Research Article

SCLC Degradation in 980 nm Pump Laser by Using Electrical Noise

B. Orsal¹ and I. Asaad²

¹ Centre d’Électronique et de Microoptoélectronique de Montpellier (CEM2), Université Montpellier II, 34095 Montpellier Cedex 5, France
² HIRLAM, Damascus University; 99 Damascus, Syria

Correspondence should be addressed to I. Asaad, imad.asaad@contact.asso.fr

Received 16 November 2011; Accepted 5 December 2011

1. Introduction

In this work, we present the electrical noise at low frequency for fresh pump laser diodes emitting at 980 nm (reference laser), and we study the parametric evolution and the defects generated in aged 980 nm, stressed during 400 hrs at 50°C and high current injection (500 mA) (aged laser).

2. Device Description

The device used in this study is a conventional ridge waveguide AlGaAs/InGaAs pump laser with a GRIN-SCH (Graded Index Separate Confinement Heterostructure) and a Single Quantum Well (SQW) (p⁺p⁻, n⁺n⁻) emitting at 980 nm. The laser has a cavity length of 1200 μm and is coated, for the 50°C aging tests, with standard low-(=1%) and high-reflectivity (=90%) coatings on the facets. A different coating reflectivity and aging configuration has also been studied in a previous work [1–3].

3. Static Characteristic of the Pump Laser Diode

From the static analysis, current laser versus externally applied voltage $I_L(V_L)$, we then deduce in Figure 1 the evolution of the differential resistance $R_d = dV_L/dI_L$. The $R_d(I_L)$ characteristic recorded after 400 h of aging under a stress at 50°C and high current density injection (500 mA) was compared with the same laser diode before aging.

Before threshold, differential resistance is proportional to I_L^{-1}; above threshold current ($I_L > 18$ mA), R_d decreases to $I_L^{-1/2}$. This phenomenon is usually observed when the carriers are injected from high doping material to low doping material. In our structure, the carriers are injected from n⁺ or p⁺ into n⁻ or p⁻.

The physical phenomenon can be explained in Figure 2. The p⁺p⁻ and n⁺n⁻ interfaces form space charge regions. The carriers are prevented to go into quantum well by the two space charge effects; then, the carrier injection is associated to space-charge-limited current effect (SCLC) [4, 5].

Consider the relation of Mott-Gurney:

$$I_{LSCLC} = \frac{9\varepsilon \varepsilon_0 \mu}{8L^2} V^2,$$

where ε is the dielectric constant, ε_0 the free space permittivity, L the junction thickness, and μ the carriers mobility.
We then deduce the evolution of the differential resistance
\[R_d = dV_L/dI_L. \]

The typical evolution of the electrical and optical parameters is shown in Table 1.

We show that the static characteristics do not allow making difference between the aged laser and the reference laser. This difference can be made with electrical noise measurements.

4. Low-Frequency Noise Measurements

4.1. Noise Equivalent Circuit. In order to obtain a better analysis of the behavior of the devices studied, it is necessary to give the noise equivalent circuit of multimode laser diode (4 modes for this Pump laser) at low frequency (Figure 3).

This circuit is obtained by deriving the rate equations including Langevin white noise sources and 1/f noise sources describing in [6], and we are considering all other noise sources to be produced by the interfaces and the trapping defect density [7].

Where \(R \) is a differential diode resistance, \(R_{sch} \) is an additional resistance due to coupling of spontaneous emission into lasing mode for \(k \) mode, \(v_{sch} \) is a voltage noise source due to the fluctuation of the photon population, and \(i_n \) is the current noise source due to the fluctuation of the electron population. The input signal is the modulation current \(i_{1L} \) or the modulation voltage \(v_1 \) for intrinsic circuit; \(S_{V,R_s} = (a_{L}/f \tau_s)R_s^2 \) is the thermal noise due to series resistance \(R_s; S_{V,SCLC} \) is the noise source due to space-charge-limited current effect.

4.2. Current Noise Spectral Density (CNSD). We make a noise analysis by Fast Fourier Transform FFT measurements and very low-noise amplifier. The Current Noise Spectral Density (CNSD) \(S_{i} \) represents the current intensity fluctuations at 20 ± 0.1°C. The CNSD has been measured over a wide frequency range from 1 Hz to 1 MHz; we give in Figure 4 a typical noise spectrum: 1/f\(^m\) (1 ≤ m ≤ 2) decreases followed by flat noise level.

Figure 5 exhibits the low-frequency current noise measured at 10 Hz, as a function of the laser current. We notice that the spectra are dominated by 1/f (flicker) noise due to the carrier mobility fluctuations given by TGM Kleinpenning’s model [8]; the CNSD varies as \(I^2 \):

\[S_{i_{1L}} = \alpha_{H} I_{1L}^2/fN, \]

with \(\alpha_H \) being Hooge parameter, \(N \) being free carrier number, and \(f \) being frequency.
fluctuations of current in the MQW outside the space charge region outside the space charge junction, Diτi and ISRN Optics 3 that very weak current, μ given by Hooge for AlGaAs/InGaAs at 300 K [10]. = Lff explained by fluctuations of di to the traps placed near the n+n interfaces, where αd,ic is the coe cient that depends on the section and near n + p + p interfaces which absorb many photons in the aged active layer, and the end term of (7) , in region V, becomes dominant.

Region V. At 10 Hz, the level of noise shows also that a proportionality of about S_{1012} \propto I^{3/2} originates to the traps in the vicinity of the n^-n^- and p^+ p^- interfaces related to SCLC effect.

The CNSD in the aged laser is higher than that in the fresh laser; it is due to active layer degradation due to decrease of recombination time \(\tau_i \).

5. Summary

The study of the electrical noise that represents the fluc-
tuations of current at low frequency is very significant of degradation of the active layer. The spectra are dominated by conventional 1/f (flicker) noise at weak current and the CNSD at 10 Hz is dominated by \(I^{3/2} \). Pinching of the Space Charge shows limited current SCLC effect.

The defect is associated with carrier transport controlled by the n^-n^- and p^+ p^- interfaces and the trapping defect density. An excess electrical noise due to longitudinal mode hopping is related with output optical fluc-
tuations at low frequency. The CNSD in the aged laser is higher than that in the fresh laser, certainly due to the degradation of recombination time \(\tau_i \).
References

