The equilibrium conditions are
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First of all, plugging in the 6 conditions:
First of all, plugging in the following 6 conditions:
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into equations (1) to (12), we get the following equilibrium conditions:
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Therefore, the equilibrium conditions reduce to
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Let X =mn— 1+ (1—L+2%) L Ifn, =1 weget X = H% > 0 Thus,

for some n) <1 we have X > 0. If n, — 0 we get X — —oo. Thus, for some n} > 1 we
have X < 0. Because that
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there is a 0 < n} < 1 such that if n, = n} we get X = 0. Thus, if n, > n} then |A| > 0
and if n, < n’ then |A| < 0.
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> 1 then there are one positive root and one negative root
for n,, and in terms of absolute values the positive root is smaller than the negative one.
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If n} = 0, the LHS of (22) is less than zero; if n} = 1, the LHS of (22) is equal to a,.
Thus, we get n} € (0,1).

We derive some comparative statics as follows:
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