A New Identity for Resolvents of Operators

Michael Gil’

Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

Correspondence should be addressed to Michael Gil’; gilmi@bezeqint.net

Received 10 December 2012; Accepted 21 December 2012

Academic Editor: Jens Lorenz

Copyright © 2013 Michael Gil’. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new identity for resolvents of operators is suggested. We show that in appropriate situations it is more convenient than the Hilbert identity. In particular, we establish a new invertibility condition for perturbed operators as well as new bounds for the spectrum of perturbed operators. As a particular case we consider perturbations of Hilbert-Schmidt operators.

1. Introduction and the Main Result

Let X be a complex Banach space with a norm $\| \cdot \|$ and the unit operator I. For a linear operator A in X, $\|A\| = \sup_{x \in X} \|Ax\|/\|x\|$, $\sigma(A)$ is the spectrum, A^{-1} is the inverse operator, and $R_\lambda(A) = (A - \lambda I)^{-1} (\lambda \notin \sigma(A))$ is the resolvent.

Everywhere in the following A and \overline{A} are bounded operators in X, and $E = \overline{A} - A$. Recall the Hilbert identity $R_\lambda(\overline{A}) - R_\lambda(A) = -R_\lambda(A)ER_\lambda(\overline{A})$ [1]. In particular, it gives the following important result: if a $\lambda \in \mathbb{C}$ is regular for A and

$$\|E\| \|R_\lambda(A)\| < 1,$$ \hspace{1cm} (1)

then λ is also regular for \overline{A}. In the present paper we suggest a new identity for resolvents of operators, by which we derive a new invertibility condition for perturbed operators as well as new bounds for the spectrum of perturbed operators. It is shown that in appropriate situations our results improve condition (1). As a particular case we consider perturbations of Hilbert-Schmidt operators.

Put $Z = \overline{A}E - EA$. Now we are in a position to formulate and prove our main result.

Theorem 1. Let a $\lambda \in \mathbb{C}$ be regular for A and \overline{A}. Then

$$R_\lambda(\overline{A}) - R_\lambda(A) = R_\lambda(\overline{A})ZR_\lambda^2(A) - ER_\lambda^2(A).$$ \hspace{1cm} (2)

Proof. We have

$$R_\lambda(\overline{A})(\overline{A}E - EA)R_\lambda^2(A) - ER_\lambda^2(A)$$

$$= R_\lambda(\overline{A})(\overline{A}E - EA - E)R_\lambda^2(A)$$

$$= R_\lambda(\overline{A})(\overline{A}E - EA - (\overline{A} - \lambda I)E)R_\lambda^2(A)$$

$$= R_\lambda(\overline{A})(E\lambda - EA)R_\lambda^2(A) = -R_\lambda(\overline{A})ER_\lambda(A)$$

$$= -R_\lambda(\overline{A})(\overline{A} - \lambda I - (A - \lambda I))R_\lambda(A)$$

$$= - (I - R_\lambda(\overline{A})(A - \lambda I))R_\lambda(A)$$

$$= R_\lambda(\overline{A}) - R_\lambda(A),$$

as claimed. \hfill \square

Denote $\eta(A, E, \lambda) = \sup_{0 \leq t \leq 1}[\|AE - EA + tE^2\| R_\lambda^2(A)]$.

Corollary 2. Let a $\lambda \in \mathbb{C}$ be regular for A and $\eta(A, E, \lambda) < 1$. Then λ is regular also for \overline{A}.

Indeed, put $A_t = A + tE$ ($t \in [0, 1]$). Since the regular sets of operators are open, λ is regular for A_t, provided t is small enough. By Theorem 1, we get

$$R_\lambda(A_t) - R_\lambda(A) = R_\lambda(A_t)(t(A + tE)E - tEA)R_\lambda^2(A)$$

$$- tER_\lambda^2(A).$$ \hspace{1cm} (4)
2. Perturbations of Hilbert-Schmidt Operators

In this section $X = H$ is a separable Hilbert space. Let
\[
N_2(A) := \left[\text{Trace} \left(AA^* \right) \right]^{1/2} < \infty. \tag{11}
\]
That is, A is a Hilbert-Schmidt operator. Introduce the quantity
\[
g(A) := \left[N_2^2(A) - \sum_{k=1}^{\infty} |\lambda_k(A)|^2 \right]^{1/2}. \tag{12}
\]
The following relations are checked in [3, Section 6.4]:
\[
g^2(A) \leq N_2^2(A) - \text{Trace} A^2, \quad \frac{g^2(A)}{2} \leq \frac{N_2^2(A - A^*)}{2} = 2N_2^2(A_1). \tag{13}
\]
where $A_1 = (A - A^*)/2i$. In our reasonings in the following one can replace $g(A)$ by any of its upper bounds. In particular, one can replace $g(A)$ by $\sqrt{2}N_2(A_1)$.

We need the following result.

Theorem 6. Let A be a Hilbert-Schmidt operator. Then
\[
\| R_A(A) \| \leq \lim_{k \to \infty} \frac{g^k(A)}{\rho^{k+1}(A, \lambda)} \sqrt{k!} \left(\lambda \notin \sigma(A) \right), \tag{14}
\]
where $\rho(A, \lambda) = \inf_{s \in \sigma(A)} |s - \lambda|$, the distance between λ and the spectrum of A.

For the proof see [3, Theorem 6.4.1]. Now Corollary 3 implies the following.

Corollary 7. If λ is regular for A, condition (11) holds and
\[
\zeta(A, E) \sum_{k=0}^{\infty} \frac{g^k(A)}{\rho^{k+1}(A, \lambda) \sqrt{k!}} < 1, \tag{15}
\]
then λ is regular for A.

For any $\mu \in \sigma(A)$, due to Corollary 7, we have
\[
\zeta(A, E) \sum_{k=0}^{\infty} \frac{g^k(A)}{\rho^{k+1}(A, \mu) \sqrt{k!}} \geq 1. \tag{16}
\]
Hence it follows that $\rho(A, \mu) \leq x_0$, where x_0 is the unique positive root of
\[
\zeta(A, E) \sum_{k=0}^{\infty} \frac{g^k(A)}{A^{k+1} \sqrt{k!}} = 1. \tag{17}
\]
But $sv_A(\overline{A}) = \sup_{\mu \in \sigma(A)} \rho(A, \mu)$. We thus arrive at our next result.

Theorem 8. Let A be a Hilbert-Schmidt operator and \overline{A} be an arbitrary bounded operator in H. Then $sv_A(\overline{A}) \leq x_0$, where x_0 is the unique positive root of (17).
3. Estimates for x_0 and $z(\bar{g})$

Denote

$$\gamma(b,c) := \frac{b\sqrt{2}}{\ln^{1/2} \left[1/2 + \sqrt{1/4 + b^2/c^2} \right]}.$$ \hspace{1cm} (21)

Note that $\gamma(b,c) \rightarrow 0$ as $b \rightarrow 0$ and $c > 0$. Similarly, $\gamma(b,c) \rightarrow 0$ as $c \rightarrow 0$ and $b > 0$.

Lemma 10. The following inequalities are true:

$$x_0 \leq \gamma(g(A), \zeta(A, E)), \quad (22)$$

$$z(\bar{g}) \leq \gamma(\bar{g}, \zeta(A, E)). \quad (23)$$

Proof. Substituting $x = g(A)y$ into (17), with the notation $q = \zeta(A, E)/g(A)$, we get

$$1 = \sum_{k=0}^{\infty} \frac{1}{y^{k+1} \sqrt{k!}}.$$ \hspace{1cm} (24)

By the Schwarz inequality

$$\left(\sum_{k=0}^{\infty} \frac{1}{y^{k+1} \sqrt{k!}} \right)^2 \leq \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{2^k}{y^{2k}k!} = 2e^{2y^2}.$$ \hspace{1cm} (25)

Let $y_0 = x_0/g(A)$ be the unique positive root of (24). Then

$$1 \leq \frac{q\sqrt{2}}{y_0} e^{1/y_0^2} \quad \text{or} \quad 1 \leq \frac{2q^2}{y_0^2} e^{2/y_0^2},$$ \hspace{1cm} (26)

and therefore, $y_0 \leq \bar{y}$, where \bar{y} is the unique positive root of

$$1 = \frac{2q^2}{y^2} e^{2/y^2}.$$ \hspace{1cm} (27)

We need the following simple result proved in [10, Lemma 1.6.5].

Lemma 11. The unique positive root z_0 of the equation

$$ze^z = a \quad (a = \text{const} > 0) \quad (28)$$

satisfies the estimate

$$z_0 \geq \ln \left[\frac{1}{2} + \sqrt{\frac{1}{4} + a} \right]. \quad (29)$$

If, in addition, the condition $a \geq e$ holds, then $z_0 \geq \ln a - \ln \ln a$.

Put in (27) $z = 2/y^2$. Then we obtain (28) with $a = 1/q^2$. Now (29) implies

$$\bar{y} \leq \frac{\sqrt{2}}{\ln^{1/2} \left[1/2 + \sqrt{1/4 + (1/q^2)^2} \right]}.$$

Since $\bar{y} \geq y_0 = x_0/g(A)$ we get inequality (22). Similarly, inequality (23) can be proved.

Now Theorem 8 and Corollary 9 imply the following.

Corollary 12. Let A be a Hilbert-Schmidt operator and \overline{A} an arbitrary bounded operator in H. Then $sv_A(\overline{A}) \leq \gamma(g(A), \zeta(A, E))$. If both A and \overline{A} are Hilbert-Schmidt operators, then $hd(A, \overline{A}) \leq \zeta(\bar{g}, \zeta(A, E))$.

References

Submit your manuscripts at http://www.hindawi.com