, and 0.001% greater than the corresponding results performed by Loy et al. [15]. The frequency parameters for 
	
		
			
				𝑛
				=
				5
				,
				6
			

		
	
 are the same for both cases. This shows the validity of the present method.
Table 1: Comparison of frequency parameters 
	
		
			
				Ω
				=
				𝜔
				𝑅
				√
			

			
				
			
			
				(
				1
				−
				𝜈
			

			

				2
			

			
				)
				𝜌
				/
				𝐸
			

		
	
 simply supported isotropic cylindrical shell. 
	
		
			
				(
				𝑚
				=
				1
				,
				𝐿
				/
				𝑅
				=
				2
				0
				,
				ℎ
				/
				𝑅
				=
				0
				.
				0
				1
				,
				𝐸
				=
				3
				0
				𝑒
				+
				0
				6
				𝑙
				𝑏
				𝑓
				𝑖
				𝑛
			

			
				−
				2
			

			
				,
				𝜈
				=
				0
				.
				3
				,
				𝜌
				=
				7
				.
				3
				5
				𝑒
			

			
				−
				0
				4
			

			
				𝑙
				𝑏
				𝑓
				𝑠
			

			

				2
			

			

				)
			

		
	
.
	

	
	
		
			

				𝑛
			

		
	
	Loy et al. [15]	Present
	

	1	0.016102	0.016101
	2	0.009387	0.009381
	3	0.022108	0.022105
	4	0.042096	0.042095
	5	0.068008	0.068008
	6	0.099730	0.099730
	7	0.137239	0.137240
	8	0.180527	0.180529
	9	0.229594	0.229596
	10	0.284435	0.284439
	



5.1. Simply Supported Cylindrical Shells with Ring Stiffeners
The often-cited Galletly [21] S-S shells with 14 evenly spaced eccentric/concentric ring stiffeners of various depth-to-width ratios 
	
		
			
				𝑑
				/
				𝑏
			

		
	
 are analyzed. In Tables 2(a) and 2(b), the nondimensionalized frequency parameters 
	
		
			

				Ω
			

		
	
 are listed for isotropic cylindrical shells with ring-stiffeners. 
Table 2
	(a) Comparison studies of frequency parameter 
	
		
			

				Ω
			

		
	
 for simply-supported cylindrical shell with 14 evenly spaced, externally eccentric ring stiffeners. 
	
		
			
				(
				𝐿
				/
				𝑅
				=
				4
				.
				5
				4
				1
				9
				,
				ℎ
				/
				𝑅
				=
				0
				.
				0
				1
				1
				5
				1
			

		
	
, 
	
		
			
				𝑏
				/
				𝑅
				=
				0
				.
				0
				2
				1
				0
				7
				)
			

		
	

	

	Stiffener's depth-to-width ratio 
	
		
			
				𝑑
				/
				𝑏
			

		
	
	Circumferential wave no.  
	
		
			

				𝑛
			

		
	
	Swaddiwudhipong et al. [11]	Present analysis
	

	1.3314	2	0.08472	0.08503
	1.3314	3	0.06711	0.07049
	1.3314	4	0.1072	0.11493
	1.3314	5	0.1714	0.18394
	2.6628	2	0.08372	0.08591
	2.6628	3	0.1095	0.12269
	2.6628	4	0.2037	0.2296
	2.6628	5	0.3271	0.37226
	3.9942	2	0.08788	0.09371
	3.9942	3	0.1592	0.18444
	3.9942	4	0.3049	0.35343
	3.9942	5	0.4598	0.57304
	


	(b) Comparison studies of frequency parameter 
	
		
			

				Ω
			

		
	
 for simply-supported cylindrical shell with 14 evenly spaced, internally eccentric ring stiffeners. 
	
		
			
				(
				𝐿
				/
				𝑅
				=
				4
				.
				5
				4
				1
				9
				,
				ℎ
				/
				𝑅
				=
				0
				.
				0
				1
				1
				5
				1
			

		
	
, 
	
		
			
				𝑏
				/
				𝑅
				=
				0
				.
				0
				2
				1
				0
				7
				)
			

		
	

	

	Stiffener's depth-to-width ratio 
	
		
			
				𝑑
				/
				𝑏
			

		
	
	Circumferential wave no.  
	
		
			

				𝑛
			

		
	
	Swaddiwudhipong et al. [11]	Present analysis
	

	1.3314	2	0.08282	0.0876
	1.3314	3	0.05992	0.0771
	1.3314	4	0.08641	0.1221
	1.3314	5	0.1346	0.1918
	2.6628	2	0.08141	0.0933
	2.6628	3	0.08826	0.1380
	2.6628	4	0.1536	0.2499
	2.6628	5	0.2459	0.4000
	3.9942	2	0.08425	0.1076
	3.9942	3	0.1280	0.2128
	3.9942	4	0.2363	0.3970
	3.9942	5	0.3807	0.6377
	



Frequency study is analyzed for 14 evenly spaced eccentric ring stiffeners externally and internally in Tables 2(a) and 2(b), respectively. They are compared with those values evaluated by Swaddiwudhipong et al. [11]. Shell parameters are listed in the tables. The axial wave mode is 
	
		
			
				𝑚
				=
				1
			

		
	
. The circumferential wave numbers are 2, 3, 4, and 5. It is seen that as the depth-to-width ratio 
	
		
			
				(
				𝑑
				/
				𝑏
				)
			

		
	
 is increased, the frequency increases. Also the comparison of the results shows that the present results are slight higher than those in Swaddiwudhipong et al. [11]. The difference may be due to the axial modal dependence measured by the different sets of functions. In Swaddiwudhipong et al. [11], Ritz polynomials have been used whereas in the present study, characteristics beam functions are utilized.
5.2. Comparisons of Results of FGM Cylindrical Shells without Ring Stiffeners
The functionally graded material considered here is composed of stainless steel and nickel. The variations of natural frequencies of a functionally graded cylindrical shell are compared with those determined by Naeem et al. [19]. The influence of the constituent volume fractions is studied by varying the volume fractions of the Stainless Steel and Nickel. This is carried out by varying the value of power law exponent 
	
		
			

				𝑁
			

		
	
. The effects of the FGM configuration are studied by studying the frequencies of two functionally graded cylindrical shells. Type-I functionally graded cylindrical shell has Nickel on its inner surface and Stainless Steel on its outer surface and Type-II functionally graded cylindrical shell has Stainless Steel on its inner surface and Nickel on its outer surface. The material properties for Stainless Steel and Nickel, calculated at 
	
		
			
				𝑇
				=
				3
				0
				0
			

		
	
 K, are presented in Table 3.
Table 3: Properties of materials.
	

	Coefficients	                 Stainless steel	                      Nickel
	
	
		
			

				𝐸
			

		
	
 (N/m2)	
	
		
			

				𝜈
			

		
	
	
	
		
			

				𝜌
			

		
	
 (kg/m3)	
	
		
			

				𝐸
			

		
	

									(N/m2)	
	
		
			

				𝜈
			

		
	
	
	
		
			

				𝐸
			

		
	

									(N/m2)
	

	
	
		
			

				𝑝
			

			

				0
			

		
	
	
	
		
			
				2
				0
				1
				.
				0
				4
				×
				1
				0
			

			

				9
			

		
	
	0.3262	8166	
	
		
			
				2
				2
				3
				.
				9
				5
				×
				1
				0
			

			

				9
			

		
	
	0.3100	8900
	
	
		
			

				𝑝
			

			
				−
				1
			

		
	
	0	0	0	0	0	0
	
	
		
			

				𝑝
			

			

				1
			

		
	
	
	
		
			
				3
				.
				0
				7
				9
				×
				1
				0
			

			
				−
				4
			

		
	
	
	
		
			
				−
				2
				.
				0
				0
				2
				×
				1
				0
			

			
				−
				4
			

		
	
	0	
	
		
			
				−
				2
				.
				7
				9
				4
				×
				1
				0
			

			
				−
				4
			

		
	
	0	0
	
	
		
			

				𝑝
			

			

				2
			

		
	
	
	
		
			
				−
				6
				.
				5
				3
				4
				×
				1
				0
			

			
				−
				7
			

		
	
	
	
		
			
				3
				.
				7
				9
				7
				×
				1
				0
			

			
				−
				7
			

		
	
	0	
	
		
			
				−
				3
				.
				9
				9
				8
				×
				1
				0
			

			
				−
				9
			

		
	
	0	0
	
	
		
			

				𝑝
			

			

				3
			

		
	
	0	0	0	0	0	0
	

	 	
	
		
			
				2
				.
				0
				7
				7
				8
				8
				×
				1
				0
			

			
				1
				1
			

		
	
	
	
		
			
				0
				.
				3
				1
				7
				7
				5
				6
			

		
	
	8166	
	
		
			
				2
				.
				0
				5
				0
				9
				8
				×
				1
				0
			

			
				1
				1
			

		
	
	0.3100	8900
	



Natural frequencies (Hz) determined by the present method for a simply supported functionally graded cylindrical shell are presented in Tables 4(a) and 4(b) and are compared with the corresponding results evaluated by Naeem et al. [19]. In Table 4(a), a comparison of natural frequencies for the shell is given for the power law exponent 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
, 1, and 15. The respective frequencies determined by two techniques are the same for the circumferential wave number 
	
		
			
				𝑛
				=
				1
			

		
	
 and for 
	
		
			

				𝑛
			

		
	
 greater than 4 against power law exponent 
	
		
			
				𝑁
				=
				1
			

		
	
. The frequencies determined by the present method are slightly greater than those in the study of Naeem et al. [19] for the circumferential wave number 
	
		
			

				𝑛
			

		
	
 between 2 and 10 against the power law exponent 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
 and for 
	
		
			
				𝑛
				=
				2
			

		
	
, 3, and 4 against power law exponent 
	
		
			
				𝑁
				=
				1
			

		
	
. The frequencies determined by the present method are slightly lower for the circumferential wave number 
	
		
			
				𝑛
				=
				3
			

		
	
 to 
	
		
			
				𝑛
				=
				1
				0
			

		
	
 against the power law exponent 
	
		
			
				𝑁
				=
				1
				5
			

		
	
. The minimum frequency corresponds to 
	
		
			
				𝑛
				=
				4
			

		
	
 and decreases with 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 and corresponding decrement is 0.0218 per cent.
Table 4
	(a) Comparison of natural frequencies (Hz) for type I FG cylindrical shell with simply-supported boundary conditions. (
	
		
			
				𝑚
				=
				1
			

		
	
,   
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
,    
	
		
			
				𝑅
				/
				ℎ
				=
				5
				0
				0
			

		
	
)
	

	
	
		
			

				𝑛
			

		
	
	            Naeem et al. [19]	                    Present
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				1
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				1
				5
			

		
	

	

	1	13.321	13.211	12.933	13.321	13.211	12.932
	2	4.5162	4.4794	4.3829	4.5164	4.4796	4.3830
	3	4.1903	4.1562	4.0646	4.1909	4.1564	4.0641
	4	7.0967	7.0379	6.8851	7.0976	7.0381	6.8836
	5	11.335	11.241	10.998	11.336	11.241	10.996
	6	16.594	16.455	16.101	16.595	16.455	16.097
	7	22.826	22.635	22.148	22.828	22.635	22.143
	8	30.023	29.771	29.132	30.025	29.771	29.125
	9	38.181	37.862	37.048	38.185	37.862	37.039
	10	47.301	46.905	45.897	47.305	46.905	45.886
	


	(b) Comparison of natural frequencies (Hz) for type II FG cylindrical shell with simply-supported boundary conditions. (
	
		
			
				𝑚
				=
				1
			

		
	
,   
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
,    
	
		
			
				𝑅
				/
				ℎ
				=
				5
				0
				0
			

		
	
)
	

	
	
		
			

				𝑛
			

		
	
	Naeem et al. [19]	Present
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				1
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				1
				5
			

		
	

	

	1	13.103	13.211	13.505	13.103	13.211	13.505
	2	4.4382	4.4742	4.5759	4.4378	4.4739	4.5757
	3	4.1152	4.1486	4.2451	4.1144	4.1481	4.2454
	4	6.9754	7.0330	7.1943	6.9744	7.0327	7.1956
	5	11.145	11.238	11.494	11.143	11.237	11.496
	6	16.317	16.453	16.453	16.315	16.452	16.830
	7	22.447	22.633	23.147	22.444	22.633	23.152
	8	29.524	29.770	30.446	29.521	29.770	30.453
	9	37.548	37.861	38.720	37.544	37.861	38.729
	10	46.517	46.904	47.968	46.511	46.904	47.979
	



In Table 4(a), a comparison of of natural frequencies for the shell is given for the power law exponent 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
, 1, and 15. The respective frequencies determined by two techniques are the same for the circumferential wae number 
	
		
			
				𝑛
				=
				1
			

		
	
 and for 
	
		
			

				𝑛
			

		
	
 greater than 4 against power law exponent 
	
		
			
				𝑁
				=
				1
			

		
	
. The frequencies determined by the present method are slightly lower than those in the study of Naeem et al. [19] for the circumferential wave number 
	
		
			

				𝑛
			

		
	
 between 2 and 10 against the power law exponent 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
 and for 
	
		
			
				𝑛
				=
				2
			

		
	
, 3, and 4 against power law exponent 
	
		
			
				𝑁
				=
				1
			

		
	
. The minimum frequency corresponds to 
	
		
			
				𝑛
				=
				4
			

		
	
 and decreases with 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
 and corresponding decrement is 0.0143 per cent. 
5.3. Functionally Graded Circular Cylindrical Shells with Ring-Stiffeners
5.3.1. Variations of Natural Frequencies with Circumferential Wave Number (
	
		
			

				𝑛
			

		
	
)
Tables 5 and 6 list the variations of natural frequencies (Hz) with the circumferential wave number “
	
		
			

				𝑛
			

		
	
” for a type I FG cylindrical shell with the Nickel ring-stiffeners. The axial mode “
	
		
			

				𝑚
			

		
	
” is taken to be unity. 
	
		
			
				𝐿
				/
				𝑅
			

		
	
 is kept equal to 20 where 
	
		
			
				𝑅
				/
				ℎ
				=
				5
				0
				0
			

		
	
, 20 in Tables 5 and 6, respectively. The columns 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
 show the natural frequencies (Hz) for a Stainless Steel cylindrical shell and Nickel cylindrical shell, respectively. The influence of the value of 
	
		
			

				𝑁
			

		
	
, which affects the constituent volume fractions, is analyzed. It is seen that when the value of 
	
		
			

				𝑁
			

		
	
 is increased, the natural frequencies decreased. The decrease in the natural frequencies in Table 5, from 
	
		
			
				𝑁
				=
				1
			

		
	
 to 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 is about 1.6% at 
	
		
			
				𝑛
				=
				1
			

		
	
 and about 1.5% at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
. When 
	
		
			

				𝑁
			

		
	
is small, the natural frequencies approached those of 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and when 
	
		
			

				𝑁
			

		
	
 is large they approached those of 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
. Hence the natural frequencies for 
	
		
			

				𝑁
			

		
	
greater than zero fell between those of 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
 for a given circumferential wave number 
	
		
			

				𝑛
			

		
	
.
Table 5: Variation of natural frequencies against circumferential wave number n, type I FG cylindrical shell with nickel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	26.831	25.864	26.497	26.421	26.335	26.176	26.018	25.922	25.894
	2	30.397	29.289	30.014	29.926	29.828	29.645	29.466	29.355	29.323
	3	47.192	45.494	46.603	46.468	46.317	46.037	45.762	45.594	45.545
	4	82.416	79.471	81.393	81.158	80.896	80.411	79.935	79.643	79.559
	5	131.10	126.42	129.47	129.10	128.68	127.91	127.16	126.69	126.56
	6	191.52	184.69	189.14	188.60	187.99	186.86	185.76	185.09	184.89
	7	263.21	253.82	259.59	259.20	258.37	256.82	255.30	254.37	254.11
	8	346.02	333.69	341.74	340.75	339.66	337.62	335.63	334.41	334.o6
	9	439.88	424.20	434.43	433.18	431.79	429.21	426.68	425.12	424.68
	10	544.74	525.34	538.01	536.46	534.73	531.53	528.40	526.48	525.93
	



Table 6: Variation of natural frequencies against circumferential wave number n, type I FG cylindrical shell with nickel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	14.715	14.025	14.436	14.421	14.360	14.246	14.134	14.066	14.046
	2	35.517	33.764	34.836	34.768	34.618	34.342	34.068	33.885	33.828
	3	96.256	91.453	94.364	94.184	93.772	93.017	92.275	91.782	91.626
	4	183.17	174.01	179.56	179.21	178.43	176.99	175.57	174.64	174.34
	5	295.50	280.72	289.66	289.11	287.84	285.52	283.24	281.73	281.25
	6	433.06	411.40	424.51	423.70	421.84	418.44	415.10	412.88	412.18
	7	595.76	565.96	584.00	582.89	580.33	575.65	571.05	568.00	567.04
	8	783.53	744.35	768.06	766.60	763.24	757.08	751.04	747.03	745.76
	9	996.33	946.51	976.66	974.80	970.53	962.70	955.02	949.92	948.31
	10	1234.1	1172.4	1209.7	1207.46	1202.17	1192.5	1182.9	1176.6	1174.6
	



Tables 7 and 8 show the variation of the natural frequencies (Hz) versus the circumferential wave number “
	
		
			

				𝑛
			

		
	
” for a Type II FGM cylindrical shell with Nickel ring-stiffeners. The influence of 
	
		
			

				𝑁
			

		
	
 or constituent volume fraction on the natural frequencies is the opposite of a Type I FGM cylindrical shell. Unlike a Type I FGM cylindrical shell where the natural frequencies (Hz) decreased with 
	
		
			

				𝑁
			

		
	
, the natural frequencies (Hz) for a Type II FGM cylindrical shell increased with 
	
		
			

				𝑁
			

		
	
. The increase in the natural frequencies (Hz) from 
	
		
			
				𝑁
				=
				1
			

		
	
 to 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 is about 1.64% at 
	
		
			
				𝑛
				=
				1
			

		
	
 and about 1.61% at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
. Thus the influence of the constituent volume fractions for a Type II FGM cylindrical shell is different from that of a Type I FGM cylindrical shell.
Table 7: Variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, type II FG cylindrical shell with nickel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	26.831	25.864	26.176	26.251	26.335	26.498	26.663	26.768	26.798
	2	30.397	29.289	29.647	29.732	29.830	30.016	30.204	30.324	30.359
	3	47.192	45.494	46.044	46.176	46.325	46.611	46.897	47.082	47.135
	4	82.416	79.471	80.426	80.655	80.914	81.408	81.904	82.225	82.317
	5	131.10	126.42	127.94	128.30	128.71	129.50	130.28	130.80	130.94
	6	191.52	184.69	186.90	187.43	188.03	189.18	190.33	191.08	191.29
	7	263.21	253.82	256.87	257.60	258.42	260.00	261.58	262.60	262.90
	8	346.02	333.69	337.69	338.65	339.73	341.80	343.88	345.22	345.61
	9	439.88	424.20	429.29	430.51	431.89	434.52	437.15	438.87	439.36
	10	544.74	525.34	531.64	533.15	534.85	538.11	541.37	543.49	544.10
	



Table 8: Variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, type II FG cylindrical shell with nickel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	14.714	14.025	14.245	14.298	14.359	14.475	14.594	14.669	14.691
	2	35.517	33.764	34.329	34.461	34.610	34.891	35.178	35.383	35.446
	3	96.256	91.453	93.018	93.383	93.790	94.559	95.344	95.892	96.063
	4	183.17	174.01	177.00	177.70	178.47	179.94	181.43	182.48	182.80
	5	295.50	280.72	285.54	286.66	287.92	290.28	292.70	294.38	294.90
	6	433.06	411.40	418.47	420.12	421.96	425.42	428.96	431.42	432.19
	7	595.76	565.96	575.69	577.96	580.49	585.25	590.12	593.50	594.57
	8	783.53	744.35	757.14	760.12	763.44	769.71	776.11	780.56	781.96
	9	996.33	946.51	962.78	966.56	970.79	978.76	986.89	992.55	994.33
	10	1234.1	1172.4	1192.5	1197.2	1202.5	1212.3	1222.4	1229.4	1231.6
	



Comparing the frequencies in Tables 5 and 6 with those in Tables 7 and 8, it can be seen that for 
	
		
			
				𝑁
				>
				1
			

		
	
, the natural frequencies of a Type II FG cylindrical shell with Nickel ring-stiffeners are higher than those a Type I FG cylindrical shell with Nickel ring-stiffeners.
On the other hand, for 
	
		
			
				𝑁
				<
				1
			

		
	
, the frequencies for a Type I FGM cylindrical shell with Nickel ring-stiffeners are higher than a Type II FG cylindrical shell with Nickel ring-stiffeners. For example, for 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
 and 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, the natural frequencies (Hz) for a Type II FG cylindrical shell with Nickel ring-stiffeners are about 3.23% higher than a Type I FG cylindrical shell with Nickel ring-stiffeners. For 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
 at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
 and 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, the frequencies for a Type I FGM cylindrical shell with Nickel ring-stiffeners are 1.26% higher than a Type II FG cylindrical shell with Nickel ring-stiffeners. Thus the natural frequencies are affected by the configuration of the constituent materials in the functionally graded cylindrical shells.
Tables 9 and 10 show the variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, for Type I FG cylindrical shell with Stainless Steel ring-stiffeners. The influence of the value of 
	
		
			

				𝑁
			

		
	
, which affects the constituent volume fraction, can be seen from the tables. It is seen that when the value of 
	
		
			

				𝑁
			

		
	
 is increased, the natural frequencies decreased. The decrease in the natural frequencies in Table 9, from 
	
		
			
				𝑁
				=
				1
			

		
	
 to 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 is about 1.60% at 
	
		
			
				𝑛
				=
				1
			

		
	
 and about 1.56% at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
. When 
	
		
			

				𝑁
			

		
	
 is small, the natural frequencies approached those of 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and when 
	
		
			

				𝑁
			

		
	
is large, they approached those of 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
. Hence the natural frequencies for 
	
		
			

				𝑁
			

		
	
 greater than zero fell between those of 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
 for a given circumferential wave number 
	
		
			

				𝑛
			

		
	
. 
Table 9: Variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, type I FG cylindrical shell with stainless steel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	25.274	24.348	24.955	24.881	24.799	24.646	24.496	24.403	24.377
	2	29.526	28.439	29.151	29.064	28.968	28.788	28.613	28.504	28.473
	3	45.740	44.073	45.161	45.029	44.881	44.605	44.337	44.171	44.124
	4	79.445	76.570	78.446	78.217	77.962	77.487	77.024	76.739	76.658
	5	126.21	121.65	124.63	124.26	123.86	123.10	122.37	121.92	121.79
	6	184.32	177.66	182.00	181.47	180.88	179.78	178.71	178.05	177.86
	7	253.29	244.15	250.11	249.38	248.57	247.06	245.59	244.68	244.42
	8	332.97	320.96	328.79	327.83	326.77	324.79	322.85	321.66	321.32
	9	423.29	408.03	417.98	416.77	415.41	412.90	410.43	408.92	408.49
	10	524.21	505.31	517.64	516.14	514.46	511.34	508.29	506.42	505.88
	



Table 10: Variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, type I FG cylindrical shell with stainless steel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	14.482	13.800	14.206	14.192	14.131	14.019	13.908	13.841	13.821
	2	35.176	33.434	34.499	34.433	34.283	34.009	33.737	33.555	33.498
	3	95.883	91.090	93.995	93.817	93.405	92.652	91.911	91.419	91.263
	4	182.65	173.50	179.04	178.70	177.91	176.48	175.07	174.13	173.83
	5	294.72	279.96	288.89	288.35	287.08	284.76	282.48	280.97	280.49
	6	431.95	410.31	423.41	422.60	420.75	417.35	414.01	411.79	411.09
	7	594.24	564.47	582.49	581.38	578.83	574.15	569.56	566.51	565.55
	8	781.54	742.40	766.08	764.63	761.27	755.12	749.08	745.07	743.81
	9	993.81	944.04	974.15	972.31	968.04	960.22	952.54	947.45	945.84
	10	1231.0	1169.4	1206.6	1204.4	1199.1	1189.4	1179.9	1173.6	1171.6
	



Tables 11 and 12 show the variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, for Type II FG cylindrical shell with Stainless Steel ring-stiffeners. The influence of 
	
		
			

				𝑁
			

		
	
 or the constituent volume fraction on the natural frequencies is opposite of a Type I FGM cylindrical shell. Here, the natural frequencies for a Type II FGM cylindrical shell increase with increasing the value of 
	
		
			

				𝑁
			

		
	
. The increase in the natural frequencies from 
	
		
			
				𝑁
				=
				1
			

		
	
 to 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 is about 1.67% at 
	
		
			
				𝑛
				=
				1
			

		
	
 and about 1.63% at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
. Thus the influence of the constituent volume fractions for a Type II FGM cylindrical shell is different from that of a Type I FGM cylindrical shell.
Table 11: Variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, type II FG cylindrical shell with stainless steel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	25.274	24.348	24.646	24.718	24.799	24.955	25.113	25.214	25.243
	2	29.526	28.439	28.790	28.874	28.970	29.152	29.338	29.455	29.490
	3	45.740	44.073	44.613	44.742	44.888	45.168	45.451	45.632	45.684
	4	79.445	76.570	77.502	77.726	77.978	78.461	78.945	79.259	79.349
	5	126.21	121.65	123.12	123.48	123.88	124.65	125.42	125.91	126.06
	6	184.32	177.66	179.81	180.34	180.92	182.04	183.16	183.89	184.09
	7	253.29	244.15	247.11	247.82	248.63	250.16	251.70	252.70	252.99
	8	332.97	320.96	324.85	325.79	326.85	328.86	330.88	332.20	332.57
	9	423.29	408.03	412.97	414.16	415.51	418.07	420.64	422.30	422.78
	10	524.21	505.31	511.44	512.91	514.57	517.74	520.92	522.99	523.58
	



Table 12: Variation of natural frequencies against circumferential wave number 
	
		
			

				𝑛
			

		
	
, type II FG cylindrical shell with stainless steel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	1	14.482	13.800	14.018	14.071	14.130	14.245	14.362	14.436	14.458
	2	35.176	33.434	33.995	34.126	34.274	34.553	34.839	35.043	35.105
	3	95.883	91.090	92.651	93.015	93.421	94.188	94.972	95.519	95.691
	4	182.65	173.50	176.49	177.18	177.96	179.42	180.91	181.95	182.28
	5	294.72	279.96	284.78	285.90	287.15	289.51	291.92	293.60	294.13
	6	431.95	410.31	417.37	419.02	420.85	424.31	427.85	430.31	431.08
	7	594.24	564.47	574.19	576.45	578.98	583.74	588.60	591.98	593.05
	8	781.54	742.40	755.17	758.14	761.47	767.73	774.12	778.57	779.97
	9	993.81	944.04	960.28	964.06	968.29	976.24	984.38	990.03	991.81
	10	1231.0	1169.4	1189.5	1194.2	1199.4	1209.3	1219.3	1226.3	1228.5
	



Comparing the frequencies in Tables 9 and 10 with those in Tables 11 and 12, it can be seen that for 
	
		
			
				𝑁
				>
				1
			

		
	
, the natural frequencies of a Type II FGM cylindrical shell with Stainless Steel ring-stiffeners are higher than those of a Type I FGM cylindrical shell with Stainless Steel ring-stiffeners. On the other hand, for 
	
		
			
				𝑁
				<
				1
			

		
	
, the frequencies for a Type I FGM cylindrical shell with Stainless Steel ring-stiffeners are higher than those for a Type II FGM cylindrical shell with Stainless Steel ring-stiffeners. For example, for 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
 and 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, the natural frequencies for a Type II FGM with Stainless Steel ring-stiffeners is about 3.27% higher than a Type I FGM cylindrical shell with Stainless Steel ring-stiffeners. For 
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
 at 
	
		
			
				𝑛
				=
				1
				0
			

		
	
 and 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, the natural frequency for a Type I FGM cylindrical shell with Stainless Steel ring-stiffeners is 1.2% higher than a Type II FGM cylindrical shell with Stainless Steel ring-stiffeners. Thus the natural frequencies are affected by the configuration of the constituent materials in the functionally graded cylindrical shells.
5.3.2. Variation of Minimum Frequency with 
	
		
			
				𝐿
				/
				𝑅
			

		
	

Tables 13 and 14 show the variations of the fundamental natural frequencies (Hz) with the 
	
		
			
				𝐿
				/
				𝑅
			

		
	
ratio for a Type I and Type II FGM cylindrical shells with Stainless Steel ring-stiffeners. For a Type I FGM cylindrical shell with Stainless Steel ring-stiffeners, the fundamental frequencies decreased with 
	
		
			

				𝑁
			

		
	
, and for a Type II FGM cylindrical shell with Stainless Steel ring-stiffeners, the fundamental frequencies increased with 
	
		
			

				𝑁
			

		
	
. The difference in the fundamental frequencies between 
	
		
			
				𝑁
				=
				1
			

		
	
 and 
	
		
			
				𝑁
				=
				1
				5
			

		
	
 is about 1.78% for Type I and 1.87% for Type II FGM cylindrical shells with Stainless steel ring-stiffeners. The fundamental natural frequencies for Type I and Type II FGM cylindrical shells with Stainless Steel ring-stiffeners occur at the same circumferential wave numbers. For all values of 
	
		
			

				𝑁
			

		
	
, the fundamental natural frequencies fall between those for 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
.
Table 13: Variation of natural frequencies against 
	
		
			
				𝐿
				/
				𝑅
			

		
	
, type I FG cylindrical shell with stainless steel ring stiffeners  (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			
				𝐿
				/
				𝑅
			

		
	
	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	0.2	20	2875.5	2866.8	2872.5	2871.8	2871.1	2869.6	2868.2	2867.3	2867.1
	0.5	15	1614.0	1602.9	1610.2	1609.4	1608.4	1606.5	1604.7	1603.5	1603.3
	1.0	11	900.77	890.59	897.30	896.49	895.59	893.89	892.22	891.20	890.90
	2.0	8	488.92	480.57	486.06	485.40	484.66	483.27	481.91	481.07	480.82
	5.0	5	181.84	177.15	180.23	179.85	179.44	178.66	177.90	177.43	177.29
	10	4	100.74	97.538	99.630	99.380	99.095	98.566	98.046	97.727	97.636
	20	3	45.740	44.073	45.162	45.029	44.881	44.605	44.336	44.171	44.124
	50	2	13.408	12.874	13.222	13.179	13.132	13.044	12.958	12.905	12.890
	100	1	2.5497	2.4455	2.5135	2.5052	2.4960	2.4788	2.4620	2.4516	2.4486
	



Table 14: Variation of natural frequencies against L/R, type II FG cylindrical shell with stainless steel ring stiffeners  (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				ℎ
				/
				𝑅
				=
				0
				.
				0
				0
				2
			

		
	
,  
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			
				𝐿
				/
				𝑅
			

		
	
	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5	
	
		
			
				𝑁
				=
				3
			

		
	
0
	

	0.2	20	2875.5	2866.8	2869.3	2870.5	2871.2	2872.7	2874.1	2875.0	2875.2
	0.5	15	1614.0	1602.9	1606.3	1607.6	1608.5	1610.4	1612.2	1613.4	1613.7
	1.0	11	900.77	890.59	893.66	894.81	895.71	897.41	899.07	900.15	900.45
	2.0	8	488.92	480.57	483.07	484.00	484.74	486.14	487.51	488.40	488.65
	5.0	5	181.84	177.15	178.52	179.06	179.47	180.26	181.04	181.54	181.68
	10	4	100.74	97.538	98.430	98.833	99.115	99.652	100.19	100.54	100.64
	20	3	45.740	44.073	44.505	44.742	44.888	45.168	45.450	45.631	45.684
	50	2	13.408	12.874	12.994	13.086	13.133	13.223	13.314	13.373	13.390
	100	1	2.5497	2.4455	2.4788	2.4868	2.4959	2.5135	2.5314	2.5427	2.5461
	



5.3.3. Variation of Minimum Frequency with 
	
		
			
				ℎ
				/
				𝑅
			

		
	

Tables 15 and 16 show the variations of the fundamental natural frequencies (Hz) with the 
	
		
			
				ℎ
				/
				𝑅
			

		
	
 ratio for a Type I and Type II FGM cylindrical shells with Stainless Steel ring-stiffeners. For a Type I FGM cylindrical shell with Stainless Steel ring-stiffeners, the fundamental frequencies decreased with 
	
		
			

				𝑁
			

		
	
, and for a Type II FGM cylindrical shell with Stainless Steel ring-stiffeners, the fundamental frequencies increased with 
	
		
			

				𝑁
			

		
	
. For all values of 
	
		
			

				𝑁
			

		
	
, the fundamental natural frequencies lie between those for 
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑁
			

		
	
.
Table 15: Variation of fundamental natural frequencies against h/R, type I FG cylindrical shell with stainless steel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			
				ℎ
				/
				𝑅
			

		
	
	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
	
	
		
			
				𝑁
				=
				2
			

		
	
	
	
		
			
				𝑁
				=
				5
			

		
	
	
	
		
			
				𝑁
				=
				1
			

		
	
5
	

	0.001	3	52.567	50.896	51.992	51.859	51.711	51.434	51.163	50.995
	0.005	2	24.993	23.985	24.643	24.563	24.473	24.307	24.145	24.045
	0.007	2	23.114	22.162	22.783	22.707	22.623	22.466	22.313	22.218
	0.01	2	21.393	20.493	21.081	21.000	20.929	20.782	20.637	20.547
	0.02	1	15.812	15.090	15.561	15.504	15.440	15.321	15.204	15.133
	0.03	1	15.096	14.396	15.060	14.798	14.736	14.621	14.507	14.438
	0.04	1	14.717	14.028	14.472	14.424	14.362	14.249	14.137	14.069
	0.05	1	14.482	13.800	14.245	14.191	14.131	14.019	13.908	13.841
	



Table 16: Variation of fundamental natural frequencies against h/R, type II FG cylindrical shell with stainless steel ring stiffeners (
	
		
			
				𝑚
				=
				1
			

		
	
, 
	
		
			
				𝐿
				/
				𝑅
				=
				2
				0
			

		
	
, 
	
		
			
				𝑑
				/
				𝑏
				=
				1
				.
				3
				3
				4
			

		
	
).
	

	
	
		
			
				ℎ
				/
				𝑅
			

		
	
	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝑁
			

			
				𝑆
				𝑆
			

			
				=
				0
			

		
	
	
	
		
			

				𝑁
			

			

				𝑁
			

			
				=
				0
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				5
			

		
	
	
	
		
			
				𝑁
				=
				0
				.
				7
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	0.001	3	52.567	50.896	51.439	51.569	51.716	51.996	52.279	52.459
	0.005	2	24.993	23.985	24.309	24.387	24.475	24.645	24.816	24.927
	0.007	2	23.114	22.162	22.467	22.541	22.624	22.784	22.945	23.050
	0.01	2	21.393	20.493	20.782	20.851	20.930	21.081	21.232	21.333
	0.02	1	15.812	15.090	15.321	15.376	15.440	15.561	15.685	15.764
	0.03	1	15.096	14.396	14.620	14.674	14.735	14.853	14.974	15.050
	0.04	1	14.717	14.028	14.248	14.301	14.361	14.477	14.596	14.671
	0.05	1	14.482	13.800	14.018	14.070	14.130	14.245	14.362	14.436
	



The frequency characteristics of FGM cylindrical shells with ring-stiffeners are similar to those for homogeneous isotropic cylindrical shells. Other interesting frequency characteristics are also observed in the FGM cylindrical shells. These characteristics arise when the constituent volume fractions and the configurations of the constituent materials in the functionally graded cylindrical shells are varied in the thickness direction.
6. Conclusion
In this study, the Rayleigh-Ritz approach has been employed to analyze the vibration characteristics of functionally graded circular cylindrical shells with ring-stiffeners of different materials. The axial model dependence has been approximated by the characteristic beam functions. Sander’s thin shell theory of first order has been used to perform the vibration analysis. From the vibration results of cylindrical shells with identical and evenly spaced ring-stiffeners, it is found that stiffeners placed eccentrically are more effective than concentric ones. The study is carried out for isotropic as well as two types of functionally graded cylindrical shell with and without ring stiffeners where the configurations of the constituent materials in the functionally graded cylindrical shells are varied by the volume fraction law. One is termed as Type I FG cylindrical shell and has properties that vary continuously from Nickel on its inner surface and Stainless Steel on its outer surface. The other is termed as a Type II FG cylindrical shell and has properties that vary continuously from Stainless Steel on its inner surface and Nickel on its outer surface. A validation of the analysis has been carried out by comparing results with those found in literature and a good agreement has been observed among the results evaluated by different shell theories and numerical approaches. It is seen that the variations of natural frequency of FGM circular cylinders are similar to that of isotropic ones. The frequency is influenced by the volume fraction law exponents. It decreases or increases with N depending upon the order of constituent material in FGM shells. For the Type I and Type II FG cylindrical shells the natural frequencies for all values of N lie between those for a Stainless Steel and Nickel cylindrical shells. For 
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 the natural frequencies for Type I FG cylindrical shells are higher than those for Type II FG cylindrical shells and for 
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 the natural frequencies for Type II FG cylindrical shells are higher than those for Type I FG cylindrical shells. Thus the constituent volume fractions and the configurations of the constituent materials affect the natural frequencies. This work can be extended to analyze vibrations of cylindrical shells by varying material composition by the interchange of isotropic and functionally graded layers in the radial direction.
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