Research Article

A Subclass of Harmonic Univalent Functions Associated with \(q \)-Analogue of Dziok-Srivastava Operator

Huda Aldweby and Maslina Darus

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence should be addressed to Maslina Darus; maslina@ukm.my

Received 26 June 2013; Accepted 1 August 2013

Academic Editors: G. Ólafsson and D.-X. Zhou

Copyright © 2013 H. Aldweby and M. Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a class of complex-valued harmonic univalent functions using a generalized operator involving basic hypergeometric function. Precisely, we give a necessary and sufficient coefficient condition for functions in this class. Distortion bounds, extreme points, and neighborhood of such functions are also considered.

1. Introduction

Let \(\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \} \) be the open unit disc, and let \(S_{H} \) denote the class of functions which are complex valued, harmonic, univalent, and sense preserving in \(\mathbb{U} \) normalized by \(f(0) = f'(0) - 1 = 0 \). Each \(f \in S_{H} \) can be expressed as \(f = h + \overline{g} \), where \(h \) and \(g \) are analytic in \(\mathbb{U} \). We call \(h \) the analytic part and \(g \) the coanalytic part of \(f \). A necessary and sufficient condition for \(f \) to be locally univalent and sense preserving in \(\mathbb{U} \) is that \(|h'(z)| > |g'(z)| \) in \(\mathbb{U} \) (see [1]). In [2], there is a more comprehensive study on harmonic univalent functions. Thus, for \(f = h + \overline{g} \in S_{H} \), we may write

\[
h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = \sum_{k=1}^{\infty} b_k z^k \quad (0 \leq b_1 < 1).
\]

Note that \(S_{H} \) reduces to \(S \), the class of normalized analytic univalent functions, if the coanalytic part of \(f = h + \overline{g} \) is identically zero.

The study of basic hypergeometric series (also called \(q \)-hypergeometric series) essentially started in 1748 when Euler considered the infinite product \((q; q)_{\infty}^{-1} = \prod_{k=0}^{\infty} (1 - q^{k+1})^{-1} \). In the literature, we were told that the development of these functions was much slower until, in 1878, Heine converted a simple observation that \(\lim_{q \to 1} [(1 - q^s)/(1 - q)] = a \) which returns the theory of \(\phi_1 \) basic hypergeometric series to the famous theory of Gauss's \(_2F_1 \) hypergeometric series. The importance of basic hypergeometric functions is due to their application in deriving \(q \)-analogues of well-known functions, such as \(q \)-analogues of the exponential, gamma, and beta functions. In this paper, we define a class of starlike harmonic functions using basic hypergeometric functions and investigate its properties like coefficient condition, distortion theorem, and extreme points.

For complex parameters \(a_i, b_j, q \) \((i = 1, \ldots, r, \ j = 1, \ldots, s, \ b_j \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}, |q| < 1) \), we define the basic hypergeometric function, \(\Phi_r(a_1, \ldots, a_r; b_1, \ldots, b_s; q, z) \) by

\[
\Phi_r(a_1, \ldots, a_r; b_1, \ldots, b_s; q, z) = \sum_{k=0}^{\infty} \frac{(a_1, q)_k \cdots (a_r, q)_k}{(q, q)_k (b_1, q)_k \cdots (b_s, q)_k} z^k, \quad (r = s + 1; \ r, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; \ z \in \mathbb{U})
\]

where \(\mathbb{N} \) denote the set of positive integers and \((a, q)_k \) is the \(q \)-shifted factorial defined by

\[
(a, q)_k = \begin{cases} 1, & k = 0; \\ (1 - a)(1 - aq)(1 - aq^2) \cdots (1 - aq^{k-1}), & k \in \mathbb{N}. \end{cases}
\]
We note that
\[
\lim_{q \to 1^-} \left[r \Phi_s \left(q^a_1, \ldots, q^a_r; q^b_1, \ldots, q^b_s, q, (q-1)^{1+s-r} z \right) \right]
= r F_s \left(a_1, \ldots, a_r; b_1, \ldots, b_s, z \right),
\]
where, \(F_s \left(a_1, \ldots, a_r; b_1, \ldots, b_s, z \right) \) is the well-known generalized hypergeometric function. By the ratio test, one observes that for \(|q| < 1 \) and \(r = s + 1 \) the series defined in (2) converges absolutely in \(\mathbb{U} \) so that it represented an analytic function in \(\mathbb{U} \). For more mathematical background of basic hypergeometric functions, one may refer to [3, 4].

The \(q \)-derivative of a function \(h(x) \) is defined by
\[
D_q (h(x)) = \frac{h(qx) - h(x)}{(q-1)x}, \quad q \neq 1, \quad x \neq 0.
\] (5)

For a function \(h(z) = z^k \), we can observe that
\[
D_q (h(z)) = D_q (z^k) = \frac{1 - q^k}{1 - q} z^{k-1} = [k]_q z^{k-1}.
\] (6)

Then \(\lim_{q \to 1^-} D_q (h(z)) = \lim_{q \to 1} [k]_q z^{k-1} = k z^{k-1} = h'(z) \), where \(h'(z) \) is the ordinary derivative. For more properties of \(D_q \), see [4, 5].

Corresponding to the function \(\Phi_s(a_1, \ldots, a_r; b_1, \ldots, b_s, q, z) \), consider
\[
\mathcal{S} \left(a_1, \ldots, a_r; b_1, \ldots, b_s; q, z \right) = z \Phi_s(a_1, \ldots, a_r; b_1, \ldots, b_s; q, z)
= z + \sum_{k=1}^{\infty} \left(a_1, \ldots, a_r; b_1, \ldots, b_s ; q \right) \frac{z^k}{k!}.
\] (7)

The authors [6] defined the linear operator \(H^r_s(a_1, \ldots, a_r; b_1, \ldots, b_s; q, f) \) by
\[
H^r_s(a_1, \ldots, a_r; b_1, \ldots, b_s; q) f(z) = \mathcal{S} \left(a_1, \ldots, a_r; b_1, \ldots, b_s; q, f(z) \right)
= z + \sum_{k=2}^{\infty} \Gamma \left(a_1, q, k \right) q \frac{z^k}{k!},
\]
where (*) stands for convolution and
\[
\Gamma \left(a_1, q, k \right) = \frac{\left(a_1, q \right) \cdots \left(a_r, q \right) \frac{z^k}{k!}}{(q, q) \cdots (b_1, q) \cdots (b_s, q) k!}, \quad \left(a_1, q \right) = a_1 \left(a_1, q \right), \ldots, \left(a_r, q \right) = a_r \left(a_r, q \right).
\] (9)

To make the notation simple, we write
\[
H^r_s \left[a_1, q, f(z) \right] = H^r_s \left(a_1, \ldots, a_r; b_1, \ldots, b_s; q, f(z) \right).
\] (10)

We define the operator (8) of harmonic function \(f = h + \overline{g} \) given by (1) as
\[
H^r_s \left[a_1, q, f(z) \right] = H^r_s \left(a_1, q, h(z) \right) + H^r_s \left(a_1, q, \overline{g(z)} \right).
\] (11)

Definition 1. For \(0 \leq \delta < 1 \), let \(S^r_H(a_1, q, \delta) \) denote the subfamily of starlike harmonic functions \(f \in S^r_H \) of the form (1) such that
\[
\frac{\partial}{\partial \theta} \left(\arg H^r_s \left[a_1, q, f \right] \right) \geq \delta, \quad |z| = r < 1.
\] (12)

Following [7], a function \(f \) is said to be in the class \(V^r_H(a_1, \delta, q) = S^r_H(a_1, \delta, q) \cap V^r_H \) if \(f \) of the form (1) satisfies the condition that
\[
\arg \left(a_k \right) = \theta_k, \quad \arg \left(b_k \right) = \theta_k \quad (k \geq n + 1; \ n \in \mathbb{N})
\] (13)

and if there exists a real number \(\rho \) such that
\[
\theta_k + (k-1) \phi \equiv \pi \pmod{2\pi}, \quad \theta_k + (k-1) \phi \equiv 0, \quad (k \geq n + 1; \ n \in \mathbb{N}).
\] (14)

By specializing the parameters of \(H^r_s[a_1, q, f] \), we obtain different classes of starlike harmonic functions, for example,

(i) for \(r = s + 1, a_2 = b_1, \ldots, a_s = b_s, S^r_H(a_1, q, \delta) = SH(\delta) \) [8] is the class of sense-preserving harmonic univalent functions which are starlike of order \(\delta \) in \(\mathbb{U} \); that is, \(\partial / \partial \theta \left(\arg D^r f(z) \right) \geq \delta \);

(ii) for \(r = s + 1, a_2 = b_1, \ldots, a_r = b_s, a_1 = q^{s+1}, q \to 1, S^r_H(q^{s+1}, q, \delta) = R^s_H(n, \alpha) \) [9] is the class of starlike harmonic univalent functions with \(\partial / \partial \theta \left(\arg D^n f(z) \right) \geq \delta \), where \(D^r \) is the Ruscheweyh derivative (see [10]);

(iii) for \(r = \{1, \ldots, r\}, j = \{1, \ldots, s\}, r = s + 1, a_1 = q^n, \) and \(b_j = q^b, q \to 1, S^r_H(a_1, q, \delta) = S^r_H(a_1, \delta) \) [11] is the class of starlike harmonic univalent functions with \(\partial / \partial \theta \left(\arg H^r_s[a_1, f] \right) \geq \delta \), where \(H^r_s[a_1] \) is the Dziok-Srivastava operator (see [12]).

2. Main Results

In our first theorem, we introduce a sufficient coefficient bound for harmonic functions in \(S^r_H(a_1, \delta, q) \).

Theorem 2. Let \(f = h + \overline{g} \) be given by (1). If
\[
\sum_{k=2}^{\infty} \left(\left| k \right|_q - \delta \left| a_k \right| + \left| k \right|_q + \delta \left| b_k \right| \right) \Gamma \left(a_1, q, k \right)
\leq 1 - \frac{1 + \delta}{1 - \delta} \left| b_1 \right|,
\] (15)

where \(a_1 = 1, \ 0 \leq \delta < 1, \) and \(\Gamma(a_1, q, k) \) is given by (9), then \(f \in S^r_H(a_1, \delta, q) \).
Proof. To prove that \(f \in S_H^*(a_1, \delta, q) \), we only need to show that if (15) holds, then the required condition (12) is satisfied. For (12), we can write

\[
\frac{\partial}{\partial \theta} \left(\text{arg} H'_s[a_1, q] f(z) \right) = \Re \left\{ \frac{zD_q (H'_s[a_1, q] h(z))}{H'_s[a_1, q] h(z) + H'_s[a_1, q] g(z)} \right\} - \frac{\sum_{k=1}^{\infty} [k]_q + \delta}{1 - \delta} \Gamma (a_1, q, k) \|b_k\| \]

\[
= 2 (1 - \delta) |z| \left\{ 1 - \frac{1 + \delta}{1 - \delta} |b_1| \right\}
\]

\[
- \left[\sum_{k=2}^{\infty} \left(\frac{[k]_q - \delta}{1 - \delta} |a_k| + \frac{[k]_q + \delta}{1 - \delta} |b_k| \right) \Gamma (a_1, q, k) \right]\]

\[
x \Gamma (a_1, q, k) \right\},
\]

\[
(16)
\]

The last expression is nonnegative by (15), and so, \(f \in S_H^*(a_1, \delta, q) \).

Now, we obtain the necessary and sufficient conditions for \(f = h + g \) given by (14).

Theorem 3. Let \(f = h + g \) be given by (11). Then, \(f \in V_{TH}(a_1, \delta, q) \) if and only if

\[
\sum_{k=2}^{\infty} \left(\frac{[k]_q - \delta}{1 - \delta} |a_k| + \frac{[k]_q + \delta}{1 - \delta} |b_k| \right) \Gamma (a_1, q, k) \leq 1 - \frac{1 + \delta}{1 - \delta} |b_1|,
\]

(19)

where \(a_1 = 1, 0 \leq \delta < 1 \), and \(\Gamma (a_1, q, k) \) is given by (9).

Proof. Since \(V_{TH}(a_1, \delta, q) \subset S_H^*(a_1, \delta, q) \), we only to prove the only if part of the theorem. So that for functions \(f \in V_{TH}(a_1, \delta, q) \), we notice that the condition \((\partial/\partial \theta) (\text{arg} H'_s[a_1, q] f(z)) \geq \delta \) is equivalent to

\[
\frac{\partial}{\partial \theta} \left(\text{arg} H'_s[a_1, q] f(z) \right) = \Re \left\{ \frac{zD_q (H'_s[a_1, q] h(z))}{H'_s[a_1, q] h(z) + H'_s[a_1, q] g(z)} \right\}
\]

\[
- \frac{\sum_{k=1}^{\infty} [k]_q + \delta}{1 - \delta} \Gamma (a_1, q, k) \|b_k\| \]

\[
= \Re \left\{ \frac{zD_q (H'_s[a_1, q] h(z))}{H'_s[a_1, q] h(z) + H'_s[a_1, q] g(z)} \right\} - \frac{\sum_{k=1}^{\infty} [k]_q + \delta}{1 - \delta} \Gamma (a_1, q, k) \|b_k\| \]

\[
\geq 0.
\]

(20)

That is,

\[
\Re \left\{ \frac{(1 - \delta) z + \sum_{k=2}^{\infty} \left(\frac{[k]_q - \delta}{1 - \delta} \Gamma (a_1, q, k) |a_k| z^k - \sum_{k=1}^{\infty} \left(\frac{[k]_q + \delta}{1 - \delta} \Gamma (a_1, q, k) |b_k| z^k \right) \right)}{z + \sum_{k=2}^{\infty} \Gamma (a_1, q, k) |a_k| z^k + \sum_{k=1}^{\infty} \Gamma (a_1, q, k) |b_k| z^k} \right\} \geq 0.
\]

(21)
The previous condition must hold for all values of \(z \) in \(U \). Upon choosing \(\phi \) according to (14), we must have

\[
\frac{(1 - \delta) - (1 + \delta)|b_1|}{1 + |b_1| + \sum_{k=2}^{\infty} (|a_k| + |b_k|) \Gamma(a_1, q, k) r^{k-1}} - \frac{\sum_{k=2}^{\infty} ((|k|_q - \delta)|a_k| + (|k|_q + \delta)|b_k|) \Gamma(a_1, q, k) r^{k-1}}{1 + |b_1| + \sum_{k=2}^{\infty} (|a_k| + |b_k|) \Gamma(a_1, q, k) r^{k-1}} \geq 0.
\]

(22)

If condition (19) does not hold, then the numerator in (22) is negative for \(r \) sufficiently close to 1. Hence, there exist \(z_0 = r_0 \) in (0,1) for which the quotient of (22) is negative. This contradicts the fact that \(f \in \text{clco} V_H(a_1, \delta, q) \), and this completes the proof.

The following theorem gives the distortion bounds for functions in \(V_H(a_1, \delta, q) \) which yield a covering result for this class.

Theorem 4. If \(f \in V_H(a_1, \delta, q) \), then

\[
|f(z)| \leq (1 + |b_1|) r + \frac{1 - \delta}{\Gamma(a_1, q, 2) (2l_q - \delta)} \sum_{k=2}^{\infty} \left(|a_k| + |b_k| \right) r^{k-1} \\
\times \Gamma(a_1, q, 2)^2 \left(1 + \frac{1 - \delta}{1 - \delta} |b_1| \right)^2 \\
\leq (1 + |b_1|) r + \frac{1 - \delta}{\Gamma(a_1, q, 2) ((q + 1) - \delta)} \\
\times \left[1 - \frac{1 - \delta}{1 - \delta} |b_1| \right]^2 r^2.
\]

(26)

That is,

\[
|f(z)| \leq (1 + |b_1|) r + \frac{1 - \delta}{\Gamma(a_1, q, 2) (2l_q - \delta)} \sum_{k=2}^{\infty} \left(|a_k| + |b_k| \right) r^{k-1} \\
\times \Gamma(a_1, q, 2)^2 \left(1 + \frac{1 - \delta}{1 - \delta} |b_1| \right)^2 \\
\leq (1 + |b_1|) r + \frac{1 - \delta}{\Gamma(a_1, q, 2) ((q + 1) - \delta)} \\
\times \left[1 - \frac{1 - \delta}{1 - \delta} |b_1| \right]^2 r^2.
\]

(27)

Corollary 5. Let \(f \) be of the form (1) so that \(f \in V_H(a_1, \delta, q) \). Then,

\[
\left\{ w : |w| < \frac{2 \Gamma(a_1, q, 2) - 1 - (\Gamma(a_1, q, 2) - 1) \delta}{(q + 1) - \delta} \Gamma(a_1, q, 2) \\
- \frac{2 \Gamma(a_1, q, 2) - 1 - (\Gamma(a_1, q, 2) - 1) \delta}{((q + 1) + \delta) \Gamma(a_1, q, 2)} |b_1| \right\} \subset f(U).
\]

(28)

Next, one determines the extreme points of closed convex hull of \(V_H(a_1, \delta, q) \) denoted by \(\text{clco} V_H(a_1, \delta, q) \).

Theorem 6. Set

\[
\lambda_k = \frac{1 - \delta}{(|k|_q - \delta) \Gamma(a_1, q, k)},
\]

(29)

\[
\mu_k = \frac{1 - \delta}{(|k|_q + \delta) \Gamma(a_1, q, k)}.
\]

For \(b_1 \) fixed, the extreme points for \(\text{clco} V_H(a_1, \delta, q) \) are

\[
\left\{ z + \lambda_k x z^k + b_1 z \right\} \cup \left\{ z + b_1 z + \mu_k x z^k \right\},
\]

(30)

where \(k \geq 2 \) and \(|x| = 1 - |b_1| \).

Proof. Any function \(f \in \text{clco} V_H(a_1, \delta, q) \) may be expressed as

\[
f(z) = z + \sum_{k=2}^{\infty} |a_k| e^{a_k z^k} + b_1 z + \sum_{k=2}^{\infty} |b_k| e^{b_k z^k}.
\]
where the coefficients satisfy the inequality (15). Set \(h_1(z) = z, g_1(z) = b_1z, h_k(z) = \ldots \), for \(k = 2, 3, \ldots \). Writing \(X_k = |a_k|/|\lambda_k|, Y_k = |b_k|/|\mu_k|, k = 2, 3, \ldots \) and \(X_1 = 1 - \sum_{k=2}^{\infty} X_k; Y_1 = 1 - \sum_{k=2}^{\infty} Y_k \), we have

\[
f(z) = \sum_{k=1}^{\infty} (X_k h_k(z) + Y_k g_k(z)).
\]

In particular, set

\[
f_1(z) = z + b_1 z, \quad f_k(z) = z + \lambda_k x z^k + b_1 z + \mu_k y z^k, \quad (k \geq 2, |x| + |y| = 1 - |b_1|).
\]

Therefore, the extreme points of \(\text{clco} V_{\mathcal{F}}(a_1, \delta, q) \) are contained in \(\{ f_k(z) \} \). To see that \(f_1 \) is not an extreme point, note that \(f_1 \) may be written as a convex linear combination of functions in \(\text{clco} V_{\mathcal{F}}(a_1, \delta, q) \) as follows:

\[
f_1(z) = \frac{1}{2} \left\{ f_1(z) + \lambda z (1 - |b_1|) z^2 \right\} + \frac{1}{2} \left\{ f_1(z) - \lambda z (1 - |b_1|) z^2 \right\}.
\]

If both \(|x| \neq 0 \) and \(|y| \neq 0 \), we will show that it can also be expressed as a convex linear combination of functions in \(\text{clco} V_{\mathcal{F}}(a_1, \delta, q) \). In our case, let us define the generalized \(q \cdot \gamma \)-neighborhood of a function \(f \in S_{\mathcal{F}} \) as follows:

\[
N^q_\gamma(f) = \left\{ F = z + \sum_{k=2}^{\infty} A_k z^k + \sum_{k=1}^{\infty} B_k z^k : \sum_{k=2}^{\infty} [k]_q (|a_k - A_k| + |b_k - B_k|) \right.
\]

\[
+ |b_1 - B_1| \leq \gamma \left. \right\}.
\]

In our case, let us define the generalized \(q \cdot \gamma \)-neighborhood of \(f \) to be the set

\[
N^q_\gamma(f) = \left\{ F = \sum_{k=2}^{\infty} \Gamma(a_1, q, k) \left[(|k|_q - \delta)|a_k - A_k| \right.
\]

\[
+ \left. (|k|_q + \delta)|b_k - B_k| \right] \right.
\]

\[
+ (1 + \delta)|b_1 - B_1| \leq (1 - \delta)\gamma \left. \right\}.
\]

Theorem 7. Let \(f \) be given by (1). If \(f \) satisfies the conditions

\[
\sum_{k=2}^{\infty} [k]_q (|k|_q - \delta)|a_k| \Gamma(a_1, q, k)
\]

\[
+ \sum_{k=2}^{\infty} [k]_q (|k|_q + \delta)|b_k| \Gamma(a_1, q, k) \leq 1 - \delta,
\]

\[
0 \leq \delta < 1,
\]

\[
\gamma \leq \frac{1 - \delta}{q + 1 - \delta} \left(1 - \frac{1 + \delta}{1 - \delta}|b_1| \right),
\]

then \(N^q_\gamma(f) \subset S^*_H(a_1, \delta, q) \).

Proof. Let \(f \) satisfy (39) and let

\[
F(z) = z + B_1 z + \sum_{k=2}^{\infty} \left(A_k z^k + B_k z^k \right)
\]

belong to \(N^q_\gamma(f) \). We have

\[
(1 + \delta)|B_1| + \sum_{k=2}^{\infty} \Gamma(a_1, q, k) \left[(|k|_q - \delta)|A_k| \right.
\]

\[
+ \left. (|k|_q + \delta)|B_k| \right] \leq (1 + \delta)|B_1 - b_1| + (1 + \delta)|b_1|
\]
\[
+ \sum_{k=2}^{\infty} \Gamma(a_1, q, k) \left[\left(\lfloor k \rfloor^q_1 - \delta \right) |A_k - a_k| + \left(\lfloor k \rfloor^q_1 + \delta \right) |B_k - b_k| \right] \\
+ \sum_{k=2}^{\infty} \Gamma(a_1, q, k) \left[\left(\lfloor k \rfloor^q_1 - \delta \right) |A_k| + \left(\lfloor k \rfloor^q_1 + \delta \right) |B_k| \right] \\
\leq (1 - \delta) \gamma + (1 + \delta) |b_1| \\
+ \frac{1}{(q + 1) - \delta} \sum_{k=2}^{\infty} \Gamma(a_1, q, k) \left[\lfloor k \rfloor^q_1 \left(\lfloor k \rfloor^q_1 - \delta \right) |A_k| + \lfloor k \rfloor^q_1 \left(\lfloor k \rfloor^q_1 + \delta \right) |B_k| \right] \\
\leq (1 - \delta) \gamma + (1 + \delta) |b_1| + \frac{1}{(q + 1) - \delta} \left[(1 - \delta) - (1 + \delta) |b_1| \right] \leq 1 - \delta.
\]

Hence,
\[\gamma' \leq \frac{1 - \delta}{(q + 1) - \delta} \left(1 - \frac{1 + \delta}{1 - \delta} |b_1| \right), \quad F \in S_H^* (a_1, \delta, q). \]

Acknowledgment

The work presented here was partially supported by LRGS/TD/2011/UKM/ICT/03/02 and UKM-DLP-2011-050.

References
