Research Article

On a New I-Convergent Double-Sequence Space

Vakeel A. Khan and Nazneen Khan

Department of Mathematics, A.M.U., Aligarh 202002, India

Correspondence should be addressed to Vakeel A. Khan; vakhan@math.com

Received 26 November 2012; Revised 17 January 2013; Accepted 18 January 2013

Academic Editor: Wen Xiu Ma

Copyright © 2013 V.A. Khan and N. Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The sequence space BV_{σ} was introduced and studied by Mursaleen (1983). In this article we introduce the sequence space $\mathcal{2}BV_{I\sigma}$ and study some of its properties and inclusion relations.

1. Introduction and Preliminaries

Let \mathbb{N}, \mathbb{R}, and \mathbb{C} be the sets of all natural, real, and complex numbers, respectively. We write

$$\omega = \{ x = (x_k) : x_k \in \mathbb{C} \},$$

showing the space of all real or complex sequences.

Definition 1. A double sequence of complex numbers is defined as a function $x : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{C}$. We denote a double sequence as (x_{ij}) where the two subscripts run through the sequence of natural numbers independent of each other [1]. A number $a \in \mathbb{C}$ is called a double limit of a double sequence (x_{ij}) if for every $\epsilon > 0$ there exists some $N = N(\epsilon) \in \mathbb{N}$ such that

$$\left| (x_{ij}) - a \right| < \epsilon, \quad \forall i, j \geq N,$$

(see [2]).

Let l_∞ and c denote the Banach spaces of bounded and convergent sequences, respectively, with norm $\|x\|_\infty = \sup_k |x_k|$. Let ν denote the space of sequences of bounded variation; that is,

$$\nu = \left\{ x = (x_k) : \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty, x_{-1} = 0 \right\},$$

(3)

where ν is a Banach space normed by

$$\|x\| = \sum_{k=0}^{\infty} |x_k - x_{k-1}|,$$

(4)

(see [3]).

Definition 2. Let σ be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional ϕ on l_∞ is said to be an invariant mean or σ-mean if and only if

(i) $\phi(x) \geq 0$ when the sequence $x = (x_k)$ has $x_k \geq 0$ for all k;

(ii) $\phi(e) = 1$, where $e = \{1, 1, 1, \ldots\}$;

(iii) $\phi(x_{\sigma(n)}) = \phi(x)$ for all $x \in l_\infty$.

In case σ is the translation mapping $n \rightarrow n + 1$, a σ-mean is often called a Banach limit (see [4]), and V_σ, the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences (see [5]).

If $x = (x_k)$, then $Tx = (T)x_k = (x_{\sigma(k)})$. Then it can be shown that

$$V_\sigma = \left\{ x = (x_k) : \frac{\sum_{m=1}^{\infty} t_{mk}(x)}{m} = L \text{ uniformly in } k, \right\},$$

(5)

$$L = \sigma - \lim x,$$
where \(m \geq 0, k > 0 \). Consider
\[
t_{m,k}(x) = \frac{x^k + x^{\sigma_1(k)} + \cdots + x^{\sigma_m(k)}}{m+1}, \quad t_{-1,k} = 0, \quad (6)
\]
where \(\sigma^m(k) \) denote the \(m \)th iterate of \(\sigma(k) \) at \(k \). The special case of (5) in which \(\sigma(n) = n + 1 \) was given by Lorentz [5, Theorem 1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on \(c \).

Theorem 3. A \(\sigma \)-mean extends the limit functional on \(c \) in the sense that \(\phi(x) = \lim x \) for all \(x \in c \) if and only if \(\sigma \) has no finite orbits; that is to say, if and only if, for all \(k \geq 0, j \geq 1, \) (see [3])
\[
\sigma^j(k) \neq k.
\]
Put
\[
\phi_{m,k}(x) = t_{m,k}(x) - t_{m-1,k}(x), \quad (8)
\]
assuming that \(t_{-1,k} = 0 \). A straightforward calculation shows (see [6]) that
\[
\phi_{m,k}(x) = \frac{1}{m(m+1)} \sum_{j=1}^{m} \left(x_{\sigma^j(k)} - x_{\sigma^{j-1}(k)} \right), \quad (m \geq 1),
\]
\[
\phi_{m,k}(x) = x_k, \quad (m = 0). \quad (9)
\]

For any sequence \(x, y, \) and scalar \(\lambda \), we have
\[
\phi_{m,k}(x + y) = \phi_{m,k}(x) + \phi_{m,k}(y), \quad \phi_{m,k}(\lambda x) = \lambda \phi_{m,k}(x). \quad (10)
\]

Definition 4. A sequence \(x \in l_\infty \) is of \(\sigma \)-bounded variation if and only if
\[
(i) \sum_{n=0}^{\infty} |\phi_{m,k}(x)| \text{ converges uniformly in } n;
(ii) \lim_{m \to \infty} \phi_{m,k}(x), \text{ which must exist, should take the same value for all } k.
\]

We denote by \(\text{BV}_\sigma \), the space of all sequences of \(\sigma \)-bounded variation (see [7]):
\[
\text{BV}_\sigma = \left\{ x \in l_\infty : \sum_{m=0}^{\infty} |\phi_{m,k}(x)| < \infty, \text{uniformly in } n \right\}. \quad (11)
\]

Theorem 5. \(\text{BV}_\sigma \) is a Banach space normed by
\[
\|x\| = \sup_{k \to \infty} \sum_{m=0}^{\infty} |\phi_{m,k}(x)|, \quad (12)
\]
(see [8]).

Subsequently, invariant means have been studied by Ahmad and Mursaleen [9], Mursaleen et al. [3, 6, 8, 10–14], Raimi [15], Schaefer [16], Savas and Rhoades [17], Vakeel et al. [18–20], and many others [21–23]. For the first time, \(I \)-convergence was studied by Kostyrko et al. [24]. Later on, it was studied by Salat et al. [25, 26], Tripathy and Hazarika [27], Ebadullah et al. [18–20, 28], and Vakeel et al. [1, 29].

Definition 6 (see [30, 31]). Let \(X \) be a nonempty set. Then, a family of sets \(I \subseteq 2^X \) denoting the power set of \(X \) is said to be an ideal in \(X \) if
\[
(i) \emptyset \in I;
(ii) I \text{ is additive; that is, } A, B \in I \Rightarrow A \cup B \in I;
(iii) I \text{ is hereditary that is, } A \in I, B \subseteq A \Rightarrow B \in I;
\]
An ideal \(I \subseteq 2^X \) is called nontrivial if \(I \neq 2^X \). A non-trivial ideal \(I \subseteq 2^X \) is called admissible if \(\{x : x \in X\} \subseteq I \).

A non-trivial ideal \(I \) is maximal if there cannot exist any non-trivial ideal \(J \neq I \) containing \(I \) as a subset.

For each ideal \(I \), there is a filter \(\mathcal{L}(I) \) corresponding to \(I \). That is,
\[
\mathcal{L}(I) = \{ K \subseteq N : K^c \in I \}, \quad \text{where } K^c = N - K. \quad (13)
\]

Definition 7 (see [24, 31, 32]). A double sequence \((x_{ij}) \in \omega \) is said to be \(I \)-convergent to a number \(L \) if for every \(\epsilon > 0 \),
\[
\left\{ i, j \in \mathbb{N} : |x_{ij} - L| \geq \epsilon \right\} \in I. \quad (14)
\]
In this case, we write \(I \lim x_{ij} = L \).

Definition 8 (see [2]). A double sequence \((x_{ij}) \in \omega \) is said to be \(I \)-null if \(L = 0 \). In this case, we write
\[
I \lim x_{ij} = 0. \quad (15)
\]

Definition 9. A double sequence \((x_{ij}) \in \omega \) is said to be \(I \)-cauchy if for every \(\epsilon > 0 \) there exist numbers \(m = m(\epsilon), n = n(\epsilon) \) such that
\[
\left\{ i, j \in \mathbb{N} : |x_{ij} - x_{mn}| \geq \epsilon \right\} \in I. \quad (16)
\]

Definition 10. A double sequence \((x_{ij}) \in \omega \) is said to be \(I \)-bounded if there exists \(M > 0 \) such that
\[
\left\{ i, j \in \mathbb{N} : |x_{ij}| > M \right\} \in I. \quad (17)
\]

Definition 11. A double-sequence space \(E \) is said to be solid or normal if \((x_{ij}) \in E \) implies \((x_i, x_{ij}) \in E \) for all sequence of scalars \((a_{ij}) \) with \(|a_{ij}| < 1 \) for all \(i, j \in N \).

Definition 12 (see [24, 33]). A nonempty family of sets \(\mathcal{L}(I) \subseteq 2^X \) is said to be filter on \(X \) if and only if
\[
(i) \Phi \notin \mathcal{L}(I);
(ii) \text{ for } A, B \in \mathcal{L}(I), \text{ we have } A \cap B \in \mathcal{L}(I);
(iii) \text{ for each } A \in \mathcal{L}(I) \text{ and } A \subseteq B \text{ implies } B \in \mathcal{L}(I).
\]

Definition 13. Let \(X \) be a linear space. A function \(g : X \to R \) is called a paranormal, if for all \(x, y, z \in X \),
\[
(i) g(x) = 0 \text{ if } x = \theta;
(ii) g(-x) = g(x);
(iii) g(x + y) \leq g(x) + g(y);
(iv) \text{ if } (\lambda_n) \text{ is a sequence of scalars with } \lambda_n \to \lambda (n \to \infty) \text{ and } x_{\lambda_n} \in X \text{ with } x_{\lambda_n} \to a (n \to \infty), \text{ in the sense that } g(x_{\lambda_n} - a) \to 0 (n \to \infty), \text{ in the sense that } g(\lambda_n x_{\lambda_n} - \lambda a) \to 0 (n \to \infty).
\]
2. Main Results

In this paper, we introduce the sequence space

$$\mathbb{2BV}_o^I := \{ x = (x_{ij}) \in \omega : \left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(x) - L \right| \geq \epsilon \right\} \in \mathcal{I} \} \quad (18)$$

for some $L \in \mathbb{C}$.

Theorem 14. $\mathbb{2BV}_o^I$ is a linear space.

Proof. Let $(x_{ij}), (y_{ij}) \in \mathbb{2BV}_o^I$ and α, β be two scalars in \mathbb{C}. Then for a given $\epsilon > 0$, we have

$$\left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(x) - L_1 \right| \geq \frac{\epsilon}{2} \right\} \in \mathcal{I}, \quad \text{for some} \ L_1 \in \mathbb{C},$$

and

$$\left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(y) - L_2 \right| \geq \frac{\epsilon}{2} \right\} \in \mathcal{I}, \quad \text{for some} \ L_2 \in \mathbb{C}.$$

(19)

Now let,

$$A_1 = \left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(x) - L_1 \right| < \frac{\epsilon}{2} \right\} \in \mathcal{I},$$

for some $L_1 \in \mathbb{C}$,

$$A_2 = \left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(y) - L_2 \right| < \frac{\epsilon}{2} \right\} \in \mathcal{I},$$

for some $L_2 \in \mathbb{C}$

(20)

be such that $A_1^c, A_2^c \in \mathcal{I}$. Now consider

$$\left| \phi_{mnij}(\alpha x + \beta y) - (\alpha L_1 + \beta L_2) \right|$$

$$= \phi_{mnij}(\alpha x) + \phi_{mnij}(\beta y) - \alpha L_1 - \beta L_2$$

$$= \phi_{mnij}(\alpha x) - \alpha L_1 + \phi_{mnij}(\beta y) - \beta L_2$$

$$\leq \phi_{mnij}(\alpha x) - \alpha L_1 + \left| \phi_{mnij}(\beta y) - \beta L_2 \right|$$

$$= \left| \phi_{mnij}(x) - L_1 \right| + \left| \beta \right| \left| \phi_{mnij}(y) - L_2 \right|$$

$$\leq \left| \alpha \right| \frac{\epsilon}{2} + \left| \beta \right| \frac{\epsilon}{2}$$

$$= (\left| \alpha \right| + \left| \beta \right|) \frac{\epsilon}{2}$$

$$\leq \epsilon' \quad \text{(say),}$$

(21)

this implies that the sequence space

$$A_3 = \left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(\alpha x + \beta y) - (\alpha L_1 + \beta L_2) \right| < \epsilon' \right\} \in \mathcal{I},$$

for some $L_1, L_2 \in \mathbb{C}$.

(22)

Hence, $(\alpha x + \beta y) \in \mathbb{2BV}_o^I$. Therefore, $\mathbb{2BV}_o^I$ is a linear space.

Theorem 15. The space $\mathbb{2BV}_o^I$ is a paranormed space, paranormed by

$$g(x_{ij}) = \sup_{ij} \phi_{mnij}(x).$$

(23)

Proof. For $x = (x_{ij}) = 0, g(x_{ij}) = 0$ is trivial.

For $x = (x_{ij}) \neq 0, g(x_{ij}) \neq 0$, we have

(i) $g(x) = \sup_{ij} \phi_{mnij}(x) \geq 0$ for all $x \in \mathbb{2BV}_o^I$.

(ii) $g(-x) = \sup_{ij} \phi_{mnij}(-x) = \sup_{ij}(-\phi_{mnij}(x)) = -\sup_{ij} \phi_{mnij}(x) = g(x)$ for all $x \in \mathbb{2BV}_o^I$.

(iii) $g(x + y) = \sup_{ij} \phi_{mnij}(x + y) \leq \sup_{ij} \phi_{mnij}(x) + \sup_{ij} \phi_{mnij}(y) = g(x) + g(y)$.

(iv) Let (λ_{ij}) be a sequence of scalars with $\lambda_{ij} \rightarrow \lambda$ (ij $\rightarrow \infty$) and $(x) \in \mathbb{2BV}_o^I$ such that

$$\phi_{mnij}(x) \rightarrow L \quad (ij \rightarrow \infty),$$

(24)

in the sense that

$$g(\phi_{mnij}(x) - L) \rightarrow 0 \quad (ij \rightarrow \infty).$$

(25)

Therefore,

$$g \left(\lambda_{ij} \phi_{mnij}(x) - \lambda L \right) \leq g \left(\lambda_{ij} \phi_{mnij}(x) \right) - g \left(\lambda L \right)$$

$$= \lambda_{ij} g \left(\phi_{mnij}(x) \right) - \lambda g(L) \rightarrow 0 \quad \text{as} \quad (ij \rightarrow \infty).$$

(26)

Hence, $\mathbb{2BV}_o^I$ is a paranormed space.

Theorem 16. $\mathbb{2BV}_o^I$ is a closed subspace of $\mathbb{2BV}_o^I$.

Proof. Let $(x_{ij}^{(p,q)})$ be a cauchy sequence in $\mathbb{2BV}_o^I$ such that $x_{ij}^{(p,q)} \rightarrow x$. We show that $x \in \mathbb{2BV}_o^I$. Since $(x_{ij}^{(p,q)}) \in \mathbb{2BV}_o^I$, then there exists d_{pq} such that

$$\left\{ i, j \in \mathbb{N} : \left| \phi_{mnij}(x_{ij}^{(p,q)}) - a_{pq} \right| \geq \epsilon \right\} \in \mathcal{I}. \quad (27)$$

We need to show that

(i) (a_{pq}) converges to a.

(ii) If $U = \{ i, j \in \mathbb{N} : |x_{ij} - a| < \epsilon \},$ then $U^c \in \mathcal{I}$.

Since \((x_{ij}^{pq})\) is a Cauchy sequence in \(\mathcal{B}V^I\), then for a given \(\varepsilon > 0\), there exists \(k_0 \in \mathbb{N}\) such that
\[
\sup_{\tilde{q}} |\phi_{mn,ij}(x_{ij}^{pq}) - \phi_{mn,ij}(x_{ij}^{rs})| < \frac{\varepsilon}{3}, \quad \forall p, q, r, s \geq k_0.
\]
(28)

For a given \(\varepsilon > 0\), we have
\[
B_{pqrs} = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij}^{pq}) - \phi_{mn,ij}(x_{ij}^{rs})| < \frac{\varepsilon}{3} \right\},
\]
\[
B_{pq} = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij}^{pq}) - a_{pq}| < \frac{\varepsilon}{3} \right\},
\]
\[
B_{rs} = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij}^{rs}) - a_{rs}| < \frac{\varepsilon}{3} \right\}.
\]
(29)

Then \(B_{pqrs}, B_{pq}^c,\) and \(B_{rs}^c\) are in \(\mathcal{B}V^I\). Let \(B^c = B_{pqrs}^c \cap B_{pq}^c \cap B_{rs}^c\), where \(B = \{ i, j \in \mathbb{N} : |a_{pq} - a_{rs}| < \varepsilon \}\). Then \(B^c \in 1\). If \(k_0 \in B^c\), then for each \(p, q, r, s \geq k_0\), we have
\[
\left\{ i, j \in \mathbb{N} : |a_{pq} - a_{rs}| < \varepsilon \right\}
\]
\[
\sup_{\tilde{q}} |\phi_{mn,ij}(x_{ij}^{pq}) - \phi_{mn,ij}(x_{ij}^{rs})| < \frac{\varepsilon}{3}, \quad \forall p, q, r, s \geq k_0.
\]
(30)

Then \((a_{pq})\) is a Cauchy sequence of scalars in \(C\), so there exists a scalar \(a \in C\) such that \((a_{pq}) \rightarrow a\), as \(p, q \rightarrow \infty\).

For the next step, let \(0 < \delta < 1\) be given. Then, we show that if
\[
U = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij}^{pq}) - a| < \delta \right\},
\]
(31)

then \(U \in 1\). Since \(\phi_{mn,ij}(x_{ij}^{pq}) \rightarrow \phi_{mn,ij}(x)\), then there exists \(p_0, q_0 \in \mathbb{N}\) such that
\[
P = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij}^{pq}) - \phi_{mn,ij}(x)| < \frac{\delta}{3} \right\},
\]
(32)

which implies that \(P^c \in 1\). The number \(p_0, q_0\) can be so chosen that together with (32), we have
\[
Q = \left\{ i, j \in \mathbb{N} : |a_{pq_{0,0}} - a| < \frac{\delta}{3} \right\},
\]
(33)

such that \(Q^c \in 1\). Since \(\phi_{mn,ij}(x_{ij}^{pq_{0,0}}) - a_{pq_{0,0}} \geq \delta\) \(\in 1\), then we have a subset \(S\) of \(\mathbb{N}\) such that \(S^c \in 1\), where
\[
S = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij}^{pq_{0,0}}) - a_{pq_{0,0}}| < \frac{\delta}{3} \right\}.
\]
(34)

Let \(U^r = P^c \cap Q^c \cap S^c\), where \(U = \{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x) - a| < \delta \}\).

Therefore, for each \(i, j \in U^r\), we have
\[
\left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x) - a| < \delta \right\}
\]
\[
\sup_{\tilde{q}} |\phi_{mn,ij}(x_{ij}^{pq}) - \phi_{mn,ij}(x_{ij}^{rs})| < \frac{\delta}{3}, \quad \forall p, q, r, s \geq k_0.
\]
(35)

Hence, the result \(\mathcal{B}V^I_a \subset \mathcal{B}V^I_{co}\) follows.

\textbf{Theorem 17.} The space \(\mathcal{B}V^I_a\) is nowhere dense subset of \(\mathcal{B}V^I_{co}\).

\textbf{Proof.} Proof of the result follows from the previous theorem.

\textbf{Theorem 18.} The space \(\mathcal{B}V^I_a\) is solid and monotone.

\textbf{Proof.} Let \((x_{ij}) \in \mathcal{B}V^I_a\) and \(x_j\), be a sequence of scalars with \(|x_{ij}| \leq 1\) for all \(i, j \in \mathbb{N}\). Then, we have
\[
\left| a_{ij} \phi_{mn,ij}(x_{ij}) \right| \leq |a_{ij}| \left| \phi_{mn,ij}(x_{ij}) \right| \leq \phi_{mn,ij}(x_{ij}), \quad \forall i, j \in \mathbb{N}.
\]
(36)

The space \(\mathcal{B}V^I_a\) is solid follows from the following inclusion relation:
\[
\left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij})| \geq \varepsilon \right\} \supset \left\{ i, j \in \mathbb{N} : |a_{ij}\phi_{mn,ij}(x_{ij})| \geq \varepsilon \right\}.
\]
(37)

Also a sequence space is solid implies monotone. Hence, the space \(\mathcal{B}V^I_a\) is monotone.

\textbf{Theorem 19.} \(\mathcal{B}V^I_{co} \subset \mathcal{B}V^I_{a}\) and the inclusions are proper.

\textbf{Proof.} Let \(x = (x_{ij}) \in \mathcal{B}V^I_{co}\). Then, we have \(\{ i, j \in \mathbb{N} : |x_{ij}| \geq \varepsilon \} \in 1\). Since \(2\mathcal{B}V^I_a \subset \mathcal{B}V^I_{co}\), \(x = (x_{ij}) \in \mathcal{B}V^I_{co}\) implies
\[
\left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij})| \geq \varepsilon \right\} \supset \left\{ i, j \in \mathbb{N} : |a_{ij}\phi_{mn,ij}(x_{ij})| \geq \varepsilon \right\} \subset \mathcal{B}V^I_a.
\]
(38)

Now let,
\[
A_1 = \left\{ i, j \in \mathbb{N} : |x_{ij}| < \varepsilon \right\},
\]
(39)

\[
A_2 = \left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x_{ij})| < \varepsilon \right\}
\]
be such that \(A_1^c, A_2^c \in 1\). As \(\mathcal{B}V^I_{co} \subset \mathcal{B}V^I_a\), taking supremum over \(i, j\) we get \(A_1^c \subset A_2^c\). Hence, \(2\mathcal{B}V^I_{co} \subset 2\mathcal{B}V^I_a\).

Next we show that the inclusion is proper

(i) First for \(2\mathcal{B}V^I_{co} \subset 2\mathcal{B}V^I_a\). Consider \(x \in 2\mathcal{B}V^I_a\), then by the definition
\[
\left\{ i, j \in \mathbb{N} : |\phi_{mn,ij}(x) - L| \geq \varepsilon \right\} \in 1
\]
(40)

for some \(L \in C\),
we have
\[\phi_{mn,ij}(x) = t_{mn,ij}(x) - t_{(m-1)(n-1),ij}(x), \] (41)
where
\[t_{mn,ij}(x) = \frac{x_{ij} + x_{\sigma(ij)} + \cdots + x_{\sigma^{mn}(ij)}}{mn}. \] (42)

Therefore,
\[
\begin{align*}
t_{mn,ij}(x) - t_{(m-1)(n-1),ij}(x) &= \frac{x_{ij} + x_{\sigma(ij)} + \cdots + x_{\sigma^{mn}(ij)}}{mn} \\
&\quad - \frac{x_{(i+1)(j+1)} + \cdots + x_{(i+m)(j+n)}}{mn(m-1)(n-1)} \\
&= \frac{(m-1)(n-1)(x_{ij} + x_{\sigma(ij)} + \cdots + x_{\sigma^{mn}(ij)})}{mn(m-1)(n-1)} \\
&\quad - \frac{mn(x_{ij} + x_{\sigma(ij)} + \cdots + x_{\sigma^{mn}(ij)})}{mn(m-1)(n-1)} \\
&= \frac{(m-1)(n-1)x_{ij} + x_{\sigma(ij)} + \cdots + x_{\sigma^{mn}(ij)}}{mn(m-1)(n-1)},
\end{align*}
\] (43)

On solving, we get
\[
\phi_{mn,ij}(x) = \frac{mnx_{\sigma^{mn}(ij)}}{mn(m-1)(n-1)} (1 - m - n) + \frac{x_{ij} + x_{\sigma(ij)} + \cdots + x_{\sigma^{mn}(ij)}}{mn(m-1)(n-1)}.
\] (44)

As \(\sigma \) is a translation map, that is, \(\sigma(n) = n + 1 \), we have
\[
\phi_{mn,ij}(x) = \frac{mnx_{i+m}(j+n)}{mn(m-1)(n-1)} (1 - m - n) + \frac{x_{ij} + x_{i+1}(j+1) + \cdots + x_{i+m(n)(j+n)}}{mn(m-1)(n-1)}.
\] (45)

Taking \(\lim i, j \to \infty \), we have
\[
\lim_{(i,j)\to\infty} \phi_{mn,ij}(x) = \lim_{(i,j)\to\infty} \left[\frac{mnx_{i+m}(j+n) + (1 - m - n)}{mn(m-1)(n-1)} \right] (x_{ij} + x_{i+1}(j+1) + \cdots + x_{i+m(n)(j+n)}) \times (mn(m-1)(n-1))^{-1},
\] (46)

Since \(m, n, L \neq 0 \), therefore \(\lim_{i, j \to \infty} \phi_{mn,ij}(x) \neq 0 \) which implies that \(x \notin (2c^l) \). Hence, we get that the inclusion is proper.

(ii) Second for \(2BV_{\sigma} \subset 2_{\infty} \).

The result of this part follows from the proof of Theorem 18.

Theorem 20. \(2c^l \subset 2BV_{\sigma} \subset 2_{\infty} \) and the inclusions are proper.

Proof. Let \(x = (x_{ij}) \in 2c^l \). Then, we have
\[
\{i, j \in N : |x_{ij} - L| \geq \varepsilon \} \in I.
\] (47)

Since \(c \subset BV_{\sigma} \subset \infty \), which implies \(x = (x_{ij}) \in 2BV_{\sigma} \) implies
\[
\{i, j \in N : |\phi_{mn,ij}(x) - L| \geq \varepsilon \} \in I.
\] (48)

Now let,
\[
B_1 = \{i, j \in N : |\phi_{ij} - L| < \varepsilon \}, \quad B_2 = \{i, j \in N : |\phi_{mn,ij}(x) - L| < \varepsilon \}
\] (49)

be such that \(B_1, B_2 \in I \). As
\[
2_{\infty} = \left\{ x = (x_{ij}) : \sup_{ij} |x_{ij}| < \infty \right\},
\] (50)

taking \(\lim \sup \) over \(i, j \), we get \(B_1^c \subset B_2^c \). Hence, \(2c^l \subset 2BV_{\sigma} \subset 2_{\infty} \).

Next, we show that the inclusion is proper

(i) First for \(2c^l \subset 2BV_{\sigma} \). We show that \(2c^l \not\subset 2BV_{\sigma} \).

Let \(x = (x_{ij}) \in 2BV_{\sigma} \), then by the definition
\[
2BV_{\sigma} := \left\{ x = (x_{ij}) \in \omega : \left\{ i, j \in N : |\phi_{mn,ij}(x) - L| \geq \varepsilon \right\} \in I \right\}
\] (51)

for some \(L \in C \).
We have,

\[|\phi_{m,n,i,j}(x) - L| \geq \epsilon. \]

We say that the \(I \)-\(\lim \phi_{m,n,i,j}(x) = L \).

Now considering the case when \(\|t_{m,n,i,j}(x) - L\| < \epsilon \), then

\[|t_{m,n,i,j}(x) - t_{(m-1)(n-1),i,j}(x) - L| < \epsilon, \]

(52)

when \(m,n = 0 \), then we have \(\phi_{m,n,i,j}(x) = t_{i,j}(x) = x_{i,j} \).

Therefore we get,

\[x_{i,j} - L < \epsilon \quad \forall i, j \in \mathbb{N}. \]

(53)

Hence, \(x \notin J^{c} = \{i,j \in \mathbb{N} : |x_{i,j} - L| \geq \epsilon\} \in I \). Hence, the inclusion is proper.

(ii) Second for \(J^{c} \subset J^{c} \).

The result follows from the proof of Theorem 18. \(\Box \)

Acknowledgment

The authors would like to record their gratitude to the reviewer for his careful reading and making useful corrections which improved the presentation of the paper.

References

Submit your manuscripts at http://www.hindawi.com