Research Article

New ab Initio Potential Energy Surfaces for the Renner-Teller Coupled $1^1A'$ and $1^1A''$ States of CH$_2$

Haitao Ma, Chunfang Zhang, Zhijun Zhang, Xiaojun Liu, and Wensheng Bian

1 Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China

Correspondence should be addressed to Wensheng Bian, bian@iccas.ac.cn

Received 31 August 2011; Revised 31 October 2011; Accepted 9 November 2011

Copyright © 2012 Haitao Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

New ab initio potential energy surfaces (PESs) for the two lowest-lying singlet $1^1A'$ and $1^1A''$ electronic states of CH$_2$, coupled by the Renner-Teller (RT) effect and meant for the spectroscopic study, are presented. The surfaces are constructed using a dual-level strategy. The internally contracted multireference configuration interaction calculations with the Davidson correction, using the aug-cc-pVQZ basis set, are employed to obtain 3042 points at the lower level. The core and core-valence correlation effects are taken into account in the ab initio calculations with a modified optimized aug-cc-pCVQZ basis set for the higher-level points. The analytical representations of these PESs, with the inclusion of the nonadiabatic RT terms, are obtained by the nonlinear least-squares fit of the calculated points to three-body expansion. Quantum dynamical calculations are performed on these PESs, and the computed vibronic energy levels for the two singlet electronic states are in excellent agreement with experiment.

1. Introduction

The CH$_2$ biradical has been the subject of many theoretical and experimental studies, due to its distinct electronic characteristics and chemical and physical properties. It is the direct chemical precursor of the widely observed CH radical [1]. As a crucial link in the photodissociation sequence of cometary methane, CH$_2$ plays a significant role in the chemistry of hydrocarbon combustion and the astrophysics of interstellar medium [2–5].

Since Herzberg and Johns [2] carried out a detailed analysis of the high-resolution absorption spectrum of the singlet CH$_2$ in the near ultraviolet region half a century ago, several groups [6–11] have observed the direct absorption spectra or subsequent monitoring of fluorescence via laser-induced fluorescence, stimulated emission pumping, dispersed fluorescence, and so forth. Experimental investigations of the spectroscopy provided abundant and precise rovibronic energy levels [12–16]. Recently, bands in the CH$_2$ \tilde{b}^1B_1-\tilde{a}^1A_1 transition between 12500 and 13000 cm$^{-1}$ were recorded at Doppler-limited resolution utilizing a transient frequency-modulation (FM) laser absorption spectrometer by Chang and coworkers [16]. An unexpected and particularly complicated rovibronic structure was detected for $b(1,1,0)^1$ and $b(0,3,0)^1$ vibronic levels. Comparison of the calculated spectra on the available potential energy surfaces (PESs) [17–19] with the experimental spectra of Herzberg and Johns [2] indicates that the labeling of some vibrational levels is quite inconsistent, which can be ascribed to the local perturbations from the vibrational resonances and Renner-Teller (RT) effect.

The study of the RT effect on the vibronic levels for nonlinear three-atom molecules has been an active area for several decades [8, 17, 20–24]. The \tilde{b}^1B_1-\tilde{a}^1A_1 transition of CH$_2$, which is seen in the red and yellow parts of the spectrum, is one of the best examples in which the RT coupling should be observed [5]. One of the consequences of the RT coupling is the inversion of the K_a rotational structure in the lower component state (\tilde{a}^1A_1) near the barrier to linearity. As explained by Jungen et al. [25], this reordering
of the K_e energy levels results from the transformation at high bending levels from bent to linear configurations [8]. The two lowest-lying singlet electronic states of CH$_2$, which become a degenerate Δ pair at linearity, interact strongly with each other and are coupled dynamically [17, 24].

Theoretically, some researchers [3, 4, 26] examined a few electronic states of CH$_2$ with state-of-the-art ab initio methods and provided significant clues to the understanding of the electronic structures. Bussery-Honvault and coworkers [27] computed an ab initio global PES for the first singlet state of CH$_2$, where a mixed numerical and analytical method was employed in the PES construction. This surface shows no barrier for the C$_{3v}$ insertion, while a barrier of 4319 cm$^{-1}$ (12.35 kcal/mol) is present for the collinear approach. Unfortunately, visible discrepancies were found between the theoretical calculations on this surface and the experimental results [28]. Later, using the same ab initio methodology and similar fitting process, Bussery-Honvault and coworkers [29] constructed a PES for the second singlet state of CH$_2$; it should be mentioned that their two lowest-lying singlet PESs are not degenerate at linearity. Joseph and Varandas [30] constructed a more accurate PES for the lowest singlet state of CH$_2$ with the DMBE scaled-external-correlations method [31] and obtained very good agreement with the experimental rate constants, which recommends it for future dynamics studies [30, 32]. Furthermore, Dawes et al. [33] constructed the lowest singlet PES using the local interpolative moving least squares method and performed further spectroscopic calculations, which yielded $J = 0$ vibrational frequencies with a root-mean-square error of a few wavenumbers relative to available measurements.

Liu and co-workers [34] revealed various PES intersection seams among the $1^1A'$, $2^1A'$, $3^1A'$, $1^1A''$ and $2^1A''$, states in the C(1D)H$_2$ reactive system systematically and determined the minimum energy crossing points (MECPs) accurately. The nonadiabatic interaction near MECPs may play an important role in spectroscopy and dynamics [35–40]. The lowest MECP [34] in C(1D)H$_2$, which is only 8797 cm$^{-1}$ above the CH$_2$ $1^1A'$ minimum and much lower in energy than all the other MECPs, is between the two lowest-lying a^1d_{A1} and b^1b_{B1} states, which become the degenerate Δ pair at linearity and hence are strongly coupled by the RT effect. All the other MECPs [34] are above or somewhat below the C(1D)+H$_2$ asymptote in energy and thus are not expected to intervene most of the vibronic spectra of the two lowest-lying singlet electronic states. However, it is clear that the RT coupling must be taken into account in the vibronic energy level calculations of the two lowest-lying states.

A few PESs for the RT coupled a^1d_{A1} and b^1b_{B1} states have been developed to simulate the vibronic structure and electronic spectrum with the vibronic coupling included [17, 19, 24, 41]. However, the ab initio PESs of Green Jr. et al. [17] were empirically adjusted or shifted to fit the experimental data; other PESs [19, 24, 41] were constructed by fitting experimental data and a few ab initio points [13]. However, there are therefore accurate and fully ab initio PESs for the two lowest-lying singlet electronic states $1^1A'$ and $1^1A''$ of CH$_2$ with the RT terms required.

So far most of the ab initio work concerning CH$_2$ has been based on the traditional correlated ab initio electronic structure calculations, that is, the so-called frozen core approximation, in which correlation effects involving the electrons in $1s$ core orbital of carbon are neglected. However, as noted by Peterson and Dunning [42], if the goals of a calculation are to obtain chemical accuracy of thermochemical properties, the effects of correlating the electrons in the core orbital generally must be addressed in the calculations. Of course, ab initio calculations including correlation effects of core electrons are very time-consuming. In this work, not only appropriate active space but also an optimized basis set with additional functions for describing core and core-valence correlation effects (called CV) is employed in our ab initio calculations, which can also guarantee that the two lowest-lying singlet PESs are degenerate at linearity. We further construct fully ab initio PESs for the two lowest-lying singlet electronic states $1^1A'$ and $1^1A''$ of CH$_2$ with the inclusion of the nonadiabatic RT terms.

The organization of the present article is as follows. Section 2 describes the ab initio electronic structure calculations. The fitting of the ab initio energy points is presented in Section 3. The fitted PESs of CH$_2$ (called M2ZB) and vibronic energy level calculations are discussed in Section 4. Finally, a summary is given in Section 5.

2. Electronic Structure and ab Initio Calculations

2.1. Electronic Structure

For computational convenience, the molecule is placed in the yz plane, and the electronic configuration of ground state is $(1a_1)^1(2a_1)^1(1b_2)^1(3a_1)^1(1b_1)^1$. The $(1a_1)$ and $(2a_1)$ molecular orbitals (MOs) mostly have carbon $1s$ and $2s$ characters, respectively. The $(3a_1)$, $(1b_2)$, and $(1b_1)$ MOs mainly have the carbon $2p$ character lying along the twofold z axis, perpendicular and parallel with respect to the yz plane, respectively. In the C_2v symmetry, the a_1 and b_2 orbitals become the a^\prime orbitals, and the b_1 and a_2 orbitals become the $a^\prime\prime$ orbitals.

The electronic configurations of CH$_2$ can be represented as shown in Table 1 in the C_{3v} or C_s symmetry.

The X^3B_1 and X^3B_1 states, which share the same spatial orbital configuration with two open-shell electrons parallelly or antiparallelly distributed in the outer $3a_1$ and $1b_1$ orbitals, correspond to the triplet and singlet configurations, respectively. While the $2\tilde{A}_1$ and \tilde{A}_1 states correspond primarily to configurations with double occupation of the $3a_1$ or $1b_1$ orbital, they could be appropriately described by the two main configuration wave functions. The two CI coefficients C_1 and C_2 for $2\tilde{A}_1$ have opposite signs with $|C_1| \geq |C_2|$, while those for the \tilde{A}_1 state have the same sign with $|C_1| \leq |C_2|$. Hence, multireference methods are required for an accurate ab initio description of the above excited states. The $2\tilde{A}_1$ and \tilde{A}_1 states become the degenerate $1^1\Delta$ pair at linearity and hence are strongly mixed by the RT coupling, which is important to the vibronic calculations. The $2\tilde{A}_1$ state correlates with the $1^1\Sigma^+_g$ state at linearity. The next two states, 1^1A_2 and 1^1B_2, become the degenerate $1^1\Pi_u$ pair.
at linearity. The spin-orbit coupling between the \tilde{X}^3B_1 and singlet states is small in the well region and thus is neglected in this work.

2.2. ab Initio Calculations. Two levels of ab initio calculations were performed for the PES construction which involves a dual-level strategy [43]. The electronic energies in the lower-level calculations are calculated with the state-averaged complete active space self-consistent field (SA-CASSCF) and internally contracted multireference configuration interaction (icMRCI) methods [44–47]. The active space consists of six electrons distributed among seven orbitals, which correspond to all valence electrons and valence orbitals and one additional $3s$ orbital of carbon, which is of Rydberg character. The carbon $1s$ orbital is not correlated but optimized at the SA-CASSCF level. To get a good description of the two lowest-lying singlet states, especially in view of the importance of correct degeneracy between $1^1A'$ and $1^1A''$ at linear geometries and the influence of PES intersections, we simultaneously consider the five singlet states is small in the well region and thus is neglected in this work.

Consequently, the SA-CASSCF calculations including three and two roots in the A' and A'' symmetries are carried out to obtain the orbitals for further icMRCI calculations. The Davidson correction (denoted as $+Q$) is employed to include the correlation energy due to higher excitations. Dunning’s correlation-consistent polarized valence quadruple-zeta basis set augmented with diffuse functions (aug-cc-pVQZ) is used.

In the higher-level calculations, the methods and algorithms are the same as the lower-level, but the active space and basis set are different. The active space consists of all electrons distributed among eight orbitals, which include 1s, all valence, and $3s$ orbital of carbon. The carbon $1s$ orbital is correlated and also optimized at the SA-CASSCF level. To obtain the CV contribution to the energies, the aug-cc-pVQZ basis set for C atom is modified. The details of this scheme could be found elsewhere [42, 48–51], and only a brief outline will be given here. The seven inner 1s functions are contracted to two functions using the coefficients from the aug-cc-pVQZ basis set. The outer five s functions are uncontracted as the six p functions. Two tight d and f functions are added to the (3d, 2f, 1g) polarized set given by Peterson and Dunning [42] and Woon and Dunning [48]. The additional functions are even tempered extensions of the valence sets, and the exponents of the added functions are 5.262 and 14.984 for the d functions and 4.152 and 12.147 for the f functions which are obtained by successively multiplying the corresponding tightest functions by the ratio of the first two compact functions [50, 51]. This core basis set, developed to treat both core and valence correlations, is of the form $(12s6p5d4f1g)/[7s6p5d4f1g]$ and is designated as optACVQZ, which is much smaller than Dunning’s standard aug-cc-pVQZ [42, 48, 49] and gives a good description of core electrons [50, 51].

For the ab initio calculation of nonadiabatic terms, the SA-CASSCF method is used. The active space is the same as that of the lower-level energy calculations, and the basis set employed here is the uncontracted aug-cc-pVQZ basis. The nonadiabatic terms, required for calculating the RT coupling, are the matrix elements of electronic orbital angular momentum \hat{L}, and they are obtained as expectation values over the SA-CASSCF wave functions. The RT coupling takes effect when the molecule approaches linearity, that is, lies on the z-axis, hence the matrix elements of \hat{L}_x and \hat{L}_y can be neglected. The details of the RT Hamiltonian have been discussed in another publication [52]. So, three matrix elements of electronic angular momentum (designated as L_{zz}^{ab}, L_{zz}^{aa} and L_{zz}^{bb}) are calculated, where $\langle \tilde{\phi}^aA_1 | \hat{L}_{zz} | \tilde{b}^1B_1 \rangle = -i\hbar L_{zz}^{ab}$, $\langle \tilde{\phi}^aA_1 | \hat{L}_{zz} | \tilde{\phi}^aA_1 \rangle = \hbar^2 L_{zz}^{aa}$, $\langle \tilde{b}^1B_1 | \hat{L}_{zz} | \tilde{b}^1B_1 \rangle = \hbar^2 L_{zz}^{bb}$.

Table 1

\tilde{X}^3B_1: $(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}$	$X^3A^\prime\prime$: $(1\alpha)^{\dagger}(2\alpha)^{\dagger}(3\alpha)^{\dagger}(4\alpha)^{\dagger}(1\alpha)^{\dagger}$
$\tilde{A}^1C_1(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}+\tilde{C}_2(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}$	1^1A^\prime: $C_1(1\alpha)^{\dagger}(2\alpha)^{\dagger}(3\alpha)^{\dagger}(4\alpha)^{\dagger}(1\alpha)^{\dagger}$
$\tilde{b}^1B_1(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}$	$C_1(1\alpha)^{\dagger}(2\alpha)^{\dagger}(3\alpha)^{\dagger}(4\alpha)^{\dagger}(1\alpha)^{\dagger}$
$\tilde{A}^1C_1(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}+\tilde{C}_2(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}$	1^1A^\prime: $(1\alpha)^{\dagger}(2\alpha)^{\dagger}(3\alpha)^{\dagger}(4\alpha)^{\dagger}(1\alpha)^{\dagger}$
$1^1A_2(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}$	2^1A^\prime: $(1\alpha)^{\dagger}(2\alpha)^{\dagger}(3\alpha)^{\dagger}(4\alpha)^{\dagger}(1\alpha)^{\dagger}$
$1^1B_2(1\alpha)^{\dagger}(2\alpha)^{\dagger}(1\beta)^{\dagger}(3\alpha)^{\dagger}(1\beta)^{\dagger}$	3^1A^\prime: $(1\alpha)^{\dagger}(2\alpha)^{\dagger}(3\alpha)^{\dagger}(4\alpha)^{\dagger}(1\alpha)^{\dagger}$

2.3. PES Grid. In order to cover the region of spectroscopic interest with two deep potential wells, ab initio calculations at icMRCI(6e, 7o)+Q/AVQZ and icMRCI(8e, 8o)+Q/optACVQZ levels were performed at 3042 and 273 symmetry unique geometries, respectively. These were chosen carefully to accurately represent the dynamically important regions, particularly the vicinities of the minimum and near linearity. As pointed out by Liu and co-workers [34], the $1^1Π$ pair (3$^1A'$ and 2$^1A''$) states conically cross not only the $1^1Δ$ pair (1$^1A'$ and 1$^1A''$) states at around 3.4 bohr, but also the $1^3Σ^+_g$ state (2$^1A'$) at 3.1 bohr in the stretching potential curves of linear H–C–H (with one of the C–H bond lengths fixed at 2.1 bohr).

We concentrate on the geometries with the CH bond length smaller than 3.0 bohrs in the process of the present PES construction. Dozens of geometries are also selected for...
the description of the higher energy regions. In the important regions, points were computed with small increments of 0.1–0.5 bohrs for bond length and 2.0–5.0° for bond angle, while in other regions coarser grids of 1.0–2.0 bohrs and 10.0–20.0° were used. Geometries with energies higher than 100 kcal/mol above the global minimum of \(V \) were not totally neglected but assigned a very small weight. In the calculations of icMRCI(8e, 8o)/optACVQZ, the grids were chosen as the following: 1.4, 1.8, 2.0, 2.05, 2.2, 2.6, and 3.0 bohrs for CH distance; 80, 100, 120, 143, 155, 175, and 180° for \(\angle \text{HCH} \). In the calculations for the nonadiabatic coupling terms, almost the same grids were selected as those used in the higher-level calculations.

3. Fit of the Potential Energy Surfaces

To construct the PESs for the \(1^1A' \) and \(1^1A'' \) states of CH\(_2\), we choose three-body expansion functional forms for the analytical representation of the PESs with respect to the internal coordinates \((R_1, R_2, \theta)\) using a dual-level strategy, and nonadiabatic coupling terms are also taken into account. The idea of the dual-level strategy is to use two levels of \textit{ab initio} calculations so as to reduce the number of higher-level points needed for fitting [43], and the basic scheme is as follows. First, a set of lower-level \textit{ab initio} points without the CV effect, which are calculated at the icMRCI(6e, 7o)+Q Avivqz level, is generated to construct a zeroth-order PES, \(V_x^0 \) (\(x = a, b \) stands for the \(1^1A' \) and \(1^1A'' \) states of CH\(_2\), resp.). Then, a set of higher-level points with the CV effect, calculated at the icMRCI(8e, 8o)+Q optACVQZ level, is generated, and the data set of the energy differences of the two levels is used to construct a surface, \(V_x^{\text{core}} \). And it should be noted that the energies of the lower level are obtained from \(V_x^0 \) instead of the \textit{ab initio} calculations. In addition, the nonadiabatic coupling terms, \(L_{ab}^{\text{ab}}, L_{aa}^{\text{aa}}, \) and \(L_{zz}^{\text{bb}} \) (\(h = 1 \) hereafter), are fitted into functions in the third stage for the future calculations. Each of these steps will now be described in more details as follows. The final adiabatic potential \(V \) is expressed as

\[
V = V_x^0 + V_x^{\text{core}}.
\]

By applying the Levenberg-Marquardt technique for the nonlinear optimization, it was found that there are numerical problems for \(M \geq 11 \) due to near linear dependence of the parameters, and thus quadruple precision arithmetic was needed to obtain convergence [54]. To improve the fit, energy points below 60 kcal/mol relative to the PES minimum are weighted by a factor of 100, and energy points over 100 kcal/mol are weighted by 0.1. To accurately fit the intersection seam of the two lowest-lying singlet PESs at the linear configurations, all the points with \(\angle \text{HCH} \) larger than 170° are weighted by a factor of 100.

3.1. Analytical Representation of \(V^0 \)

For the analytical representation of \(V^0 \), the calculated energy points were fitted to a three-body expansion in curvilinear coordinates, which are believed to match the shape of the adiabatic PESs. For both electronic states, a Morse-type coordinate

\[
\rho = 1 - e^{-\alpha(R - R_0)}
\]

was used for the CH stretching mode, where \((R - R_0)\) is the displacement from the equilibrium geometry of the corresponding electronic state. For the angular coordinate, several types of polynomials were tested, including \(\cos(\beta \theta), \cos(\beta(\theta - \theta_0)), \) and \([\theta - \theta_0] + \beta (\theta - \theta_0)^2 + \beta (\theta - \theta_0)^3 \). Finally, \(\cos(\beta(\pi - \theta)) \) was employed to describe the \(\angle \text{HCH} \) bending:

\[
V_\beta^0 = \sum_{ijk} C_{ij}^x \rho_i \rho_j \rho_k^X
\]

\[
= \sum_{ijk} C_{ij}^x \left[1 - e^{-\alpha_i(R_i - R_0)}\right] \left[1 - e^{-\alpha_j(R_j - R_0)}\right] \left[\cos(\beta(\pi - \theta))\right].
\]

The parameters \(\alpha, \beta, \) and the \(C_{ijk} \) are determined by performing unequally weighted least squares fit to the \textit{ab initio} data.

3.2. Analytical Representation of \(V^{\text{core}} \)

The core correlation surface \(V^{\text{core}} \) was constructed in a similar way to the construction of \(V^0 \), and the surfaces can be expressed as

\[
V_x^{\text{core}} = C_{000}^x + \exp\left\{ \alpha \left[(R_1 - R_0)^2 + (R_2 - R_3)^2 \right] \right\}
\]

\[
\times \sum_{ijk} C_{ijk}^x \rho_i \rho_j \rho_k^X
\]

\[
= C_{000}^x + \exp\left\{ \alpha \left[(R_1 - R_0)^2 + (R_2 - R_3)^2 \right] \right\}
\]

\[
\times \sum_{ijk} C_{ijk}^x \left[\frac{(R_1 - R_0)^2}{R_0^2} \right]^j \left[\frac{(R_2 - R_3)^2}{R_3^2} \right]^j \times [\cos(\theta) - \cos(\theta_0)]^k.
\]

3.3. Analytical Representation of the Nonadiabatic Coupling Terms

To fit the matrix elements of \(\hat{L}_2 \) and \(\hat{L}_3^2 \) into analytical representations, several types of polynomials have been tested, and the following one provides a good description of the nonadiabatic coupling terms, \(L_{ab}^{\text{ab}}, L_{aa}^{\text{aa}}, \) and \(L_{zz}^{\text{bb}} \):

\[
C_{000} + \cos^2\left(\frac{\theta}{2}\right)
\]

\[
\times \sum_{ijk} C_{ijk}^{\text{nn}} \left[1 - e^{-\alpha_i K_i}\right] \left[1 - e^{-\alpha_j K_j}\right] \left[\beta(\pi - \theta)\right]^k.
\]
RMS errors of 14.29 and 68.21 cm\(^{-1}\) for the \(1\text{^1}A'\) and \(1\text{^1}A''\) states, respectively. Below 60 kcal/mol, the RMS errors are 3.15 and 11.89 cm\(^{-1}\), respectively. The numerical values of all parameters to generate the surfaces and coupling terms reported in the present study are presented in Tables S2, S3, and S4.

4. Features of the Fitted Surfaces and Vibronic Energy Level Calculations

4.1. Adiabatic PESs. Figure 1 presents the contour plots for CH bonds stretching of our PESs keeping \(\angle\text{HCH}\) fixed at \(102.45^\circ\) for the \(\tilde{a}\text{^1}A_1\) state, \(144.36^\circ\) for the \(\tilde{b}\text{^1}B_1\) state. We found the fitted potentials to be smooth and without any artificial oscillations. The degeneracy of the two lowest-lying singlet adiabatic potentials is illustrated in Figure 2.
They are contour plots as functions of R_{CH} and $\varangle \text{HCH}$. Our fitted PESs for the two singlet states are degenerate at $R_{\text{CH}} = (1.6, 2.6)$ bohrs with $\varangle \text{HCH} = 180^\circ$. The PES difference at linear geometries in higher energy regions (with energies higher than 60 kcal/mol above the global minimum of $\tilde{\alpha}^1A_1$) is due to the PES fitting error. To further improve the behavior of our PESs at linear geometries, we used an assumed angle dependence switching function to smoothly connect the two states above at linearity. Thus, this function is defined as follows:

$$f^{sw} = \frac{1}{2} \cos^4(\pi - \theta) \{ 1 - \tanh[200(1 + \cos \theta)] \}. \tag{6}$$

Two adiabatic potentials for the $\tilde{\alpha}^1A_1$ and \tilde{b}^1B_1 states of CH$_2$, which are going to be degenerate at linearity, are represented as follows:

$$V_a = (V_a^0 + V_a^{\text{core}}) + \left[(V_a^0 + V_b^{\text{core}}) - (V_a^0 + V_a^{\text{core}}) \right] f^{sw},$$

$$V_b = (V_b^0 + V_b^{\text{core}}) - \left[(V_b^0 + V_b^{\text{core}}) - (V_a^0 + V_a^{\text{core}}) \right] f^{sw}. \tag{7}$$

From the experimental side, a wide number of studies have led to the determination of accurate equilibrium geometries for the $\tilde{\alpha}^1A_1$ and \tilde{b}^1B_1 states of CH$_2$. Geometries and relative energies of minima obtained from our work along with the available experimental and other theoretical values are given in Table 2. We find the PES minimum of the $\tilde{\alpha}^1A_1$ state on our PESs to be located at $R_{\text{CH}} = 2.092$ bohrs and $\varangle \text{HCH} = 102.45^\circ$. Obviously, these results are in very good agreement with the experimental value CH$_2$ available, $R_{\text{CH}} = 2.092 \pm 0.004$ bohrs and $\varangle \text{HCH} = 102.38^\circ$. Despite the ground singlet state being widely studied, there have been limited research on the first excited singlet state \tilde{b}^1B_1.

As can be seen, this state is the open-shell singlet analog of the $\tilde{\tilde{X}}^3B_1$ state. As expected, its molecular orbitals and Mulliken atomic distributions are very similar to those of the ground state, which makes the $ab\text{ initio}$ calculation more difficult. The PES minimum for the \tilde{b}^1B_1 state on our PESs is located at $R_{\text{CH}} = 2.030$ bohrs and $\varangle \text{HCH} = 144.36^\circ$. In Figure 3, we have plotted the contours of the core corrections V^{core}, as functions of R_{CH} and $\varangle \text{HCH}$ of the $\tilde{\alpha}^1A_1$ state. The CV effects have a geometry dependence, and the shifts can be positive or negative. The core corrections varies from -400 to 300 cm$^{-1}$. The inclusion of core and core-valence correlation decreases the bond lengths by 0.0051 and 0.0016 bohrs and increases the bond angle by 0.28 and 1.48$^\circ$ for the $\tilde{\alpha}^1A_1$ and \tilde{b}^1B_1 states, respectively.

The $1^1\Delta_g$ state of HCH at linear configuration, splitting into the two lowest-lying singlet electronic excited states

Table 2: Geometries and relative energies of the minima of the two lowest-lying singlet states of CH$_2$. R_e is the equilibrium interatomic distance, and θ_e is the equilibrium $\varangle \text{HCH}$.

<table>
<thead>
<tr>
<th>State</th>
<th>R_e (bohr)</th>
<th>θ_e (degree)</th>
<th>Relative energy (kcal·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ab\text{ initio}$ with corea</td>
<td>2.0965</td>
<td>102.10</td>
<td>$-$100.54</td>
</tr>
<tr>
<td>$Ab\text{ initio}$ with coreb</td>
<td>2.0914</td>
<td>102.38</td>
<td>$-$100.70</td>
</tr>
<tr>
<td>Our PESsc</td>
<td>2.0920</td>
<td>102.45</td>
<td>$-$100.70</td>
</tr>
<tr>
<td>Liu et al.d</td>
<td>2.098</td>
<td>102.0</td>
<td>$-$100.3</td>
</tr>
<tr>
<td>Flores and Gdanitze</td>
<td>2.0917</td>
<td>102.31</td>
<td></td>
</tr>
<tr>
<td>Bussery-Honvault et al.f</td>
<td>2.09</td>
<td>102.2</td>
<td>$-$99.75</td>
</tr>
<tr>
<td>DMBEg</td>
<td>2.099</td>
<td>102.38</td>
<td>$-$99.75</td>
</tr>
<tr>
<td>Exp.h</td>
<td>2.092 ± 0.12</td>
<td>102.4 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Exp.i</td>
<td>2.052</td>
<td>139.30</td>
<td></td>
</tr>
<tr>
<td>$Ab\text{ initio}$ without coreb</td>
<td>2.0316</td>
<td>143.12</td>
<td>$-$77.71</td>
</tr>
<tr>
<td>$Ab\text{ initio}$ without coreb</td>
<td>2.0300</td>
<td>144.60</td>
<td>$-$77.96</td>
</tr>
<tr>
<td>Our PESsi</td>
<td>2.0300</td>
<td>144.36</td>
<td>$-$77.97</td>
</tr>
<tr>
<td>Liu et al.d</td>
<td>2.032</td>
<td>143.2</td>
<td>$-$76.8</td>
</tr>
<tr>
<td>Flores and Gdanitze</td>
<td>2.0165</td>
<td>143.39</td>
<td></td>
</tr>
<tr>
<td>Bussery-Honvault et al.f</td>
<td>2.02</td>
<td>141</td>
<td>$-$79.9</td>
</tr>
<tr>
<td>Exp.h</td>
<td>1.990</td>
<td>140 ± 15</td>
<td></td>
</tr>
<tr>
<td>Exp.i</td>
<td>2.052</td>
<td>139.30</td>
<td></td>
</tr>
</tbody>
</table>

a Energies are relative to the C(2D)+H$_2$ asymptote.

bOur $ab\text{ initio}$ values using icMRCl(6e, 7o)+Q/AVQZ.

cOur $ab\text{ initio}$ values using icMRCl(8e, 8o)+Q/optACVQZ.

dFrom our PESs.

eAb $ab\text{ initio}$ values using icMRCl(6e, 7o)/AVQZ from [34].

fAb $ab\text{ initio}$ values using icMR-ACPF(8e, 7o)/ACVQZ from [55].

gPES values from [27, 29].

hPES values from [30].

iExperimental values from [2].

jExperimental values from [11].

kExperimental values from [56].

Figure 4: The bending potential energy curves for the four singlet states ($1^1A'$, $1^1A''$, $2^1A'$, and $3^1A'$) of CH$_2$ calculated at the icMRCl(6e, 7o)+Q/AVQZ level. (The $2^1A'$ state, which lies between the $1^1A'$ and $3^1A'$ state, is not shown.) $R_{\text{CH}} = R_{\text{CH}} = 2.01$ bohrs. The zero energy is taken at the CH$_2$ ($1^1A'$) minimum.
\[a^1A_1 \text{ and } b^1B_1 \text{ as the molecule is bent, is a prime example of the vibronic RT effect. In this case, the splitting will be proportional to } \rho^n, \text{ where } n = 2 \Lambda \text{ and } \Lambda (\Lambda = 1 \text{ for } \Pi, \text{ and 2 for } \Delta \text{ state}) \text{ is the eigenvalue of } \hat{L}_z, \text{ the axial component of electronic angular momentum at linearity. Although the other two higher excited states } (3^1A' \text{ and } 2^1A'') \text{ calculated with icMRCI(6e, 7o)+Q/AVQZ are not involved in the present PESs, it is clearly seen that in this region the } ab \text{ initio computed PECs show the } \rho^2 \text{ behavior for the doubly degenerate } \Pi \text{ pair } (3^1A' \text{ and } 2^1A'') \text{ in Figure 4. The energy splittings between } 1^1\Delta_g \text{ pair and } 1^3\Pi_g \text{ pair states go quartically and quadratically, respectively, when approaching linearity.} \]

While the energy changes with the CH bond stretched, the degeneracy of the \(1^1A'^1 \) and \(1^1A'' \) (or \(3^1A' \text{ and } 2^1A'' \)) of \(CH_2 \) is not lifted so long as the molecule is linear. The barrier to linearity plays a very important role in quantum mechanical calculations of vibronic energy levels when the RT effect is considered [18]. The height of the barrier to linearity in \(\tilde{\alpha}^1A_1 \text{ CH}_2 \) has been a long standing source of controversy. The range of reported barrier heights for linearity in \(\tilde{\alpha}^1A_1 \text{ CH}_2 \) is quite large, varying from 8000 to 10000 cm\(^{-1}\), which is summarized in Table 3. Herzberg and Johns originally gave a value of 8000 cm\(^{-1}\), estimated from the spacing of the \(\tilde{b}^1B_1 \text{ bending vibrational levels} [2]. Duxbury and Jungen [56] obtained a barrier of

Figure 5: The stretching potential curves of the five singlet states \((1^1A', 2^1A', 3^1A', 1^1A'', \text{ and } 2^1A'' \text{ state})\) of \(CH_2 \) as functions of the bond length \(R_{CH_2} \) with the \(\angle HCH \) fixed at (a) 180°, (b) 175°, and (c) 160°, respectively; The Renner-Teller terms \(L_{ab}^1, L_{aa}^1, L_{bb}^1, \text{ and } L_{zz}^1 \) \((2^1A' | \hat{L}_z | 2^1A'')\) as functions of the bond length \(R_{CH_2} \) with \(\angle HCH \) fixed at (d) 180°, (e) 175°, and (f) 160°, respectively. \(R_{CH_2} \) is fixed at 2.09 bohrs, and the zero energy is taken at the \(CH_2 (1^1A') \) minimum.
9800 cm\(^{-1}\) by fitting a bending potential function to the
\((0, v_2, 0)\) levels. An earlier \textit{ab initio} calculation gave a barrier
height of 9600 cm\(^{-1}\) [57]. Kalemos et al. [3] calculated
this value to be 9217.7 cm\(^{-1}\). In 2009, the DMBE PES
predicted 9644 cm\(^{-1}\) in agreement with the experimental
determination of 9800 cm\(^{-1}\) [56].

Green Jr. et al. [17] calculated an \textit{ab initio} value of
9125 cm\(^{-1}\) and empirically adjusted it to about 8800 cm\(^{-1}\)
according to the visible spectra around 15000 cm\(^{-1}\). And this
value is in very good agreement with the derived value of
8600 ± 400 cm\(^{-1}\) from the experiment by Hartland et al. [8].

4.2. Renner-Teller Nonadiabatic Coupling Terms. The fit of
the RT nonadiabatic coupling terms has an RMS error of
0.0060, 0.0225, and 0.0148 for \(L_{abz}^\text{a1}, L_{aa}^\text{zz},\) and \(L_{bb}^\text{zz},\) respectively. The polynomial order \(M\) is taken as 9. Note that
\(<1^1\text{A}^\prime|\hat{L}_z|1^1\text{A}''\rangle\) is imaginary and its absolute value is thus
used. Figures 5(a), 5(b), and 5(c) describe the stretching
potential curves of the five singlet states (1\(^1\text{A}^\prime\), 2\(^1\text{A}^\prime\), 3\(^1\text{A}^\prime\),
1\(^1\text{A}''\) and 2\(^1\text{A}''\) state) of CH\(_2\) as functions of bond length
\(R_{\text{CH}2}\), with \(R_{\text{CH}1}\) fixed at 2.09 bohrs and \(\angle \text{HCH}\) at 180°,
175° and 160°, respectively; at linearity, 1\(^1\text{A}^\prime\) and 1\(^1\text{A}''\) states
become a degenerate \(\Delta\) pair. Due to the conical intersection
between \(\Pi\) and \(\Delta\) at \(R_{\text{CH}2} = 3.38\) bohrs, \(L_{abz}^\text{a1}, L_{aa}^\text{zz},\) and \(L_{bb}^\text{zz}\) in
Results are listed in Table 4 and are compared with experimental values. The energy levels are in cm^{-1}, relative to the zero point energy of the \(\tilde{a}^2 A_1 \) state.

<table>
<thead>
<tr>
<th>(\tilde{a}^2 A_1) (cm^{-1})</th>
<th>(\tilde{b}^1 B_1) (cm^{-1})</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>9073.5</td>
<td>885.2</td>
<td>Our calculation at (i^*MCRI(6e, 7\alpha) / \text{AVQZ})</td>
</tr>
<tr>
<td>8895.1</td>
<td>907.3</td>
<td>Our calculation at (i^*MCRI(6e, 7\alpha) + Q / \text{AVQZ})</td>
</tr>
<tr>
<td>8735.8</td>
<td>706.2</td>
<td>Our calculation at (i^*MCRI(8e, 8\alpha) / \text{et/ACVQZ})</td>
</tr>
<tr>
<td>8715.1</td>
<td>762.0</td>
<td>Our PESs</td>
</tr>
<tr>
<td>8800</td>
<td></td>
<td>The empirically adjusted value based on the visible spectra^a</td>
</tr>
<tr>
<td>8797</td>
<td></td>
<td>(Ab , \text{initio}) value^b</td>
</tr>
<tr>
<td>8666</td>
<td>725</td>
<td>The fit of empirically spectra and (Ab , \text{initio}) calculations^c</td>
</tr>
<tr>
<td>8600 ± 400</td>
<td></td>
<td>The derived value from experiment^d</td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td>The derived value from experiment^e</td>
</tr>
<tr>
<td>9217.7</td>
<td>953.2</td>
<td>(Ab , \text{initio}) value^f</td>
</tr>
<tr>
<td>9644</td>
<td></td>
<td>(Ab , \text{initio}) value^g</td>
</tr>
<tr>
<td>9451.1</td>
<td>1193.0</td>
<td>Others^h</td>
</tr>
<tr>
<td>9750.0 ± 71.0</td>
<td>1616.6 ± 94</td>
<td>Others^i</td>
</tr>
<tr>
<td>9600</td>
<td></td>
<td>Others^j</td>
</tr>
<tr>
<td>9870</td>
<td></td>
<td>Others^k</td>
</tr>
<tr>
<td>9144</td>
<td>879</td>
<td>Others^l</td>
</tr>
<tr>
<td>9356</td>
<td>1049</td>
<td>Others^m</td>
</tr>
</tbody>
</table>

^a From Ref. [17]. ^b From [34]. ^c From [8]. ^d From [2]. ^e From [3]. ^f From [30]. ^g From [5]. ^h From [56]. ^i From [57]. ^j From [7]. ^k From [41]. ^l From [24].

Table 3: The barrier to linearity of the \(\tilde{a}^2 A_1 \) and \(\tilde{b}^1 B_1 \) states.

Figure 5(d), which shows the dependence of the electronic matrix elements with respect to stretching, are almost constants \((2, 4, \text{ and } 4) \) for \(R_{\text{CH}} \leq 3.38 \) bohrs due to quantization of the electronic angular momenta \(L_{ab}^2 = 2, L_{aa}^{ab,bb} = 4 \) for the \(\Delta \) state; however, they change rapidly to 1 at \(R_{\text{CH}} \approx 3.38 \) bohrs. Almost similar changes could be found in Figures 5(e) and 5(f) with \(\angle \text{HCH} = 175 \) and \(160^\circ \) due to the PES intersections. And much more interesting rapid changes can also be found in the other three states \((2^1 A', 3^1 A', \text{ and } 2^1 A'') \), for example, \((2^1 A' | L_{ab}^2 | 2^1 A') \), but this is beyond the subject of the present work.

In Figure 6, the contour plots for \(L_{ab}^2, L_{aa}^{ab}, \text{ and } L_{bb}^{ab} \) of the \(\tilde{a}^2 A_1 \) and \(\tilde{b}^1 B_1 \) states of \(\text{CH}_2 \) as function of \(\text{CH} \) stretching and \(\angle \text{HCH} \) bending are presented. It is well noticed that along the \(\text{CH} \) axis, the values of \(L_{ab}^2 = 2 \) and \(L_{aa}^{ab,bb} = 4 \) but then as the molecule deviates from linearity the values of \(L_{ab}^2 \) and \(L_{aa}^{ab} \) decrease, and the values of \(L_{bb}^{ab} \) increase at the short \(R_{\text{CH}} \) region but decrease at the long \(R_{\text{CH}} \) region. The values of \(L_{ab}^2 \) and \(L_{aa}^{ab,bb} \) begin to drop rapidly and monotonically to 1 at \(R_{\text{CH}} = 3.1 \) bohrs due to the \(\Delta \Pi \) PES intersection at linearity. Figure 7 shows the variation of the electronic matrix elements for the two lowest-lying singlet electronic states as functions of the bending angle \(\angle \text{HCH} \), with the \(\text{CH} \)-distance optimized for the \(\tilde{a}^2 A_1 \) state. It is shown that, as the molecule bends, the curve of \(L_{ab}^2 \) decreases monotonically from 2, that of \(L_{bb}^{ab} \) rises from 4 basically in a monotonic way, but that of \(L_{bb}^{ab} \) first goes down from 4 and then goes up.

4.3. Vibronic Energy Level Calculations. We have calculated the vibronic energy levels of the \(\tilde{a}^2 A_1 \) and \(\tilde{b}^1 B_1 \) states on our \(Ab \, \text{initio} \) PESs employing the block improved relaxation scheme [61, 62] in the multiconfiguration time-dependent Hartree (MCTDH) method [63–65]. The \(J = 0 \) energy results are listed in Table 4 and are compared with experiments and calculations by other groups. The variation of the electronic matrix elements with geometry is not considered, and other groups also adopted this treatment in previous calculations. For consistency, the energy levels in Table 4 are labeled by the bent molecular notation \((\nu_1, \nu_2, \nu_3) \).

Our calculated results are in excellent agreement with the experimental values, reflecting the accuracy of the constructed \(Ab \, \text{initio} \) PESs. For the energy level of \((0, 2, 0) \), our result 10828 cm^{-1} is closer to the experimental value 10827 cm^{-1} from Sears et al. [10, 12] than 10823 cm^{-1} from Herzberg and Johns [2]. The experimental results from Sears et al. are more reliable [10, 12, 16]. Compared with the
calculated results from Green Jr. et al., our results are closer to experiment [17]. Generally speaking, our results are in slightly better agreement with the experimental values than the results of Gu et al. [19], and it should be noted that the semiempirical PESs used by Gu et al. were adjusted according to the experimental values while ours are fully ab initio ones.

5. Summary

In this work, we report fully ab initio PESs for the RT coupled \(^1\)A\(^1\) and \(^1\)A\(^2\) states of CH\(_2\) suitable for the spectroscopic study, based on the icMRCl+Q method using the AVQZ and a kind of optimized ACVQZ basis sets. The core and core-valence correlation effects are included, which are necessary for an accurate quantum chemical description of the CH\(_2\) electronic states. The analytical representations of the two lowest-lying singlet PESs, with the inclusion of the matrix elements of electronic angular momentum \(L^{ab}\), \(L^{aa}\), and \(L^{bb}\), are obtained by fitting. The obtained PESs are smooth, and the two adiabatic potentials are exactly degenerate at linearity. The minimal energy structures and the barriers to linearity predicted by our PESs are in excellent agreement with available experimental data. Furthermore, the MCTDH quantum dynamical calculations are carried out on these new PESs, and the calculated vibronic energy levels are in excellent agreement with the experimental values. Further work on the construction of the global PESs for the \(^1\)A\(^1\) and \(^1\)A\(^2\) states, suitable for the C(\(^3\)D)+H\(_2\) reactive scattering studies, is in progress, and various PES intersections as revealed in our previous work [34], in particular conical intersections, will be included.

Acknowledgments

This work is supported by National Natural Science Foundation of China (nos. 20733005 and 21173232), Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences. The authors would like to thank Professor H. Partridge for useful discussions of the modified basis set optACVQZ for core-valence calculations.

References

[11] H. Petek, D. J. Nesbitt, D. C. Darwin, P. R. Ogilby, C. B. Moore, and D. A. Ramsay, “Analysis of CH\(_3\) \(^2\)A\(^1\) (\(J=0,0\) and \((0,0,1)\) Coriolis-coupled states, \(^2\)A\(^1\) \(\sim\) \(^2\)B\(_1\) spin-orbit coupling, and the equilibrium structure of CH\(_2\) \(^2\)A\(^1\)\(_x\),” The Journal of Chemical Physics, vol. 91, no. 11, pp. 6636–6678, 1989.

H. J. Werner and W. Meyer, “A quadratically convergent MCSCF method for the simultaneous optimization of several

[53] H.-J. Werner, P. J. Knowles, R. Lindh et al., MOLPRO, version 2006.1, a package of *ab initio* programs.

Submit your manuscripts at http://www.hindawi.com