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Abstract. 
The three-parameter lognormal distribution is the extension of the two-parameter lognormal distribution to meet the need of the biological, sociological, and other fields. Numerous research papers have been published for the parameter estimation problems for the lognormal distributions. The inclusion of the location parameter brings in some technical difficulties for the parameter estimation problems, especially for the interval estimation. This paper proposes a method for constructing exact confidence intervals and exact upper confidence limits for the location parameter of the three-parameter lognormal distribution. The point estimation problem is discussed as well. The performance of the point estimator is compared with the maximum likelihood estimator, which is widely used in practice. Simulation result shows that the proposed method is less biased in estimating the location parameter. The large sample size case is discussed in the paper.


1. Introduction
The two-parameter lognormal distribution and the three-parameter lognormal distribution have been used in many areas such as reliability, economics, ecology, biology, and atmospheric sciences. In the past twenty years, many research papers have been published on the parameter estimation problems for the lognormal distributions.  See, for example, Kanefuji and Iwase [1], Sweet [2], and Crow and Shimizu [3]. The three-parameter lognormal distribution is the extension of the two-parameter lognormal distribution to meet the need of the biological and sociological science, and other fields. Some papers can be found in the literature for the parameter estimation problems for this distribution. See, for example, Komori and Hirose [4], Singh et al. [5], Eastham et al. [6], Cohen et al. [7], Chieppa and Amato [8], Griffiths [9], and Cohen and Whitten [10]. Chen [11] analyzed an application data set containing 49 plastic laminate strength measurements using the locally maximum likelihood estimation method. When the locally maximum likelihood estimation method is used, people are not using the criterion of searching the value of the parameter, which is being estimated, such that the likelihood function is maximized. This is particularly true when the location parameter of the three-parameter lognormal distribution is estimated. This is because the likelihood function goes to infinity when the value of the location parameter approaches to the smallest order statistic. The point estimation will be discussed in Section 3. The same data set is analyzed using the method presented in this paper. 
It should be noted that the inclusion of the location parameter brings in some technical difficulties for the parameter estimation problems. The probability density function of the three-parameter lognormal distribution is
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 of the three-parameter lognormal distribution. The point estimation problem is discussed as well. Statistical simulation is conducted to compare the performance of the method proposed in this paper with the maximum likelihood estimator, which is a commonly used method for estimating parameters.
2. Confidence Interval and Statistical Test
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	10	1	2	10	0.0065	0.0129	0.1662	0.6988	0.8696
	1	3	10	0.0535	0.0774	0.3677	1.1273	1.3762
	1	4	10	0.1292	0.1709	0.5834	1.6351	1.9893
	

	20	1	4	20	0.0734	0.0970	0.3165	0.7676	0.8935
	1	5	20	0.1190	0.1496	0.4096	0.9242	1.0636
	1	6	20	0.1666	0.2033	0.5027	1.0862	1.2466
	1	7	20	0.2177	0.2590	0.5983	1.2608	1.4448
	1	8	20	0.2695	0.3171	0.6998	1.4511	1.6667
	

	30	1	6	30	0.1266	0.1538	0.3745	0.7761	0.8817
	1	7	30	0.1604	0.1918	0.4339	0.8662	0.9801
	1	8	30	0.1961	0.2299	0.4913	0.9581	1.0794
	1	9	30	0.2328	0.2695	0.5514	1.0541	1.1870
	1	10	30	0.2672	0.3073	0.6131	1.1526	1.2967
	1	11	30	0.3023	0.3462	0.6753	1.2543	1.4072
	1	12	30	0.3409	0.3877	0.7393	1.3651	1.5361
	

	40	1	8	40	0.1629	0.1910	0.4069	0.8739	0.1629
	1	9	40	0.1899	0.2209	0.4493	0.9391	0.1899
	1	10	40	0.2182	0.2513	0.4931	1.0121	0.2182
	1	11	40	0.2728	0.3093	0.5355	1.1488	0.2728
	1	12	40	0.3001	0.3394	0.5792	1.2220	0.3001
	1	13	40	0.3264	0.3683	0.6229	1.3028	0.3264
	1	14	40	0.3556	0.3990	0.6673	1.3812	0.3556
	1	15	40	0.3824	0.4282	0.7140	1.4645	0.3824
	1	16	40	0.1629	0.1910	0.7604	0.8739	0.1629
	

	50	1	10	50	0.1899	0.2186	0.4282	0.7749	0.8613
	1	11	50	0.2135	0.2431	0.4614	0.8244	0.9143
	1	12	50	0.2356	0.2670	0.4953	0.8731	0.9665
	1	13	50	0.2573	0.2901	0.5285	0.9213	1.0203
	1	14	50	0.2796	0.3150	0.5619	0.9724	1.0724
	1	15	50	0.3009	0.3378	0.5964	1.0170	1.1230
	1	16	50	0.3234	0.3624	0.6312	1.0724	1.1840
	1	17	50	0.3447	0.3849	0.6651	1.1276	1.2443
	1	18	50	0.3681	0.4093	0.6995	1.1755	1.2970
	1	19	50	0.3896	0.4326	0.7352	1.2288	1.3516
	1	20	50	0.4140	0.4588	0.7739	1.2938	1.4205
	

	60	1	12	60	0.2121	0.2408	0.4428	0.7749	0.8588
	1	13	60	0.2298	0.2602	0.4711	0.8141	0.8984
	1	14	60	0.2500	0.2803	0.4994	0.8504	0.9369
	1	15	60	0.2668	0.2999	0.5266	0.8941	0.9837
	1	16	60	0.2854	0.3202	0.5542	0.9310	1.0240
	1	17	60	0.3042	0.3388	0.5808	0.9669	1.0628
	1	18	60	0.3232	0.3589	0.6090	1.0129	1.1127
	1	19	60	0.3429	0.3784	0.6372	1.0479	1.1485
	1	20	60	0.3607	0.3985	0.6653	1.0916	1.1964
	1	21	60	0.3791	0.4195	0.6950	1.1342	1.2438
	1	22	60	0.3970	0.4377	0.7236	1.1755	1.2900
	1	23	60	0.4168	0.4589	0.7530	1.2193	1.3407
	1	24	60	0.4349	0.4777	0.7825	1.2638	1.3892
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3. Point Estimation
A widely used method for estimating the parameters of the lognormal distributions in the literature is the maximum likelihood estimator. Certain problems in using the maximum likelihood estimation have been mentioned by some authors. With respect to the three-parameter lognormal distribution, note that the likelihood function of a random sample from the three-parameter lognormal distribution is
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				𝛾
			

		
	
. This is verified by the Monte Carlo simulation result discussed in the following. Chen [11] used the locally maximum likelihood estimation method to estimate the parameter. As mentioned in that paper, the locally maximum likelihood estimation method has some problems. The locally maximum likelihood estimate may not exist. In some cases, there are multiple locally maximum values. The biggest problem for the locally maximum likelihood estimation method is that it gives up the principle of maximizing the likelihood function globally. The point estimator of 
	
		
			

				𝛾
			

		
	
 can be obtained by squeezing the confidence interval of 
	
		
			

				𝛾
			

		
	
 described in the in the previous section. In fact, a point estimator of 
	
		
			

				𝛾
			

		
	
 is the solution of 
	
		
			

				𝛾
			

		
	
 for the equation
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝜉
				(
				𝛾
				)
				=
				𝜉
			

			
				0
				.
				5
			

			

				.
			

		
	

					The value of 
	
		
			

				𝜉
			

			
				0
				.
				5
			

		
	
 can also be found in Table 1. The above equation can be solved easily using a scientific calculator.
To compare the performance of the point estimator obtained by (14) with the maximum likelihood estimator, Monte Carlo simulation was used based on 250,000 pseudorandom samples from the three-parameter lognormal distribution with parameters 
	
		
			
				𝛾
				=
				1
				0
			

		
	
, 
	
		
			
				𝜇
				=
				4
			

		
	
, and 
	
		
			
				𝜎
				=
				2
			

		
	
. Simulation results are listed in Table 2. The column 
	
		
			
				̂
				𝛾
			

			

				(
			

			
				n
				e
				w
			

			

				)
			

		
	
 gives the average of the point estimates using the method presented in this paper, and the column 
	
		
			
				̂
				𝛾
			

			

				(
			

			
				M
				L
				E
			

			

				)
			

		
	
 gives the average of the point estimates using the maximum likelihood estimator. It can be seen that the point estimator using the maximum likelihood estimator method is obviously biased. The columns 
	
		
			
				M
				S
				E
			

			

				(
			

			
				n
				e
				w
			

			

				)
			

		
	
 and 
	
		
			
				M
				S
				E
			

			

				(
			

			
				M
				L
				E
			

			

				)
			

		
	
 provide the mean squared error for the method in this paper and the maximum likelihood estimator method, respectively. It can be seen that the method presented in this paper has smaller mean squared error when the sample size is small. When the sample size becomes larger, the maximum likelihood estimator method has smaller mean squared error while the maximum likelihood estimator is still biased.
Table 2: Comparison with MLE.
	

	
	
		
			

				𝑛
			

		
	
	Method in this paper	MLE method
	
	
		
			

				𝑖
			

		
	
	
	
		
			

				𝐽
			

		
	
	
	
		
			

				𝑘
			

		
	
	
	
		
			
				̂
				𝛾
			

			

				(
			

			
				n
				e
				w
			

			

				)
			

		
	
	
	
		
			
				M
				S
				E
			

			

				(
			

			
				n
				e
				w
			

			

				)
			

		
	
	
	
		
			
				̂
				𝛾
			

			
				m
				l
				e
			

		
	
	
	
		
			
				M
				S
				E
			

			

				(
			

			
				m
				l
				e
			

			

				)
			

		
	

	

	5	1	2	5	21.65	370.01	21.87	380.08
	10	1	3	10	11.14	32.88	14.60	34.58
	15	1	4	15	10.22	14.25	12.86	10.38
	20	1	5	20	10.01	7.94	12.10	4.95
	25	1	6	25	9.97	4.93	11.69	2.78
	30	1	8	30	10.08	2.28	11.40	1.77
	40	1	10	40	10.02	1.74	11.08	0.96
	50	1	9	50	10.03	1.03	10.88	0.59
	



4. Examples
The following data set containing 20 observations was used in Cohen and Whitten [10]:  142.290, 144.328, 174.800, 168.554, 184.101, 166.475, 131.375, 145.788, 135.880,  137.338, 164.304, 155.369, 127.211, 132.971, 128.709, 201.415, 133.143, 155.680, 153.070, 157.238. This data set was considered as a sample from the three-parameter lognormal distribution with parameters 
	
		
			
				𝛾
				=
				1
				0
				0
				,
				𝜇
				=
				l
				n
				5
				0
			

		
	
, and 
	
		
			
				𝜎
				=
				0
				.
				4
			

		
	
. To find a 90% confidence interval for the location parameter 
	
		
			

				𝛾
			

		
	
 using the method described in Section 2, note that 
	
		
			

				𝜉
			

			
				0
				.
				0
				5
			

			
				=
				0
				.
				2
				0
				3
				3
			

		
	
 and 
	
		
			

				𝜉
			

			
				0
				.
				9
				5
			

			
				=
				1
				.
				0
				8
				6
				2
			

		
	
 when 
	
		
			
				𝑖
				=
				1
			

		
	
, 
	
		
			
				𝑗
				=
				6
			

		
	
, and 
	
		
			
				𝑛
				=
				2
				0
			

		
	
. Here the value of 
	
		
			

				𝑗
			

		
	
 is selected to be about 30% of the sample size, as recommended in Section 2. The solution of 
	
		
			

				𝛾
			

		
	
 for the equation 
	
		
			
				𝜉
				(
				𝛾
				)
				=
				0
				.
				2
				0
				3
				3
			

		
	
 is 69.06, and the solution of 
	
		
			

				𝛾
			

		
	
 for the equation 
	
		
			
				𝜉
				(
				𝛾
				)
				=
				1
				.
				0
				8
				6
				2
			

		
	
 is 126.16. Then 
	
		
			
				(
				6
				9
				.
				0
				6
				,
				1
				2
				6
				.
				1
				6
				)
			

		
	
 is a 95% confidence interval for the location parameter 
	
		
			

				𝛾
			

		
	
. To find point estimate of 
	
		
			

				𝛾
			

		
	
, note that 
	
		
			

				𝜉
			

			
				0
				.
				5
			

			
				=
				0
				.
				5
				0
				2
				7
			

		
	
. The solution of 
	
		
			

				𝛾
			

		
	
 for the equation 
	
		
			
				𝜉
				(
				𝛾
				)
				=
				0
				.
				5
				0
				2
				7
			

		
	
 is 120.59, which is the point estimate of 
	
		
			

				𝛾
			

		
	
.
Chen [11] analyzed a plastic laminate strength data set locally maximum likelihood estimation method. Forty-nine strength measurements (in psi) are listed below in ascending order: 21.87, 23.80, 24.83, 25.80, 29.95, 30.26, 31.23, 31.29, 31.86, 32.48, 33.38, 33.73, 33.88, 33.93, 34.03, 34.50, 34.90,  35.57, 35.66, 39.44, 41.76, 41.96, 42.21, 42.66, 43.27, 43.41, 44.06, 45.32, 47.39, 47.98, 48.81, 50.76, 51.54, 54.67, 54.92, 55.33, 57.24, 59.30, 60.41,  60.89, 61.63, 68.93, 71.96, 72.65, 73.51, 76.15, 78.48, 81.37, 99.43. To find point estimate of the location parameter 
	
		
			

				𝛾
			

		
	
 using the method presented in this paper, note that 
	
		
			

				𝜉
			

			
				0
				.
				5
			

			
				=
				0
				.
				5
				9
				6
				4
			

		
	
 when 
	
		
			
				𝑖
				=
				1
				,
				𝑗
				=
				1
				5
			

		
	
, and 
	
		
			
				𝑛
				=
				5
				0
			

		
	
. The solution of 
	
		
			

				𝛾
			

		
	
 for the equation 
	
		
			
				𝜉
				(
				𝛾
				)
				=
				0
				.
				5
				9
				4
				6
			

		
	
 is 12.14, which is the point estimate of 
	
		
			

				𝛾
			

		
	
. To find a 95% upper confidence limit for the location parameter 
	
		
			

				𝛾
			

		
	
, note that 
	
		
			

				𝜉
			

			
				0
				.
				9
				5
			

			
				≈
				1
				.
				0
				1
				7
				0
			

		
	
. The solution of 
	
		
			

				𝛾
			

		
	
 for the equation 
	
		
			
				𝜉
				(
				𝛾
				)
				=
				1
				.
				0
				1
				7
				0
			

		
	
 is 19.21. Then 
	
		
			
				1
				9
				.
				2
				1
			

		
	
 is a 95% upper confidence limit for 
	
		
			

				𝛾
			

		
	
.
5. Conclusions and Discussion
Compared with the two-parameter lognormal distribution, the three-parameter lognormal distribution is more flexible because of the inclusion of the location parameter. However, the inclusion of the location parameter brings in a lot of technical difficulties to statistical inferences. Only some approximation methods can be found in the literature for constructing confidence intervals for the location parameter. The most commonly used method for finding point estimator is the maximum likelihood estimator. As discussed previously, the maximum likelihood estimator of the location parameter is positively biased.
A method for constructing exact confidence intervals and exact confidence limits for the location parameter is proposed in this paper. The method can also be used to conduct statistical test about the location parameter of the three-parameter lognormal distribution. The point estimator is obtained as well by squeezing the confidence interval of the location parameter. 
While the discussion of the method introduced in this paper is for complete samples, the method can also be used for censored data. For example, suppose that only the first 
	
		
			

				𝑟
			

		
	
 order statistics  
	
		
			

				𝑋
			

			
				(
				1
				)
			

			
				,
				𝑋
			

			
				(
				2
				)
			

			
				,
				…
				,
				𝑋
			

			
				(
				𝑟
				)
			

		
	
 are available for the statistical analysis. Then 
	
		
			
				𝑖
				=
				1
			

		
	
 and 
	
		
			
				𝑘
				=
				𝑟
			

		
	
. The selection of 
	
		
			

				𝑗
			

		
	
 is similar to the complete sample case. 
The selection of the triplet 
	
		
			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
			

		
	
 can also be discussed for the large sample case. The pivotal quantity 
	
		
			
				𝜉
				(
				𝛾
				)
			

		
	
 possesses some asymptotic properties when the sample size is sufficiently large. Some of the following discussion uses the results in Bahadur [12] and Embrechts et al. [13]. Let 
	
		
			

				𝑋
			

			

				1
			

			
				,
				…
				,
				𝑋
			

			

				𝑛
			

		
	
 be a random sample from the three-parameter lognormal distribution described in (1), and let 
	
		
			

				𝑋
			

			
				(
				1
				)
			

			
				,
				…
				,
				𝑋
			

			
				(
				𝑛
				)
			

		
	
 be the corresponding order statistics. Let 
	
		
			
				𝑗
				=
				[
				𝑛
				𝑝
				]
				+
				1
				(
				0
				<
				𝑝
				<
				1
				)
			

		
	
. It can be shown that
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				𝑋
				𝜉
				(
				𝛾
				)
				=
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				
				𝑋
				−
				𝛾
				−
				l
				n
			

			
				(
				1
				)
			

			
				
				−
				𝛾
			

			
				
			
			
				
				𝑋
				l
				n
			

			
				(
				𝑛
				)
			

			
				
				
				𝑋
				−
				𝛾
				−
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				−
				𝛾
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				⟶
				1
				.
			

		
	

					To show this, let 
	
		
			

				𝑍
			

			

				𝑖
			

			
				=
				(
				l
				n
				(
				𝑋
			

			

				𝑖
			

			
				−
				𝛾
				)
				−
				𝜇
				)
				/
				𝜎
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				)
			

		
	
. Then 
	
		
			

				𝑍
			

			

				1
			

			
				,
				𝑍
			

			

				2
			

			
				,
				…
				,
				𝑍
			

			

				𝑛
			

		
	
 are 
	
		
			
				𝑖
				.
				𝑖
				.
				𝑑
				.
				𝑁
				(
				0
				,
				1
				)
			

		
	
 and their order statistics are 
	
		
			

				𝑍
			

			
				(
				𝑖
				)
			

			
				=
				(
				l
				n
				(
				𝑋
			

			
				(
				𝑖
				)
			

			
				−
				𝛾
				)
				−
				𝜇
				)
				/
				𝜎
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				)
			

		
	
.
Letting 
	
		
			
				𝑛
				→
				+
				∞
			

		
	
, we have
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑍
			

			
				(
				𝑗
				)
			

			
				=
				𝑍
			

			
				(
				[
				𝑛
				𝑝
				]
				+
				1
				)
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				𝑧
			

			

				𝑝
			

			
				,
				w
				h
				e
				r
				e
				𝑧
			

			

				𝑝
			

			
				𝑍
				i
				s
				t
				h
				e
				𝑝
				q
				u
				a
				n
				t
				i
				l
				e
				o
				f
				𝑁
				(
				0
				,
				1
				)
				∶
			

			
				(
				𝑛
				)
			

			
				
			
			

				√
			

			
				
			
			
				2
				l
				n
				𝑛
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				𝑍
				⟶
				1
				,
			

			
				(
				1
				)
			

			
				
			
			

				√
			

			
				
			
			
				2
				l
				n
				𝑛
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				−
				1
				.
			

		
	

					So, when 
	
		
			
				𝑛
				→
				+
				∞
			

		
	
, we have 
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝑋
				𝜉
				(
				𝛾
				)
				=
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				
				𝑋
				−
				𝛾
				−
				l
				n
			

			
				(
				1
				)
			

			
				
				−
				𝛾
			

			
				
			
			
				
				𝑋
				l
				n
			

			
				(
				𝑛
				)
			

			
				
				
				𝑋
				−
				𝛾
				−
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				=
				
				
				𝑋
				−
				𝛾
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				
				
				
				𝑋
				−
				𝜇
				/
				𝜎
				−
				l
				n
			

			
				(
				1
				)
			

			
				
				
				−
				𝜇
				/
				𝜎
			

			
				
			
			
				
				
				𝑋
				l
				n
			

			
				(
				𝑛
				)
			

			
				
				
				
				
				𝑋
				−
				𝜇
				/
				𝜎
				−
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				
				=
				𝑍
				−
				𝜇
				/
				𝜎
			

			
				(
				𝑗
				)
			

			
				−
				𝑍
			

			
				(
				1
				)
			

			
				
			
			

				𝑍
			

			
				(
				𝑛
				)
			

			
				−
				𝑍
			

			
				(
				𝑗
				)
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				⟶
				1
				.
			

		
	

Furthermore, if 
	
		
			
				̂
				𝛾
				>
				0
			

		
	
 is the solution of equation
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				
				𝑋
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				
				𝑋
				−
				𝛾
				−
				l
				n
			

			
				(
				1
				)
			

			
				
				−
				𝛾
			

			
				
			
			
				
				𝑋
				l
				n
			

			
				(
				𝑛
				)
			

			
				
				
				𝑋
				−
				𝛾
				−
				l
				n
			

			
				(
				𝑗
				)
			

			
				
				−
				𝛾
				=
				𝜉
			

			

				𝛼
			

			

				,
			

		
	

					where 
	
		
			

				𝜉
			

			

				𝛼
			

		
	
 is the 
	
		
			

				𝛼
			

		
	
 quantile of  
	
		
			
				𝜉
				(
				𝛾
				)
			

		
	
, then(i)
	
		
			
				̂
				𝛾
				<
				𝑋
			

			
				(
				1
				)
			

		
	
. 							(ii)Let 
	
		
			
				𝑛
				,
				𝑋
			

			
				(
				1
				)
			

			
				,
				𝑋
			

			
				(
				𝑛
				)
			

		
	
, and 
	
		
			

				𝛼
			

		
	
 be fixed. When 
	
		
			

				𝑋
			

			
				(
				𝑗
				)
			

		
	
 decreasingly tends to 
	
		
			

				𝑋
			

			
				(
				1
				)
			

			
				,
				̂
				𝛾
			

		
	
 increasingly tends to 
	
		
			

				𝑋
			

			
				(
				1
				)
			

		
	
.(iii)Let 
	
		
			
				𝑛
				,
				𝑋
			

			
				(
				1
				)
			

			
				,
				𝑋
			

			
				(
				𝑗
				)
			

		
	
, and 
	
		
			

				𝑋
			

			
				(
				𝑛
				)
			

		
	
 be fixed. When 
	
		
			

				𝛼
			

		
	
 increasingly tends to 1, 
	
		
			
				̂
				𝛾
			

		
	
 increasingly tends to 
	
		
			

				𝑋
			

			
				(
				1
				)
			

		
	
.(iv)Let 
	
		
			
				𝑗
				=
				[
				𝑛
				𝑝
				]
				+
				1
				(
				0
				<
				𝑝
				<
				1
				)
			

		
	
, and 
	
		
			
				𝑛
				→
				∞
			

		
	
. Then 
	
		
			

				𝑋
			

			
				(
				1
				)
			

			
				−
				̂
				𝛾
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				0
			

		
	
 and 
	
		
			
				̂
				𝛾
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				𝛾
			

		
	
.

				The proof of (i) is obvious. To prove (iv), if 
	
		
			
				̂
				𝛾
				>
				0
			

		
	
 is the solution of (18), then
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑋
			

			
				(
				1
				)
			

			
				
				𝑋
				−
				̂
				𝛾
				=
			

			
				(
				𝑗
				)
			

			
				
				
				1
				−
				̂
				𝛾
			

			
				
			
			
				
				𝑋
				1
				+
			

			
				(
				𝑛
				)
			

			
				−
				𝑋
			

			
				(
				𝑗
				)
			

			
				
				/
				
				𝑋
			

			
				(
				𝑗
				)
			

			
				
				
				−
				̂
				𝛾
			

			

				𝜉
			

			

				𝛼
			

			

				.
			

		
	

					Note that the support of the three-parameter lognormal distribution is 
	
		
			
				(
				𝛾
				,
				+
				∞
				)
			

		
	
. So
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑋
			

			
				(
				1
				)
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				𝛾
				,
				𝑋
			

			
				(
				𝑛
				)
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				⟶
				+
				∞
				.
			

		
	

					Let 
	
		
			

				𝑥
			

			

				𝑝
			

		
	
 be the 
	
		
			

				𝑝
			

		
	
 quantile of the three-parameter lognormal distribution 
	
		
			
				(
				0
				<
				𝑝
				<
				1
				)
			

		
	
. Then
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑋
			

			
				(
				𝑗
				)
			

			
				=
				𝑋
			

			
				(
				[
				𝑛
				𝑝
				]
				+
				1
				)
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				⟶
				𝑥
			

			

				𝑝
			

			

				.
			

		
	

					According to the discussion in this section when 
	
		
			
				𝑛
				→
				+
				∞
			

		
	
 , the left of (19) converges to 0 almost surely. That is
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑋
			

			
				(
				1
				)
			

			
				−
				̂
				𝛾
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				⟶
				0
				.
			

		
	

Since 
	
		
			

				𝑋
			

			
				(
				1
				)
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				𝛾
			

		
	
, we have 
	
		
			
				̂
				𝛾
			

			

				a
			

			

				.
			

			

				s
			

			

				.
			

			
				→
				𝛾
			

		
	
.
Statements (ii) and (iii) are immediate consequence of (19).
Based on previously mentioned properties, we can draw the following conclusions.(1)About the selection of triplet 
	
		
			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
			

		
	
: if we choose 
	
		
			
				𝑖
				=
				1
			

		
	
 and 
	
		
			
				𝑘
				=
				𝑛
			

		
	
, then, when 
	
		
			
				𝑛
				→
				∞
			

		
	
, the width of the confidence intervals of parameter 
	
		
			

				𝛾
			

		
	
 tends to be zero almost surely. This is the reason of selecting 
	
		
			
				𝑖
				=
				1
			

		
	
 and 
	
		
			
				𝑘
				=
				𝑛
			

		
	
.(2)About the selection of 
	
		
			

				𝑗
			

		
	
: according to (17), the “optimal” value of 
	
		
			

				𝑗
			

		
	
 is 
	
		
			
				𝑗
				=
				[
				0
				.
				5
				𝑛
				]
				+
				1
			

		
	
.(3)To obtain the values of 
	
		
			

				𝜉
			

			

				𝛼
			

		
	
, we can use the standard normal distribution for Monte Carlo simulation. This was actually used when statistical simulation was conducted to obtain quantiles of the pivotal quantity 
	
		
			
				𝜉
				(
				𝛾
				)
			

		
	
.
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