Research Article

Is There an Association between Keloids and Blood Groups?

Abas Mouhari-Toure,1 Bayaki Saka,1 Koussaké Kombaté,1 Sefako Akakpo,1 Palakiyem Egbohou,2 Kissem Tchangaï-Walla,1 and Palokinam Pitche1

1 Department of Dermatology, Teaching Hospital of Tokoin, University of Lomé, 08 BP 80598, Lomé, Togo
2 Department of Anesthesiology, Teaching Hospital of Tokoin, University of Lomé, 08 BP 80598, Lomé, Togo

Correspondence should be addressed to Abas Mouhari-Toure, ambatoure@gmail.com

Received 19 October 2012; Accepted 8 November 2012

Academic Editors: E. Pasmazti and P. D. Shenefelt

Copyright © 2012 Abas Mouhari-Toure et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. The aim of the study is to investigate the possible associations between the blood groups ABO and Rhesus systems and the presence of keloids in patients with black skin.

Method. This case-control study was conducted between September 2007 and August 2011 comparing dermatologic outpatients with keloids to matched controls recruited in preanesthetic consultation at Tokoin Teaching Hospital of Lomé (Togo). Results. The distribution of different ABO blood groups and Rhesus blood groups in both groups (cases versus controls) was not significantly different. This distribution of different blood groups was superimposed on the general population of blood donors at the National Blood Transfusion Center of Lomé. Univariate analysis between each blood group and the presence of keloid does not yield any statistically significant association between blood groups and presence of keloids in the subjects. Conclusion. The study shows no significant association between blood groups and the presence of keloids in our patients. Further investigation needs to be conducted to elucidate this hypothesis further by conducting multicenter studies of several ethnic groups.

1. Introduction

Keloids are defined as intradermal tumors corresponding to an abnormal response of tissue to injury in predisposed individuals [1]. Factors that play a major role in keloid development are genetic predisposition coupled with some forms of skin trauma. Transforming growth factor has been implicated as the main factor responsible for the abnormal proliferation of keloid fibroblasts and excessive production of collagen.

The red cell alloantigens of blood group are present on the membrane surface of red blood cells and certain epithelial cells [2]. Several publications have documented the associations between blood group and certain skin diseases [3–9].

In a study conducted in 1969 to 1970 on 486 patients with keloids in the city of Madras, South Indian, Ramakrishnan et al. in 1974 had found a predominance of blood group A, compared to the local population of this city (34.96% against 21.38% in the local population) [10]. And up to today, no studies have confirmed this association. In the context of our study, in the sub-Saharan Africa, the prevalence of keloids is high, and keloids represent 1.2% of dermatological consultations in Lomé [11]. In addition, the difficulties of management are arguments to search for possible factors associated with these conditions, and for their possible prevention. The main objective of this study is to investigate possible associations between blood groups ABO and Rhesus systems and the presence of keloids in patients with dark skin.

2. Method

This study is a case-control investigation conducted between September 2007 and August 2011. The participants consisted of patients (cases) who were recruited in three outpatient dermatology departments in Lomé in Togo. The controls were systematically recruited in the Anesthesiology Department of Teaching Hospital of Tokoin, during a preanesthetic consultation, ignoring the indication for surgery during the same period. The diagnosis of keloids was clinically made after an interview and physical examination by a dermatologist.
2.1. Inclusion Criteria for Cases. (i) Patients who consulted for keloid; (ii) patients who consulted for any other reason, but for whom physical examination revealed the presence of keloid on the skin.

2.2. Noninclusion Criteria for Cases. (i) Patients with only acne keloidalis nuchae; (ii) patients with skin phenotype I to V of the Fitzpatrick skin phototype classification.

2.3. Inclusion Criteria for Controls. Among the subjects enrolled in pre-anesthetic consultation at Tokoin Teaching Hospital of Lomé, the controls were consecutively recruited according to their ages and gender. Each case was matched with two controls on age (±3 years) and gender.

2.4. Noninclusion Criteria for Controls. After questioning and doing assessment of the entire integumentary system, any control subject with a suspicious hypertrophic scar or keloid was not included in the study.

2.5. Ethical Consideration. We obtained informed consent from each patient included in the study. Patients who did not sign the consent form were not included in the study.

2.6. Conduct of the Study. The clinical features of keloids were recorded in patients. Blood group ABO and Rhesus system were performed according to national guidelines: achieving the grouping by two technicians blinded by the two methods globular (Beth-Vincent test) and plasma (Simonin-Michon test) for the ABO system and using an anti-D serum test in the search of the Rhesus factor for the Rhesus system.

2.7. Statistical Analysis. The data collected were analyzed using Epi Info 3.3.2. Comparison of the distribution of blood groups was performed between the two groups using the Chi-square test (or Fisher exact test for frequencies less than 5). Associations between blood groups and keloids were evaluated by calculating the odds ratio in the univariate analyzes.

3. Results

A total of 82 patients with keloids were recruited and 164 controls matched to the cases. All these subjects were skin phototype VI (black subjects or Negroid), native to West Africa. The mean age (± SD) of the subjects was 31.3 ± 13 years with 52.4% of female subjects and 47.6% of male.

The 82 patients had an average of 4.6 keloids, and among them 76.8% had at least two keloid scars (Table 1). The keloids lasted for more than six months in 86.7% of patients. The mean size of keloids (long axis of the largest keloid) was 7 cm (range: 1 cm–40 cm). The keloids were predominantly located on the trunk (57.3%) and the upper limbs (34.1%).

Physical trauma was the major cause in 41 cases (50%), while the inflammatory lesions (acne, folliculitis, boils, chickenpox/herpes zoster) counted for 42.7% (35 cases). Keloids were considered as spontaneous in 11 cases (13.4%). Thirteen patients (15.9%) reported multiple causative lesions.

Distributions of different ABO blood groups (A, B, AB, O) in both groups (cases versus controls) were not significantly different (Chi-square = 1.89, degrees of freedom = 3, P value = 0.5952). This distribution of different ABO blood group systems was superimposed on the general population of blood donors at the National Blood Transfusion Center of Lomé (NBTCL) (Table 2).

The proportion of Rhesus-positive subjects was not significantly different between cases (90.2%) and controls (93.3%) (Chi-square = 0.71, P = 0.3985). This distribution of Rhesus blood group system in both groups (cases versus controls) was superimposed on the general population of blood donors at the NBTCL (Table 2).

Univariate analysis between each blood group and the presence of keloid does not note a statistically significant association between blood groups and the presence of keloids in our subjects (Table 2).
between keloid and HLA-DRB1 histocompatibility complex, it was found an association (for the Rhesus system) [19, 20]. Concerning the major 9q34.2
ing for blood group antigens are located on chromosome African-American families [16]. However, the genes encod-
in the Japanese families; and on chromosome 7p11 in the susceptibility gene of keloid was found on chromosome 2q23 studies in African-Americans and Asians [16–18]. The
is autosomal dominant with incomplete penetrance in most predisposition associated with certain forms of skin trauma.
predominant role in the development of keloids are genetic ethnic groups are strong arguments in favor of genetic
existence of familial cases of keloid disease, the onset predisposition associated with certain forms of skin trauma. The
several etiological factors have been proposed to explain the occurrence of keloids [1]. The factors that play a predominant role in the development of keloids are genetic predisposition associated with certain forms of skin trauma. The existence of familial cases of keloid disease, the onset in the general population [10]. It was a simple observation, and was superimposable on the distribution of blood groups in the dominant role in the development of keloids are genetic ethnic groups are strong arguments in favor of genetic predisposition for keloids [14, 15]. The mode of inheritance is autosomal dominant with incomplete penetration in most studies in African-Americans and Asians [16–18]. The susceptibility gene of keloid was found on chromosome 2q23 in the Japanese families; and on chromosome 7p11 in the African-American families [16]. However, the genes encoding for blood group antigens are located on chromosome 9q34.2* (for the ABO system); and on chromosome 1p36.11 (for the Rhesus system) [19, 20]. Concerning the major histocompatibility complex, it was found an association between keloid and HLA-DRB1* 15 (among Caucasians), HLA-DQA1* and DQB1* (among Chinese) [21, 22]. The results of this study, and the arguments cited above suggest that the association between blood groups and keloids is an interesting hypothesis but very unlikely. Multicenter studies of several ethnic groups should help elucidate this hypothesis definitively.

References


Submit your manuscripts at http://www.hindawi.com