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Abstract. 
Some numerical characteristics of bipartite graphs in relation to the problem of finding all disjoint pairs of S-permutation matrices in the general 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 case are discussed in this paper. All bipartite graphs of the type 
	
		
			
				𝑔
				=
				⟨
				𝑅
			

			

				𝑔
			

			
				∪
				𝐶
			

			

				𝑔
			

			
				,
				𝐸
			

			

				𝑔
			

			

				⟩
			

		
	
, where 
	
		
			
				|
				𝑅
			

			

				𝑔
			

			
				|
				=
				|
				𝐶
			

			

				𝑔
			

			
				|
				=
				2
			

		
	
 or 
	
		
			
				|
				𝑅
			

			

				𝑔
			

			
				|
				=
				|
				𝐶
			

			

				𝑔
			

			
				|
				=
				3
			

		
	
, are provided. The cardinality of the sets of mutually disjoint S-permutation matrices in both the 
	
		
			
				4
				×
				4
			

		
	
 and 
	
		
			
				9
				×
				9
			

		
	
 cases is calculated.


1. Introduction
 Let 
	
		
			

				𝑚
			

		
	
 be a positive integer. By 
	
		
			
				[
				𝑚
				]
			

		
	
 we denote the set 
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				[
				𝑚
				]
				=
				{
				1
				,
				2
				,
				…
				,
				𝑚
				}
				.
			

		
	

We let 
	
		
			

				𝒮
			

			

				𝑚
			

		
	
 denote the symmetric group of order 
	
		
			

				𝑚
			

		
	
, that is, the group of all one-to-one mappings of the set 
	
		
			
				[
				𝑚
				]
			

		
	
 to itself. If 
	
		
			
				𝑥
				∈
				[
				𝑚
				]
			

		
	
, 
	
		
			
				𝜌
				∈
				𝒮
			

			

				𝑚
			

		
	
, then the image of the element 
	
		
			

				𝑥
			

		
	
 in the mapping 
	
		
			

				𝜌
			

		
	
 we will denote by 
	
		
			
				𝜌
				(
				𝑥
				)
			

		
	
.
A bipartite graph is an ordered triple 
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				
				𝑅
				𝑔
				=
			

			

				𝑔
			

			
				,
				𝐶
			

			

				𝑔
			

			
				,
				𝐸
			

			

				𝑔
			

			
				
				,
			

		
	

					where 
	
		
			

				𝑅
			

			

				𝑔
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝑔
			

		
	
 are nonempty sets such that 
	
		
			

				𝑅
			

			

				𝑔
			

			
				∩
				𝐶
			

			

				𝑔
			

			
				=
				∅
			

		
	
. The elements of 
	
		
			

				𝑅
			

			

				𝑔
			

			
				∪
				𝐶
			

			

				𝑔
			

		
	
 will be called vertices. The set of edges is 
	
		
			

				𝐸
			

			

				𝑔
			

			
				⊆
				𝑅
			

			

				𝑔
			

			
				×
				𝐶
			

			

				𝑔
			

			
				=
				{
				⟨
				𝑟
				,
				𝑐
				⟩
				∣
				𝑟
				∈
				𝑅
			

			

				𝑔
			

			
				,
				𝑐
				∈
				𝐶
			

			

				𝑔
			

			

				}
			

		
	
. Multiple edges are not allowed in our considerations.
The subject of the present work is bipartite graphs considered up to isomorphism.
We refer to [1] or [2] for more details on graph theory.
Let 
	
		
			

				𝑛
			

		
	
 and 
	
		
			

				𝑘
			

		
	
 be two nonnegative integers, and let 
	
		
			
				0
				≤
				𝑘
				≤
				𝑛
			

			

				2
			

		
	
. We denote by 
	
		
			

				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
 the set of all bipartite graphs of the type 
	
		
			
				𝑔
				=
				⟨
				𝑅
			

			

				𝑔
			

			
				,
				𝐶
			

			

				𝑔
			

			
				,
				𝐸
			

			

				𝑔
			

			

				⟩
			

		
	
, considered up to isomorphism, such that 
	
		
			
				|
				𝑅
			

			

				𝑔
			

			
				|
				=
				|
				𝐶
			

			

				𝑔
			

			
				|
				=
				𝑛
			

		
	
 and 
	
		
			
				|
				𝐸
			

			

				𝑔
			

			
				|
				=
				𝑘
			

		
	
.
Let  
	
		
			

				𝑃
			

			
				𝑖
				𝑗
			

		
	
, 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
 be 
	
		
			

				𝑛
			

			

				2
			

		
	
 square 
	
		
			
				𝑛
				×
				𝑛
			

		
	
 matrices, whose entries are elements of the set 
	
		
			
				[
				𝑛
			

			

				2
			

			
				]
				=
			

		
	
 
	
		
			
				{
				1
				,
				2
				,
				…
				,
				𝑛
			

			

				2
			

			

				}
			

		
	
. The 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 matrix
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑃
				𝑃
				=
			

			
				1
				1
			

			

				𝑃
			

			
				1
				2
			

			
				⋯
				𝑃
			

			
				1
				𝑛
			

			

				𝑃
			

			
				2
				1
			

			

				𝑃
			

			
				2
				2
			

			
				⋯
				𝑃
			

			
				2
				𝑛
			

			
				𝑃
				⋮
				⋮
				⋱
				⋮
			

			
				𝑛
				1
			

			

				𝑃
			

			
				𝑛
				2
			

			
				⋯
				𝑃
			

			
				𝑛
				𝑛
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
			

		
	

					is called a Sudoku matrix, if every row, every column, and every submatrix 
	
		
			

				𝑃
			

			
				𝑖
				𝑗
			

		
	
, 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
 comprise a permutation of the elements of set 
	
		
			
				[
				𝑛
			

			

				2
			

			

				]
			

		
	
, that is, every number 
	
		
			
				𝑠
				∈
				{
				1
				,
				2
				,
				…
				,
				𝑛
			

			

				2
			

			

				}
			

		
	
 is found just once in each row, column, and submatrix 
	
		
			

				𝑃
			

			
				𝑖
				𝑗
			

		
	
. Submatrices 
	
		
			

				𝑃
			

			
				𝑖
				𝑗
			

		
	
 are called blocks of 
	
		
			

				𝑃
			

		
	
.
Sudoku is a very popular game, and Sudoku matrices are special cases of Latin squares in the class of gerechte designs [3].
A matrix is called binary if all of its elements are equal to 0 or 1. A square binary matrix is called permutation matrix if in every row and every column there is just one 1.
Let us denote by 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 the set of all 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 permutation matrices of the following type: 
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐴
				𝐴
				=
			

			
				1
				1
			

			

				𝐴
			

			
				1
				2
			

			
				⋯
				𝐴
			

			
				1
				𝑛
			

			

				𝐴
			

			
				2
				1
			

			

				𝐴
			

			
				2
				2
			

			
				⋯
				𝐴
			

			
				2
				𝑛
			

			
				𝐴
				⋮
				⋮
				⋱
				⋮
			

			
				𝑛
				1
			

			

				𝐴
			

			
				𝑛
				2
			

			
				⋯
				𝐴
			

			
				𝑛
				𝑛
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
			

		
	

					where for every 
	
		
			
				𝑠
				,
				𝑡
				∈
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, 
	
		
			

				𝐴
			

			
				𝑠
				𝑡
			

		
	
 is a square 
	
		
			
				𝑛
				×
				𝑛
			

		
	
 binary submatrix (block) with only one element equal to 1.
The elements of 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 will be called S-permutation matrices.
Two 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 matrices 
	
		
			
				𝐴
				=
				(
				𝑎
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
 and 
	
		
			
				𝐵
				=
				(
				𝑏
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
, 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

			

				2
			

		
	
 will be called disjoint if there are not elements 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

		
	
 and 
	
		
			

				𝑏
			

			
				𝑖
				𝑗
			

		
	
 with the same indices such that 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				=
				𝑏
			

			
				𝑖
				𝑗
			

			
				=
				1
			

		
	
.
The concept of S-permutation matrix was introduced by Dahl [4] in relation to the popular Sudoku puzzle.
Obviously, a square 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 matrix 
	
		
			

				𝑃
			

		
	
 with entries from 
	
		
			
				[
				𝑛
			

			

				2
			

			
				]
				=
				{
				1
				,
				2
				,
				…
				,
				𝑛
			

			

				2
			

			

				}
			

		
	
 is a Sudoku matrix if and only if there are 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 matrices 
	
		
			

				𝐴
			

			

				1
			

			
				,
				𝐴
			

			

				2
			

			
				,
				…
				,
				𝐴
			

			

				𝑛
			

			

				2
			

		
	
 pairwise disjoint, such that 
	
		
			

				𝑃
			

		
	
 can be written in the following way: 
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				𝑃
				=
				1
				⋅
				𝐴
			

			

				1
			

			
				+
				2
				⋅
				𝐴
			

			

				2
			

			
				+
				⋯
				+
				𝑛
			

			

				2
			

			
				⋅
				𝐴
			

			

				𝑛
			

			

				2
			

			

				.
			

		
	

In [5] Fontana offers an algorithm which returns a random family of 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 mutually disjoint S-permutation matrices, where 
	
		
			
				𝑛
				=
				2
				,
				3
			

		
	
. For 
	
		
			
				𝑛
				=
				3
			

		
	
, he ran the algorithm 1000 times and found 105 different families of nine mutually disjoint S-permutation matrices. Then, applying (1.5), he decided that there are at least 
	
		
			
				9
				!
				⋅
				1
				0
				5
				=
				3
				8
				1
				0
				2
				4
				0
				0
			

		
	
 Sudoku matrices. This number is very small compared with the exact number of 
	
		
			
				9
				×
				9
			

		
	
 Sudoku matrices. In [6] it was shown that there are exactly 
						
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				9
				!
				⋅
				7
				2
			

			

				2
			

			
				⋅
				2
			

			

				7
			

			
				⋅
				2
				7
				7
				0
				4
				2
				6
				7
				9
				7
				1
				=
				6
				6
				7
				0
				9
				0
				3
				7
				5
				2
				0
				2
				1
				0
				7
				2
				9
				3
				6
				9
				6
				0
			

		
	

					number of 
	
		
			
				9
				×
				9
			

		
	
 Sudoku matrices.
To evaluate the effectiveness of Fontana's algorithm, it is necessary to calculate the probability of two randomly generated matrices being disjoint. As is proved in [4], the number of S-permutation matrices is equal to 
						
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				|
				|
				Σ
			

			

				𝑛
			

			

				2
			

			
				|
				|
				=
				(
				𝑛
				!
				)
			

			
				2
				𝑛
			

			

				.
			

		
	

Thus the question of finding a formula for counting disjoint pairs of S-permutation matrices naturally arises. Such a formula is introduced and verified in [7]. In this paper, we demonstrate this formula to compute the number of disjoint pairs of S-permutation matrices in both the 4 
	
		
			

				×
			

		
	
 4 and 9 
	
		
			

				×
			

		
	
 9 cases.
2. A Formula for Counting Disjoint Pairs of S-Permutation Matrices
 Let 
	
		
			
				𝑔
				=
				⟨
				𝑅
			

			

				𝑔
			

			
				,
				𝐶
			

			

				𝑔
			

			
				,
				𝐸
			

			

				𝑔
			

			
				⟩
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
 for some natural numbers 
	
		
			

				𝑛
			

		
	
 and 
	
		
			

				𝑘
			

		
	
, and let 
	
		
			
				𝑣
				∈
				𝑉
			

			

				𝑔
			

			
				=
				𝑅
			

			

				𝑔
			

			
				∪
				𝐶
			

			

				𝑔
			

		
	
.
By 
	
		
			
				𝑁
				(
				𝑣
				)
			

		
	
 we denote the set of all vertices of 
	
		
			

				𝑉
			

			

				𝑔
			

		
	
, adjacent with 
	
		
			

				𝑣
			

		
	
, that is, 
	
		
			
				𝑢
				∈
				𝑁
				(
				𝑣
				)
			

		
	
 if and only if there is an edge in 
	
		
			

				𝐸
			

			

				𝑔
			

		
	
 connecting 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
. If 
	
		
			

				𝑣
			

		
	
 is an isolated vertex (i.e., there is no edge, incident with 
	
		
			

				𝑣
			

		
	
), then by definition 
	
		
			
				𝑁
				(
				𝑣
				)
				=
				∅
			

		
	
 and 
	
		
			
				d
				e
				g
				r
				e
				e
				(
				𝑣
				)
				=
				|
				𝑁
				(
				𝑣
				)
				|
				=
				0
			

		
	
. If 
	
		
			
				𝑣
				∈
				𝑅
			

			

				𝑔
			

		
	
, then obviously 
	
		
			
				𝑁
				(
				𝑣
				)
				⊆
				𝐶
			

			

				𝑔
			

		
	
, and if 
	
		
			
				𝑣
				∈
				𝐶
			

			

				𝑔
			

		
	
, then 
	
		
			
				𝑁
				(
				𝑣
				)
				⊆
				𝑅
			

			

				𝑔
			

		
	
.
Let 
	
		
			
				𝑔
				=
				⟨
				𝑅
			

			

				𝑔
			

			
				,
				𝐶
			

			

				𝑔
			

			
				,
				𝐸
			

			

				𝑔
			

			
				⟩
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
, and let 
	
		
			
				𝑢
				,
				𝑣
				∈
				𝑉
			

			

				𝑔
			

			
				=
				𝑅
			

			

				𝑔
			

			
				∪
				𝐶
			

			

				𝑔
			

		
	
. We will say that 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 are equivalent, and we will write 
	
		
			
				𝑢
				∼
				𝑣
			

		
	
 if 
	
		
			
				𝑁
				(
				𝑢
				)
				=
				𝑁
				(
				𝑣
				)
			

		
	
. If 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 are isolated, then by definition 
	
		
			
				𝑢
				∼
				𝑣
			

		
	
 if and only if 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 belong simultaneously to 
	
		
			

				𝑅
			

			

				𝑔
			

		
	
, or 
	
		
			

				𝐶
			

			

				𝑔
			

		
	
. The above introduced relation is obviously an equivalence relation.
By 
	
		
			

				𝑉
			

			
				𝑔
				/
				∼
			

		
	
 we denote the obtained factor set (the set of the equivalence classes) according to relation 
	
		
			

				∼
			

		
	
 and let 
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝑉
			

			
				𝑔
				/
				∼
			

			
				=
				
				Δ
			

			

				1
			

			
				,
				Δ
			

			

				2
			

			
				,
				…
				,
				Δ
			

			

				𝑠
			

			
				
				,
			

		
	

					where 
	
		
			

				Δ
			

			

				𝑖
			

			
				⊆
				𝑅
			

			

				𝑔
			

		
	
, or 
	
		
			

				Δ
			

			

				𝑖
			

			
				⊆
				𝐶
			

			

				𝑔
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				𝑠
			

		
	
, 
	
		
			
				2
				≤
				𝑠
				≤
				2
				𝑛
			

		
	
. We put 
						
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑖
			

			
				=
				|
				|
				Δ
			

			

				𝑖
			

			
				|
				|
				,
				1
				≤
				𝛿
			

			

				𝑖
			

			
				≤
				𝑛
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				,
			

		
	

					and for every 
	
		
			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
 we define multiset (set with repetition) 
						
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				[
				𝑔
				]
				=
				
				𝛿
			

			

				1
			

			
				,
				𝛿
			

			

				2
			

			
				,
				…
				,
				𝛿
			

			

				𝑠
			

			
				
				,
			

		
	

					where 
	
		
			

				𝛿
			

			

				1
			

			
				,
				𝛿
			

			

				2
			

			
				,
				…
				,
				𝛿
			

			

				𝑠
			

		
	
 are natural numbers, obtained by the above described way.
If 
	
		
			

				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

			
				,
				…
				,
				𝑧
			

			

				𝑛
			

		
	
 is a permutation of the elements of the set 
	
		
			
				[
				𝑛
				]
				=
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
 and we shortly denote 
	
		
			

				𝜌
			

		
	
 this permutation, then in this case we denote by 
	
		
			
				𝜌
				(
				𝑖
				)
			

		
	
 the 
	
		
			

				𝑖
			

		
	
th element of this permutation, that is, 
	
		
			
				𝜌
				(
				𝑖
				)
				=
				𝑧
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
. 
The following theorem is proved in [7].
Theorem 2.1 (see [7]).  Let 
	
		
			
				𝑛
				≥
				2
			

		
	
 be a positive integer. Then the number 
	
		
			

				𝐷
			

			

				𝑛
			

			

				2
			

		
	
 of all disjoint ordered pairs of matrices in 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 is equal to 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑛
			

			

				2
			

			
				=
				(
				𝑛
				!
				)
			

			
				4
				𝑛
			

			
				+
				(
				𝑛
				!
				)
			

			
				𝑛
				2
				(
				𝑛
				+
				1
				)
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			
				(
				−
				1
				)
			

			

				𝑘
			

			

				
			

			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

			

				∏
			

			
				𝑣
				∈
				𝑅
			

			

				𝑔
			

			
				∪
				𝐶
			

			

				𝑔
			

			
				
				|
				|
				|
				|
				
				!
				𝑛
				−
				𝑁
				(
				𝑣
				)
			

			
				
			
			

				∏
			

			
				𝛿
				∈
				[
				𝑔
				]
			

			
				.
				𝛿
				!
			

		
	

The number 
	
		
			

				𝑑
			

			

				𝑛
			

			

				2
			

		
	
 of all nonordered pairs of disjoint matrices in 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 is equal to 
						
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				𝑑
			

			

				𝑛
			

			

				2
			

			
				=
				1
			

			
				
			
			
				2
				𝐷
			

			

				𝑛
			

			

				2
			

			

				.
			

		
	

The proof of Theorem 2.1 is described in detail in [7], and here we will miss it.
In order to apply Theorem 2.1 it is necessary to describe all bipartite graphs up to isomorphism 
	
		
			
				𝑔
				=
				⟨
				𝑅
			

			

				𝑔
			

			
				,
				𝐶
			

			

				𝑔
			

			
				,
				𝐸
			

			

				𝑔
			

			

				⟩
			

		
	
, where 
	
		
			
				|
				𝑅
			

			

				𝑔
			

			
				|
				=
				|
				𝐶
			

			

				𝑔
			

			
				|
				=
				𝑛
			

		
	
.
Let 
	
		
			

				𝑛
			

		
	
 and 
	
		
			

				𝑘
			

		
	
 are positive integers, and let 
	
		
			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
. We examine the ordered 
	
		
			
				(
				𝑛
				+
				1
				)
			

		
	
-tuple
						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				Ψ
				(
				𝑔
				)
				=
				⟨
				𝜓
			

			

				0
			

			
				(
				𝑔
				)
				,
				𝜓
			

			

				1
			

			
				(
				𝑔
				)
				,
				…
				,
				𝜓
			

			

				𝑛
			

			
				(
				𝑔
				)
				⟩
				,
			

		
	

					where 
	
		
			

				𝜓
			

			

				𝑖
			

			
				(
				𝑔
				)
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				1
				,
				…
				,
				𝑛
			

		
	
 is equal to the number of vertices of 
	
		
			

				𝑔
			

		
	
 incident with exactly 
	
		
			

				𝑖
			

		
	
 number of edges. It is obvious that 
	
		
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			
				𝑖
				𝜓
			

			

				𝑖
			

			
				(
				𝑔
				)
				=
				2
				𝑘
			

		
	
 is true for all 
	
		
			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
. Then formula (2.4) can be presented as 
						
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑛
			

			

				2
			

			
				=
				(
				𝑛
				!
				)
			

			
				4
				𝑛
			

			
				+
				(
				𝑛
				!
				)
			

			
				𝑛
				2
				(
				𝑛
				+
				1
				)
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			
				(
				−
				1
				)
			

			

				𝑘
			

			

				
			

			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

			

				∏
			

			
				𝑛
				𝑖
				=
				0
			

			
				[
				]
				(
				𝑛
				−
				𝑖
				)
				!
			

			

				𝜓
			

			

				𝑖
			

			
				(
				𝑔
				)
			

			
				
			
			

				∏
			

			
				𝛿
				∈
				[
				𝑔
				]
			

			
				.
				𝛿
				!
			

		
	

Since 
	
		
			
				(
				𝑛
				−
				𝑛
				)
				!
				=
				0
				!
				=
				1
			

		
	
 and 
	
		
			
				[
				𝑛
				−
				(
				𝑛
				−
				1
				)
				]
				!
				=
				1
				!
				=
				1
			

		
	
, then
						
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑛
			

			

				2
			

			
				=
				(
				𝑛
				!
				)
			

			
				4
				𝑛
			

			
				+
				(
				𝑛
				!
				)
			

			
				𝑛
				2
				(
				𝑛
				+
				1
				)
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			
				(
				−
				1
				)
			

			

				𝑘
			

			

				
			

			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

			

				∏
			

			
				𝑛
				−
				2
				𝑖
				=
				0
			

			
				[
				]
				(
				𝑛
				−
				𝑖
				)
				!
			

			

				𝜓
			

			

				𝑖
			

			
				(
				𝑔
				)
			

			
				
			
			

				∏
			

			
				𝛿
				∈
				[
				𝑔
				]
			

			
				.
				𝛿
				!
			

		
	

Consequently, to apply formula (2.8) for each bipartite graph 
	
		
			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
 and for the set 
	
		
			

				𝔊
			

			
				𝑛
				,
				𝑘
			

		
	
 of bipartite graphs, it is necessary to obtain the following numerical characteristics:
						
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				∏
				𝜔
				(
				𝑔
				)
				=
			

			
				𝑛
				−
				2
				𝑖
				=
				0
			

			
				[
				(
				]
				𝑛
				−
				𝑖
				)
				!
			

			

				𝜓
			

			

				𝑖
			

			
				(
				𝑔
				)
			

			
				
			
			

				∏
			

			
				[
				𝑔
				]
				𝛿
				∈
			

			
				,
				
				𝛿
				!
				𝜃
				(
				𝑛
				,
				𝑘
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				𝑛
				,
				𝑘
			

			
				𝜔
				(
				𝑔
				)
				.
			

		
	

Using the numerical characteristics (2.9), we obtain the following variety of Theorem 2.1.
Theorem 2.2.  One has
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑛
			

			

				2
			

			
				=
				(
				𝑛
				!
				)
			

			
				4
				𝑛
			

			
				+
				(
				𝑛
				!
				)
			

			
				𝑛
				2
				(
				𝑛
				+
				1
				)
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			
				(
				−
				1
				)
			

			

				𝑘
			

			
				𝜃
				(
				𝑛
				,
				𝑘
				)
				,
			

		
	

						where 
	
		
			
				𝜃
				(
				𝑛
				,
				𝑘
				)
			

		
	
 is described using formulas (2.9).
3. Demonstrations in Applying Theorem 2.2
3.1. Counting the Number  
	
		
			

				𝐷
			

			

				4
			

		
	
  of All Ordered Pairs of Disjoint S-Permutation Matrices for  
	
		
			
				𝑛
				=
				2
			

		
	

3.1.1. Consider 
	
		
			
				𝑘
				=
				1
			

		
	

 In 
	
		
			
				𝑛
				=
				2
			

		
	
 and 
	
		
			
				𝑘
				=
				1
			

		
	
, 
	
		
			

				𝔊
			

			
				2
				,
				1
			

		
	
 consists of a single graph 
	
		
			

				𝑔
			

			

				1
			

		
	
 shown in Figure 1.










	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	

Figure 1: 
	
		
			
				𝑛
				=
				2
				,
				𝑘
				=
				1
			

		
	
. 										


For graph 
	
		
			

				𝑔
			

			

				1
			

			
				∈
				𝔊
			

			
				2
				,
				1
			

		
	
 we have 
										
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				1
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			

				1
			

			
				
				=
				
				𝜓
			

			

				0
			

			
				
				𝑔
			

			

				1
			

			
				
				,
				𝜓
			

			

				1
			

			
				
				𝑔
			

			

				1
			

			
				
				,
				𝜓
			

			

				2
			

			
				
				𝑔
			

			

				1
			

			
				
				
				=
				⟨
				2
				,
				2
				,
				0
				⟩
				.
			

		
	

Then we get 
										
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				𝜔
				
				𝑔
			

			

				1
			

			
				
				=
				[
				]
				(
				2
				−
				0
				)
				!
			

			

				2
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				=
				4
				,
			

		
	

									and therefore 
										
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				
				𝜃
				(
				2
				,
				1
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				2
				,
				1
			

			
				𝜔
				(
				𝑔
				)
				=
				4
				.
			

		
	

3.1.2. Consider 
	
		
			
				𝑘
				=
				2
			

		
	

 The set 
	
		
			

				𝔊
			

			
				2
				,
				2
			

		
	
 consists of three graphs 
	
		
			

				𝑔
			

			

				2
			

		
	
, 
	
		
			

				𝑔
			

			

				3
			

		
	
, and 
	
		
			

				𝑔
			

			

				4
			

		
	
 depicted in Figure 2.











	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	










	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	










	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	



Figure 2: 
	
		
			
				𝑛
				=
				2
				,
				𝑘
				=
				2
			

		
	
. 										


For graph 
	
		
			

				𝑔
			

			

				2
			

			
				∈
				𝔊
			

			
				2
				,
				2
			

		
	
 we have 
										
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				2
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			

				2
			

			
				
				=
				
				𝜓
			

			

				0
			

			
				
				𝑔
			

			

				2
			

			
				
				,
				𝜓
			

			

				1
			

			
				
				𝑔
			

			

				2
			

			
				
				,
				𝜓
			

			

				2
			

			
				
				𝑔
			

			

				2
			

			
				𝜔
				
				𝑔
				
				
				=
				⟨
				0
				,
				4
				,
				0
				⟩
				,
			

			

				1
			

			
				
				=
				[
				]
				(
				2
				−
				0
				)
				!
			

			

				0
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				=
				1
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			

				3
			

			
				∈
				𝔊
			

			
				2
				,
				2
			

		
	
 and 
	
		
			

				𝑔
			

			

				4
			

			
				∈
				𝔊
			

			
				2
				,
				2
			

		
	
 we have 
										
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				3
			

			
				
				=
				
				𝑔
			

			

				4
			

			
				
				Ψ
				
				𝑔
				=
				{
				2
				,
				1
				,
				1
				}
				,
			

			

				3
			

			
				
				
				𝑔
				=
				Ψ
			

			

				4
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				1
				,
				2
				,
				1
				⟩
				,
			

			

				3
			

			
				
				
				𝑔
				=
				𝜔
			

			

				4
			

			
				
				=
				[
				]
				(
				2
				−
				0
				)
				!
			

			

				1
			

			
				
			
			
				2
				!
				1
				!
				1
				!
				=
				1
				.
			

		
	

Then for the set 
	
		
			

				𝔊
			

			
				2
				,
				2
			

		
	
 we get 
										
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				
				𝜃
				(
				2
				,
				2
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				2
				,
				2
			

			
				𝜔
				(
				𝑔
				)
				=
				1
				+
				1
				+
				1
				=
				3
				.
			

		
	

3.1.3. Consider 
	
		
			
				𝑘
				=
				3
			

		
	

 In 
	
		
			
				𝑛
				=
				2
			

		
	
 and 
	
		
			
				𝑘
				=
				3
			

		
	
, 
	
		
			

				𝔊
			

			
				2
				,
				3
			

		
	
 consists of a single graph 
	
		
			

				𝑔
			

			

				5
			

		
	
 shown in Figure 3.










	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	



Figure 3: 
	
		
			
				𝑛
				=
				2
				,
				𝑘
				=
				3
			

		
	
. 										


For graph 
	
		
			

				𝑔
			

			

				5
			

			
				∈
				𝔊
			

			
				2
				,
				3
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				5
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			

				5
			

			
				
				=
				
				𝜓
			

			

				0
			

			
				
				𝑔
			

			

				5
			

			
				
				,
				𝜓
			

			

				1
			

			
				
				𝑔
			

			

				5
			

			
				
				,
				𝜓
			

			

				2
			

			
				
				𝑔
			

			

				5
			

			
				
				
				=
				⟨
				0
				,
				2
				,
				2
				⟩
				.
			

		
	

Then we get 
										
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝜔
				
				𝑔
			

			

				5
			

			
				
				=
				[
				]
				(
				2
				−
				0
				)
				!
			

			

				0
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				=
				1
			

		
	

									and therefore 
										
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				
				𝜃
				(
				2
				,
				3
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				2
				,
				3
			

			
				𝜔
				(
				𝑔
				)
				=
				1
				.
			

		
	

3.1.4. Consider 
	
		
			
				𝑘
				=
				4
			

		
	

When 
	
		
			
				𝑛
				=
				2
			

		
	
 and 
	
		
			
				𝑘
				=
				4
			

		
	
, there is only one graph, and this is the complete bipartite graph 
	
		
			

				𝑔
			

			

				6
			

		
	
 which is shown in Figure 4.










	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	




Figure 4: 
	
		
			
				𝑛
				=
				2
				,
				𝑘
				=
				4
			

		
	
. 										


For graph 
	
		
			

				𝑔
			

			

				6
			

			
				∈
				𝔊
			

			
				2
				,
				4
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				6
			

			
				
				Ψ
				
				𝑔
				=
				{
				2
				,
				2
				}
				,
			

			

				6
			

			
				
				=
				
				𝜓
			

			

				0
			

			
				
				𝑔
			

			

				6
			

			
				
				,
				𝜓
			

			

				1
			

			
				
				𝑔
			

			

				6
			

			
				
				,
				𝜓
			

			

				2
			

			
				
				𝑔
			

			

				6
			

			
				
				
				=
				⟨
				0
				,
				0
				,
				4
				⟩
				.
			

		
	

Then we get 
										
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				𝜔
				
				𝑔
			

			

				6
			

			
				
				=
				[
				]
				(
				2
				−
				0
				)
				!
			

			

				0
			

			
				
			
			
				=
				1
				2
				!
				2
				!
			

			
				
			
			
				4
				,
			

		
	

									and therefore 
										
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝜃
				(
				2
				,
				4
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				2
				,
				1
			

			
				1
				𝜔
				(
				𝑔
				)
				=
			

			
				
			
			
				4
				.
			

		
	

Having in mind the formulas (2.10), (3.3), (3.6), (3.9), and (3.12) for the number 
	
		
			

				𝐷
			

			

				4
			

		
	
 of all ordered pairs disjoint S-permutation matrices in 
	
		
			
				𝑛
				=
				2
			

		
	
 we finally get
										
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				𝐷
			

			

				4
			

			
				=
				(
				2
				!
				)
			

			

				8
			

			
				+
				(
				2
				!
				)
			

			

				6
			

			
				[
				]
				
				1
				−
				𝜃
				(
				2
				,
				1
				)
				+
				𝜃
				(
				2
				,
				2
				)
				−
				𝜃
				(
				2
				,
				3
				)
				+
				𝜃
				(
				2
				,
				4
				)
				=
				2
				5
				6
				+
				6
				4
				−
				4
				+
				3
				−
				1
				+
			

			
				
			
			
				4
				
				=
				1
				4
				4
				.
			

		
	

The number 
	
		
			

				𝑑
			

			

				4
			

		
	
 of all nonordered pairs disjoint matrices from 
	
		
			

				Σ
			

			

				4
			

		
	
 is equal to
										
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑑
			

			

				4
			

			
				=
				1
			

			
				
			
			
				2
				𝐷
			

			

				4
			

			
				=
				7
				2
				.
			

		
	

3.2. Counting the Number  
	
		
			

				𝐷
			

			

				9
			

		
	
  of All Ordered Pairs of Disjoint S-Permutation Matrices for  
	
		
			
				𝑛
				=
				3
			

		
	

3.2.1. Consider 
	
		
			
				𝑘
				=
				1
			

		
	

Graph 
	
		
			

				𝑔
			

			

				7
			

		
	
, which is displayed in Figure 5, is the only bipartite graph belonging to the set 
	
		
			

				𝔊
			

			
				3
				,
				1
			

		
	
.









	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	




Figure 5: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				1
			

		
	
.


For graph 
	
		
			

				𝑔
			

			

				7
			

			
				∈
				𝔊
			

			
				3
				,
				1
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				7
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			

				7
			

			
				
				=
				
				𝜓
			

			

				0
			

			
				
				𝑔
			

			

				7
			

			
				
				,
				𝜓
			

			

				1
			

			
				
				𝑔
			

			

				7
			

			
				
				,
				𝜓
			

			

				2
			

			
				
				𝑔
			

			

				7
			

			
				
				,
				𝜓
			

			

				3
			

			
				
				𝑔
			

			

				7
			

			
				
				,
				𝜓
			

			

				4
			

			
				
				𝑔
			

			

				8
			

			
				
				
				=
				⟨
				4
				,
				2
				,
				0
				,
				0
				⟩
				.
			

		
	

Then we get
										
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				𝜔
				
				𝑔
			

			

				7
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				4
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				4
			

			
				⋅
				2
			

			

				2
			

			
				
			
			
				1
				⋅
				1
				⋅
				2
				⋅
				2
				=
				1
				2
				9
				6
				,
			

		
	

									and therefore 
										
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				1
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				1
			

			
				𝜔
				(
				𝑔
				)
				=
				1
				2
				9
				6
				.
			

		
	

3.2.2. Consider 
	
		
			
				𝑘
				=
				2
			

		
	

In this case 
	
		
			

				𝔊
			

			
				3
				,
				2
			

			
				=
				{
				𝑔
			

			

				8
			

			
				,
				𝑔
			

			

				9
			

			
				,
				𝑔
			

			
				1
				0
			

			

				}
			

		
	
. The graphs 
	
		
			

				𝑔
			

			

				8
			

		
	
, 
	
		
			

				𝑔
			

			

				9
			

		
	
, and 
	
		
			

				𝑔
			

			
				1
				0
			

		
	
 are shown in Figure 6.










	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	


























Figure 6: 
	
		
			
				𝑛
				=
				3
				,
				𝑘
				=
				2
			

		
	
. 										


For graph 
	
		
			

				𝑔
			

			

				8
			

			
				∈
				𝔊
			

			
				3
				,
				2
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				8
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			

				8
			

			
				
				=
				
				𝜓
			

			

				0
			

			
				
				𝑔
			

			

				8
			

			
				
				,
				𝜓
			

			

				1
			

			
				
				𝑔
			

			

				8
			

			
				
				,
				𝜓
			

			

				2
			

			
				
				𝑔
			

			

				8
			

			
				
				,
				𝜓
			

			

				3
			

			
				
				𝑔
			

			

				8
			

			
				
				,
				𝜓
			

			

				4
			

			
				
				𝑔
			

			

				8
			

			
				𝜔
				
				𝑔
				
				
				=
				⟨
				2
				,
				4
				,
				0
				,
				0
				⟩
				,
			

			

				8
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				2
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				4
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				2
			

			
				⋅
				2
			

			

				4
			

			
				=
				5
				7
				6
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			

				9
			

			
				∈
				𝔊
			

			
				3
				,
				2
			

		
	
 and 
	
		
			

				𝑔
			

			
				1
				0
			

			
				∈
				𝔊
			

			
				3
				,
				2
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				9
			

			
				
				=
				
				𝑔
			

			
				1
				0
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			

				9
			

			
				
				
				𝑔
				=
				Ψ
			

			
				1
				0
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				3
				,
				2
				,
				1
				,
				0
				⟩
				,
			

			

				9
			

			
				
				
				𝑔
				=
				𝜔
			

			
				1
				0
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				3
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				3
			

			
				⋅
				2
			

			

				2
			

			
				
			
			
				1
				⋅
				1
				⋅
				2
				⋅
				2
				=
				2
				1
				6
				.
			

		
	

Then for the set 
	
		
			

				𝔊
			

			
				3
				,
				2
			

		
	
 we get
										
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				2
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				2
			

			
				𝜔
				(
				𝑔
				)
				=
				5
				7
				6
				+
				2
				1
				6
				+
				2
				1
				6
				=
				1
				0
				0
				8
				.
			

		
	

3.2.3. Consider 
	
		
			
				𝑘
				=
				3
			

		
	

When 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				3
			

		
	
, the set 
	
		
			

				𝔊
			

			
				3
				,
				3
			

			
				=
				{
				𝑔
			

			
				1
				1
			

			
				,
				𝑔
			

			
				1
				2
			

			
				,
				𝑔
			

			
				1
				3
			

			
				,
				𝑔
			

			
				1
				4
			

			
				,
				𝑔
			

			
				1
				5
			

			
				,
				𝑔
			

			
				1
				6
			

			

				}
			

		
	
 consists of six bipartite graphs, which are shown in Figure 7.











	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	
































































Figure 7: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				3
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				1
				1
			

			
				∈
				𝔊
			

			
				3
				,
				3
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				1
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				1
				1
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				6
				,
				0
				,
				0
				⟩
				,
			

			
				1
				1
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				6
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				0
			

			
				⋅
				2
			

			

				6
			

			
				=
				6
				4
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				1
				2
			

			
				,
				𝑔
			

			
				1
				3
			

			
				∈
				𝔊
			

			
				3
				,
				3
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				2
			

			
				
				=
				
				𝑔
			

			
				1
				3
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				2
				}
				,
			

			
				1
				2
			

			
				
				
				𝑔
				=
				Ψ
			

			
				1
				3
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				1
				,
				4
				,
				1
				,
				0
				⟩
				,
			

			
				1
				2
			

			
				
				
				𝑔
				=
				𝜔
			

			
				1
				3
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				1
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				4
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				1
				!
				1
				!
				2
				!
			

			

				1
			

			
				⋅
				2
			

			

				4
			

			
				
			
			
				2
				=
				4
				8
				.
			

		
	

For graph 
	
		
			

				𝑔
			

			
				1
				4
			

			
				∈
				𝔊
			

			
				3
				,
				3
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				4
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				1
				4
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				2
				,
				2
				,
				2
				,
				0
				⟩
				,
			

			
				1
				4
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				2
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				2
			

			
				⋅
				2
			

			

				2
			

			
				=
				1
				4
				4
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				1
				5
			

			
				,
				𝑔
			

			
				1
				6
			

			
				∈
				𝔊
			

			
				3
				,
				3
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				5
			

			
				
				=
				
				𝑔
			

			
				1
				6
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				2
				,
				3
				}
				,
			

			
				1
				5
			

			
				
				
				𝑔
				=
				Ψ
			

			
				1
				6
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				2
				,
				3
				,
				0
				,
				1
				⟩
				,
			

			
				1
				5
			

			
				
				
				𝑔
				=
				𝜔
			

			
				1
				6
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				2
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				3
			

			
				
			
			
				=
				6
				1
				!
				2
				!
				3
				!
			

			

				2
			

			
				⋅
				2
			

			

				3
			

			
				
			
			
				2
				⋅
				6
				=
				2
				4
				.
			

		
	

Then for the set 
	
		
			

				𝔊
			

			
				3
				,
				3
			

		
	
 we get
										
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				3
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				3
			

			
				𝜔
				(
				𝑔
				)
				=
				6
				4
				+
				4
				8
				+
				4
				8
				+
				1
				4
				4
				+
				2
				4
				+
				2
				4
				=
				3
				5
				2
				.
			

		
	

3.2.4. Consider 
	
		
			
				𝑘
				=
				4
			

		
	

When 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				4
			

		
	
, the set 
	
		
			

				𝔊
			

			
				3
				,
				4
			

			
				=
				{
				𝑔
			

			
				1
				7
			

			
				,
				𝑔
			

			
				1
				8
			

			
				,
				𝑔
			

			
				1
				9
			

			
				,
				𝑔
			

			
				2
				0
			

			
				,
				𝑔
			

			
				2
				1
			

			
				,
				𝑔
			

			
				2
				2
			

			
				,
				𝑔
			

			
				2
				3
			

			

				}
			

		
	
 consists of seven bipartite graphs, which are shown in Figure 8.










	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	




























































	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	














	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	














Figure 8: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				4
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				1
				7
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				7
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			
				1
				7
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				2
				,
				0
				,
				4
				,
				0
				⟩
				,
			

			
				1
				7
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				2
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				0
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				2
			

			
				⋅
				2
			

			

				0
			

			
				
			
			

				2
			

			

				2
			

			
				=
				9
				.
			

		
	

For graph 
	
		
			

				𝑔
			

			
				1
				8
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				8
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			
				1
				8
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				4
				,
				2
				,
				0
				⟩
				,
			

			
				1
				8
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				4
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				0
			

			
				⋅
				2
			

			

				4
			

			
				
			
			

				2
			

			

				2
			

			
				=
				4
				.
			

		
	

For graph 
	
		
			

				𝑔
			

			
				1
				9
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				1
				9
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				1
				9
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				4
				,
				2
				,
				0
				⟩
				,
			

			
				1
				9
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				4
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				0
			

			
				⋅
				2
			

			

				4
			

			
				=
				1
				6
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				2
				0
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 and 
	
		
			

				𝑔
			

			
				2
				1
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				0
			

			
				
				=
				
				𝑔
			

			
				2
				1
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				2
				0
			

			
				
				
				𝑔
				=
				Ψ
			

			
				2
				1
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				1
				,
				2
				,
				3
				,
				0
				⟩
				,
			

			
				2
				0
			

			
				
				
				𝑔
				=
				𝜔
			

			
				2
				1
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				1
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				1
			

			
				⋅
				2
			

			

				2
			

			
				=
				2
				4
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				2
				2
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 and 
	
		
			

				𝑔
			

			
				2
				3
			

			
				∈
				𝔊
			

			
				3
				,
				4
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				2
			

			
				
				=
				
				𝑔
			

			
				2
				3
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				2
				}
				,
			

			
				2
				2
			

			
				
				
				𝑔
				=
				Ψ
			

			
				2
				3
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				1
				,
				3
				,
				1
				,
				1
				⟩
				,
			

			
				2
				2
			

			
				
				
				𝑔
				=
				𝜔
			

			
				2
				3
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				1
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				3
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				1
				!
				1
				!
				2
				!
			

			

				1
			

			
				⋅
				2
			

			

				3
			

			
				
			
			
				2
				=
				2
				4
				.
			

		
	

Then we get
										
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				4
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				4
			

			
				𝜔
				(
				𝑔
				)
				=
				9
				+
				4
				+
				1
				6
				+
				2
				4
				+
				2
				4
				+
				2
				4
				+
				2
				4
				=
				1
				2
				5
				.
			

		
	

3.2.5. Consider 
	
		
			
				𝑘
				=
				5
			

		
	

When 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				5
			

		
	
, the set 
	
		
			

				𝔊
			

			
				3
				,
				5
			

		
	
 consists of seven bipartite graphs 
	
		
			

				𝑔
			

			
				2
				4
			

			
				÷
				𝑔
			

			
				3
				0
			

		
	
, which are shown in Figure 9.











	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	











	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	











	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	











	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	











	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	
















	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	














	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	




























Figure 9: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				5
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				2
				4
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				2
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				4
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			
				2
				4
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				4
				,
				0
				,
				2
				⟩
				,
			

			
				1
				8
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				4
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				0
			

			
				⋅
				2
			

			

				4
			

			
				
			
			

				2
			

			

				2
			

			
				=
				4
				.
			

		
	

For graph 
	
		
			

				𝑔
			

			
				2
				5
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				5
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			
				2
				5
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				2
				,
				4
				,
				0
				⟩
				,
			

			
				1
				8
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				0
			

			
				⋅
				2
			

			

				2
			

			
				
			
			

				2
			

			

				2
			

			
				=
				1
				.
			

		
	

For graph 
	
		
			

				𝑔
			

			
				2
				6
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				6
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				2
				6
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				2
				,
				4
				,
				0
				⟩
				,
			

			
				2
				6
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				0
			

			
				⋅
				2
			

			

				2
			

			
				=
				4
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				2
				7
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 and 
	
		
			

				𝑔
			

			
				2
				8
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				5
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				7
			

			
				
				=
				
				𝑔
			

			
				2
				8
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				2
				7
			

			
				
				
				𝑔
				=
				Ψ
			

			
				2
				8
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				3
				,
				2
				,
				1
				⟩
				,
			

			
				2
				7
			

			
				
				
				𝑔
				=
				𝜔
			

			
				2
				8
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				3
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				6
			

			

				0
			

			
				⋅
				2
			

			

				3
			

			
				=
				8
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				2
				9
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 and 
	
		
			

				𝑔
			

			
				3
				0
			

			
				∈
				𝔊
			

			
				3
				,
				5
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				6
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				2
				9
			

			
				
				=
				
				𝑔
			

			
				3
				0
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				2
				}
				,
			

			
				2
				9
			

			
				
				
				𝑔
				=
				Ψ
			

			
				3
				0
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				1
				,
				1
				,
				3
				,
				1
				⟩
				,
			

			
				2
				9
			

			
				
				
				𝑔
				=
				𝜔
			

			
				3
				0
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				1
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				1
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				1
				!
				1
				!
				2
				!
			

			

				1
			

			
				⋅
				2
			

			

				1
			

			
				
			
			
				2
				=
				6
				.
			

		
	

Then we get
										
	
 		
 			
				(
				3
				.
				3
				7
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				5
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				5
			

			
				𝜔
				(
				𝑔
				)
				=
				4
				+
				1
				+
				4
				+
				8
				+
				8
				+
				6
				+
				6
				=
				3
				7
				.
			

		
	

3.2.6. Consider 
	
		
			
				𝑘
				=
				6
			

		
	

 When 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				6
			

		
	
, the set 
	
		
			

				𝔊
			

			
				3
				,
				6
			

			
				=
				{
				𝑔
			

			
				3
				1
			

			
				,
				𝑔
			

			
				3
				2
			

			
				,
				𝑔
			

			
				3
				3
			

			
				,
				𝑔
			

			
				3
				4
			

			
				,
				𝑔
			

			
				3
				5
			

			
				,
				𝑔
			

			
				3
				6
			

			

				}
			

		
	
 consists of six bipartite graphs, which are shown in Figure 10.
























































	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	





































Figure 10: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				6
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				3
				1
			

			
				∈
				𝔊
			

			
				3
				,
				6
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				8
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				3
				1
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				3
				1
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				0
				,
				6
				,
				0
				⟩
				,
			

			
				3
				1
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				0
			

			
				
			
			
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				=
				1
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				3
				2
			

			
				∈
				𝔊
			

			
				3
				,
				6
			

		
	
 and 
	
		
			

				𝑔
			

			
				3
				3
			

			
				∈
				𝔊
			

			
				3
				,
				6
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				3
				9
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				3
				2
			

			
				
				=
				
				𝑔
			

			
				3
				3
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				2
				}
				,
			

			
				3
				2
			

			
				
				
				𝑔
				=
				Ψ
			

			
				3
				3
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				1
				,
				4
				,
				1
				⟩
				,
			

			
				3
				2
			

			
				
				
				𝑔
				=
				𝜔
			

			
				3
				3
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				1
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				1
				!
				1
				!
				2
				!
			

			

				0
			

			
				⋅
				2
			

			

				1
			

			
				
			
			
				2
				=
				1
				.
			

		
	

For graph 
	
		
			

				𝑔
			

			
				3
				4
			

			
				∈
				𝔊
			

			
				3
				,
				6
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				4
				0
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				3
				4
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				3
				4
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				2
				,
				2
				,
				2
				⟩
				,
			

			
				3
				4
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				2
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
			

			

				0
			

			
				⋅
				2
			

			

				2
			

			
				
			
			
				1
				=
				4
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				3
				5
			

			
				∈
				𝔊
			

			
				3
				,
				6
			

		
	
 and 
	
		
			

				𝑔
			

			
				3
				6
			

			
				∈
				𝔊
			

			
				3
				,
				6
			

		
	
 we have
										
	
 		
 			
				(
				3
				.
				4
				1
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				3
				5
			

			
				
				=
				
				𝑔
			

			
				3
				6
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				2
				,
				3
				}
				,
			

			
				3
				5
			

			
				
				
				𝑔
				=
				Ψ
			

			
				3
				6
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				1
				,
				0
				,
				3
				,
				2
				⟩
				,
			

			
				3
				5
			

			
				
				
				𝑔
				=
				𝜔
			

			
				3
				6
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				1
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				0
			

			
				
			
			
				=
				6
				1
				!
				2
				!
				3
				!
			

			

				1
			

			
				⋅
				2
			

			

				0
			

			
				
			
			
				=
				1
				2
				⋅
				6
			

			
				
			
			
				2
				.
			

		
	

Then for the set 
	
		
			

				𝔊
			

			
				3
				,
				6
			

		
	
 we get
										
	
 		
 			
				(
				3
				.
				4
				2
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				6
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				6
			

			
				1
				𝜔
				(
				𝑔
				)
				=
				1
				+
				1
				+
				1
				+
				4
				+
			

			
				
			
			
				2
				+
				1
			

			
				
			
			
				2
				=
				8
				.
			

		
	

3.2.7. Consider 
	
		
			
				𝑘
				=
				7
			

		
	

When 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				7
			

		
	
 the set 
	
		
			

				𝔊
			

			
				3
				,
				7
			

			
				=
				{
				𝑔
			

			
				3
				7
			

			
				,
				𝑔
			

			
				3
				8
			

			
				,
				𝑔
			

			
				3
				9
			

			

				}
			

		
	
 consists of three bipartite graphs, which are shown in Figure 11.











	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	








































Figure 11: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				7
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				3
				7
			

			
				∈
				𝔊
			

			
				3
				,
				7
			

		
	
 it is true that
										
	
 		
 			
				(
				3
				.
				4
				3
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				3
				7
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				1
				,
				1
				,
				1
				,
				1
				}
				,
			

			
				3
				7
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				0
				,
				4
				,
				2
				⟩
				,
			

			
				3
				7
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				0
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
				1
				!
			

			

				0
			

			
				⋅
				2
			

			

				0
			

			
				
			
			
				1
				=
				1
				.
			

		
	

For graphs 
	
		
			

				𝑔
			

			
				3
				8
			

			
				∈
				𝔊
			

			
				3
				,
				7
			

		
	
 and 
	
		
			

				𝑔
			

			
				3
				9
			

			
				∈
				𝔊
			

			
				3
				,
				7
			

		
	
 we get
										
	
 		
 			
				(
				3
				.
				4
				4
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				3
				8
			

			
				
				=
				
				𝑔
			

			
				3
				9
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			
				3
				8
			

			
				
				
				𝑔
				=
				Ψ
			

			
				3
				9
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				1
				,
				2
				,
				3
				⟩
				,
			

			
				3
				8
			

			
				
				
				𝑔
				=
				𝜔
			

			
				3
				9
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				1
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				0
			

			
				⋅
				2
			

			

				1
			

			
				
			
			

				2
			

			

				2
			

			
				=
				1
			

			
				
			
			
				2
				.
			

		
	

Then for the set 
	
		
			

				𝔊
			

			
				3
				,
				7
			

		
	
 we get
										
	
 		
 			
				(
				3
				.
				4
				5
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				7
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				7
			

			
				1
				𝜔
				(
				𝑔
				)
				=
				1
				+
			

			
				
			
			
				2
				+
				1
			

			
				
			
			
				2
				=
				2
				.
			

		
	

3.2.8. Consider 
	
		
			
				𝑘
				=
				8
			

		
	

Graph 
	
		
			

				𝑔
			

			
				4
				0
			

		
	
, which is displayed in Figure 12, is the only bipartite graph belonging to the set 
	
		
			

				𝔊
			

			
				3
				,
				8
			

		
	
 in the case 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				8
			

		
	
.










	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	












Figure 12: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				8
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				4
				0
			

			
				∈
				𝔊
			

			
				3
				,
				8
			

		
	
 it is true that
										
	
 		
 			
				(
				3
				.
				4
				6
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				4
				0
			

			
				
				Ψ
				
				𝑔
				=
				{
				1
				,
				1
				,
				2
				,
				2
				}
				,
			

			
				4
				0
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				0
				,
				2
				,
				4
				⟩
				,
			

			
				4
				0
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				0
			

			
				
			
			
				=
				6
				1
				!
				1
				!
				2
				!
				2
				!
			

			

				0
			

			
				⋅
				2
			

			

				0
			

			
				
			
			

				2
			

			

				2
			

			
				=
				1
			

			
				
			
			
				4
				.
			

		
	

Therefore,
										
	
 		
 			
				(
				3
				.
				4
				7
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				8
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				8
			

			
				1
				𝜔
				(
				𝑔
				)
				=
			

			
				
			
			
				4
				.
			

		
	

3.2.9. Consider 
	
		
			
				𝑘
				=
				9
			

		
	

When 
	
		
			
				𝑛
				=
				3
			

		
	
 and 
	
		
			
				𝑘
				=
				9
			

		
	
 there is only one graph, and this is the complete bipartite graph 
	
		
			

				𝑔
			

			
				4
				1
			

		
	
 which is shown in Figure 13.












	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
		
	









Figure 13: 
	
		
			
				𝑛
				=
				3
			

		
	
, 
	
		
			
				𝑘
				=
				9
			

		
	
.


For graph 
	
		
			

				𝑔
			

			
				4
				1
			

		
	
 it is true that
										
	
 		
 			
				(
				3
				.
				4
				8
				)
			
 		
	

	
		
			
				
				𝑔
			

			
				4
				1
			

			
				
				Ψ
				
				𝑔
				=
				{
				3
				,
				3
				}
				,
			

			
				4
				1
			

			
				
				𝜔
				
				𝑔
				=
				⟨
				0
				,
				0
				,
				0
				,
				6
				⟩
				,
			

			
				4
				1
			

			
				
				=
				[
				]
				(
				3
				−
				0
				)
				!
			

			

				0
			

			
				[
				]
				(
				3
				−
				1
				)
				!
			

			

				0
			

			
				
			
			
				=
				6
				3
				!
				3
				!
			

			

				0
			

			
				⋅
				2
			

			

				0
			

			
				
			
			

				6
			

			

				2
			

			
				=
				1
			

			
				
			
			
				.
				3
				6
			

		
	

Therefore
										
	
 		
 			
				(
				3
				.
				4
				9
				)
			
 		
	

	
		
			
				
				𝜃
				(
				3
				,
				9
				)
				=
			

			
				𝑔
				∈
				𝔊
			

			
				3
				,
				9
			

			
				1
				𝜔
				(
				𝑔
				)
				=
			

			
				
			
			
				.
				3
				6
			

		
	

Having in mind the formula (2.10) and formulas (3.17) 
	
		
			

				÷
			

		
	
 (3.49) for the number 
	
		
			

				𝐷
			

			

				9
			

		
	
 of all ordered pairs disjoint S-permutation matrices in 
	
		
			
				𝑛
				=
				3
			

		
	
 we finally get
										
	
 		
 			
				(
				3
				.
				5
				0
				)
			
 		
	

	
		
			

				𝐷
			

			

				9
			

			
				=
				(
				3
				!
				)
			

			
				1
				2
			

			
				+
				(
				3
				!
				)
			

			

				8
			

			

				
			

			

				9
			

			

				
			

			
				𝑘
				=
				1
			

			
				(
				−
				1
				)
			

			

				𝑘
			

			
				
				
				1
				𝜃
				(
				𝑛
				,
				𝑘
				)
				=
				2
				1
				7
				6
				7
				8
				2
				3
				3
				6
				+
				1
				6
				7
				9
				6
				1
				6
				−
				1
				2
				9
				6
				+
				1
				0
				0
				8
				−
				3
				5
				2
				+
				1
				2
				5
				−
				3
				7
				+
				8
				−
				2
				+
			

			
				
			
			
				4
				−
				1
			

			
				
			
			
				
				3
				6
				=
				1
				2
				6
				0
				0
				8
				5
				2
				4
				8
				.
			

		
	

The number 
	
		
			

				𝑑
			

			

				9
			

		
	
 of all nonordered pairs disjoint matrices from 
	
		
			

				Σ
			

			

				9
			

		
	
 is equal to
										
	
 		
 			
				(
				3
				.
				5
				1
				)
			
 		
	

	
		
			

				𝑑
			

			

				9
			

			
				=
				1
			

			
				
			
			
				2
				𝐷
			

			

				9
			

			
				=
				6
				3
				0
				0
				4
				2
				6
				2
				4
				.
			

		
	

3.3. On a Combinatorial Problem of Graph Theory Related to the Number of Sudoku Matrices
Problem. Let 
	
		
			
				𝑛
				≥
				2
			

		
	
 be a natural number, and let 
	
		
			

				𝐺
			

		
	
 be a simple graph having 
	
		
			
				(
				𝑛
				!
				)
			

			
				2
				𝑛
			

		
	
 vertices. Let each vertex of 
	
		
			

				𝐺
			

		
	
 be identified with an element of the set 
	
		
			

				Σ
			

			

				𝑛
			

			

				2
			

		
	
 of all 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 S-permutation matrices. Two vertices are connected by an edge if and only if the corresponding matrices are disjoint. The problem is to find the number of all complete subgraphs of 
	
		
			

				𝐺
			

		
	
 having 
	
		
			

				𝑛
			

			

				2
			

		
	
 vertices. 
Note that the number of edges in graph 
	
		
			

				𝐺
			

		
	
 is equal to 
	
		
			

				𝑑
			

			

				𝑛
			

			

				2
			

		
	
 and can be calculated using formulas (2.4) and (2.5) (resp., formulas (2.9), (2.10), and (2.5)).
Denote by 
	
		
			

				𝑧
			

			

				𝑛
			

		
	
 the solution of the Problem 1, and let 
	
		
			

				𝜎
			

			

				𝑛
			

		
	
 be the number of all 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 Sudoku matrices. Then according to formula (1.5) and the method of construction of the graph 
	
		
			

				𝐺
			

		
	
, it follows that the next equality is valid: 
								
	
 		
 			
				(
				3
				.
				5
				2
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝜎
			

			

				𝑛
			

			
				
			
			
				
				𝑛
			

			

				2
			

			
				
				!
				.
			

		
	

We do not know a general formula for finding the number of all 
	
		
			

				𝑛
			

			

				2
			

			
				×
				𝑛
			

			

				2
			

		
	
 Sudoku matrices for each natural number 
	
		
			
				𝑛
				≥
				2
			

		
	
, and we consider that this is an open combinatorial problem. Only some special cases are known. For example in 
	
		
			
				𝑛
				=
				2
			

		
	
 it is known that 
	
		
			

				𝜎
			

			

				2
			

			
				=
				2
				8
				8
			

		
	
 [8]. Then according to formula (3.52) we get
								
	
 		
 			
				(
				3
				.
				5
				3
				)
			
 		
	

	
		
			

				𝑧
			

			

				2
			

			
				=
				𝜎
			

			

				2
			

			
				
			
			
				=
				4
				!
				2
				8
				8
			

			
				
			
			
				2
				4
				=
				1
				2
				.
			

		
	

In [6] it has been shown that in 
	
		
			
				𝑛
				=
				3
			

		
	
 there are exactly, 
								
	
 		
 			
				(
				3
				.
				5
				4
				)
			
 		
	

	
		
			

				𝜎
			

			

				3
			

			
				=
				6
				6
				7
				0
				9
				0
				3
				7
				5
				2
				0
				2
				1
				0
				7
				2
				9
				3
				6
				9
				6
				0
				=
				9
				!
				×
				7
				2
			

			

				2
			

			
				×
				2
			

			

				7
			

			
				×
				2
				7
				7
				0
				4
				2
				6
				7
				9
				7
				1
				=
				2
			

			
				2
				0
			

			
				×
				3
			

			

				8
			

			
				×
				5
			

			

				1
			

			
				×
				7
			

			

				1
			

			
				×
				2
				7
				7
				0
				4
				2
				6
				7
				9
				7
				1
			

			

				1
			

			
				∼
				6
				.
				6
				7
				1
				×
				1
				0
			

			
				2
				1
			

			

				,
			

		
	

							a number of Sudoku matrices. Then according to formula (3.52) we get
								
	
 		
 			
				(
				3
				.
				5
				5
				)
			
 		
	

	
		
			

				𝑧
			

			

				3
			

			
				=
				𝜎
			

			

				3
			

			
				
			
			
				=
				9
				!
				6
				6
				7
				0
				9
				0
				3
				7
				5
				2
				0
				2
				1
				0
				7
				2
				9
				3
				6
				9
				6
				0
			

			
				
			
			
				3
				6
				2
				8
				8
				0
				=
				1
				8
				3
				8
				3
				2
				2
				2
				4
				2
				0
				6
				9
				2
				9
				9
				2
				.
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