Research Article

New Subclasses of Biunivalent Functions Involving Dziok-Srivastava Operator

M. K. Aouf, 1 R. M. El-Ashwah, 2 and Ahmed M. Abd-Eltawab 3

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
3 Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

Correspondence should be addressed to R. M. El-Ashwah; r_elashwah@yahoo.com

Received 23 June 2013; Accepted 15 July 2013

Academic Editors: R. Avery, D. Bahuguna, and Y. Han

Copyright © 2013 M. K. Aouf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce two new subclasses of biunivalent functions which are defined by using the Dziok-Srivastava operator. Furthermore, we find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in these new subclasses.

1. Introduction

Let A denote the class of all functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$. Also let S denote the class of all functions in A which are univalent in U.

Some of the important and well-investigated subclasses of the univalent function class S include, for example, the class $S^*(\beta)$ of starlike functions of order β in U and the class $K(\beta)$ of convex functions of order β in U. By definition, we have

$$S^*(\alpha) = \left\{ f \in S : \text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \beta, \right\},$$

$$K(\alpha) = \left\{ f \in S : \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \beta, \right\}.$$

Ding et al. [1] introduced the following class $Q_\lambda(\beta)$ of analytic functions defined as follows:

$$Q_\lambda(\beta) = \left\{ f \in A : \text{Re} \left((1 - \lambda) \frac{f(z)}{z} + \lambda f''(z) \right) > \beta, \right\},$$

$$0 \leq \beta < 1, \lambda \geq 0.$$

It is easy to see that $Q_{\lambda_1}(\beta) \subset Q_{\lambda_2}(\beta)$ for $\lambda_1 > \lambda_2 \geq 0$. Thus, for $\lambda \geq 1$, $0 \leq \beta < 1$, $Q_\lambda(\beta) \subset Q_1(\beta) = \{ f \in A : \text{Re} f''(z) > \beta, 0 \leq \beta < 1 \}$ and hence $Q_\lambda(\beta)$ is univalent class (see [2–4]).

It is well known that every function $f \in S$ has an inverse f^{-1}, defined by

$$f^{-1}(f(z)) = z \quad (z \in U),$$

$$f \left(f^{-1}(w) \right) = w \quad \left(|w| < r_0(f) : r_0(f) \geq \frac{1}{4} \right),$$

where

$$f^{-1}(w) = w - a_2 w^2 + \left(2a_2^2 - a_3 \right) w^3$$

$$+ \left(5a_3^2 - 5a_2a_3 + a_4 \right) w^4 + \cdots.$$
bi-univalent functions in U given by (1). For a brief history and interesting examples in the class Σ see [5].

Brannan and Taha [6] (see also [7]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $S^\ast (\beta)$ and $K(\beta)$ of starlike and convex functions of order β ($0 \leq \beta < 1$), respectively (see [8]). Thus, following Brannan and Taha [6] (see also [7]), a function $f \in A$ is in the class $S_\alpha^\ast (\alpha)$ of strongly bi-starlike functions of order α ($0 < \alpha \leq 1$) if each of the following conditions is satisfied:

$$f \in \Sigma, \quad \left| \arg\left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\alpha \pi}{2}, \quad (0 < \alpha \leq 1, z \in U),$$

$$f \in \Sigma, \quad \left| \arg\left(\frac{zg'(w)}{g(w)} \right) \right| < \frac{\alpha \pi}{2}, \quad (0 < \alpha \leq 1, z \in U),$$

where g is the extension of f^{-1} to U. The classes $S_\alpha^\ast (\alpha)$ and $K_\alpha^\ast (\alpha)$ of bi-starlike functions of order α and biconvex functions of order α, corresponding, respectively, to the function classes $S^\ast (\beta)$ and $K(\beta)$, were also introduced analogously. For each of the function classes $S_\alpha^\ast (\alpha)$ and $K_\alpha^\ast (\alpha)$, they found nonsharp estimates on the first two Taylor-Maclaurin coefficients $|a_1|$ and $|a_2|$ (for details, see [6, 7]).

For function f given by (1) and g given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

the Hadamard product (or convolution) of f and g is defined by

$$(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g \ast f)(z).$$

For complex parameters a_1, \ldots, a_q and b_1, \ldots, b_l ($b_j \neq Z_0^n = \{0, -1, -2, \ldots\}; j = 1, \ldots, s$), the generalized hypergeometric function $_qF_s$ is defined by the following infinite series:

$$_qF_s \left(a_1, \ldots, a_q; b_1, \ldots, b_s; z \right) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_q)_n z^n}{(b_1)_n \cdots (b_s)_n n!} \quad (q \leq s + 1; q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; \mathbb{N} = \{1, 2, 3, \ldots\}; z \in U),$$

where $(\theta)_n$ is the Pochhammer symbol (or shift factorial) defined, in terms of the Gamma function Γ, by

$$\left(\theta \right)_n = \frac{\Gamma \left(\theta + n \right)}{\Gamma \left(\theta \right)} = \begin{cases} 1, & (n = 0) \\ \theta \left(\theta + 1 \right) \cdots \left(\theta + n - 1 \right), & (n \in \mathbb{N}). \end{cases}$$

Correspondingly a function $h(a_1, \ldots, a_q; b_1, \ldots, b_l; z)$ is defined by

$$h(a_1, \ldots, a_q; b_1, \ldots, b_l; z) = z \cdot _qF_s \left(a_1, \ldots, a_q; b_1, \ldots, b_s; z \right) \quad (z \in U).$$

Dziok and Srivastava [9] (see also [10]) considered a linear operator

$$H \left(a_1, \ldots, a_q; b_1, \ldots, b_l \right) : A \rightarrow A,$$

defined by the following Hadamard product:

$$H \left(a_1, \ldots, a_q; b_1, \ldots, b_l \right) f(z) = h(a_1, \ldots, a_q; b_1, \ldots, b_l; z) \ast f(z), \quad (q \leq s + 1; q, s \in \mathbb{N}_0; z \in U).$$

If $f \in A$ is given by (1), then we have

$$H \left(a_1, \ldots, a_q; b_1, \ldots, b_l \right) f(z) = z + \sum_{n=0}^{\infty} \Gamma_n \left[a_1; b_1 \right] a_n z^n \quad (z \in U),$$

where

$$\left[a_1; b_1 \right] = \left(\frac{(a_1)_n \cdots (a_q)_n}{(b_1)_n \cdots (b_s)_n n!} \right) \quad (n \in \mathbb{N}).$$

To make the notation simple, we write

$$H_{q,s} \left[a_1; b_1 \right] = H \left(a_1, \ldots, a_q; b_1, \ldots, b_l \right) f(z).$$

It easily follows from (14) that

$$z \left(H_{q,s} \left[a_1; b_1 \right] \right)' = a_1 H_{q,s} \left[a_1 + 1; b_1 \right] - (a_1 - 1) H_{q,s} \left[a_1; b_1 \right].$$

The linear operator $H_{q,s} \left[a_1; b_1 \right]$ is a generalization of many other linear operators considered earlier.

The object of the present paper is to introduce two new subclasses of the bi-univalent functions which are defined by using the Dziok-Srivastava operator and find estimates on the coefficients $|a_1|$ and $|a_2|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Srivastava et al. [5] (see also [11]).

In order to derive our main results, we have to recall here the following lemma [12].

Lemma 1. If $h \in P$, then $|c_k| \leq 2$ for each k, where P is the family of all functions h analytic in U for which $\text{Re} h(z) > 0$ holds.

Unless otherwise mentioned, we assume throughout this paper that $a_1, b_j \in \mathbb{C} \setminus \mathbb{Z}_0^i, i = 1, \ldots, s, j = 1, \ldots, q, s \leq$ $s + 1; q, s \in \mathbb{N}_0, 0 < \alpha \leq 1, \lambda \geq 1, z \in U, \Gamma_n \left[a_1; b_1 \right]$ is given by (15) and all powers are understood as principle values.
2. Coefficient Bounds of the Function Class

Definition 2. One says that a function \(f(z) \) given by (1) is said to be in the class \(T_{q,s}^\alpha[a_1; b_1, \alpha, \lambda] \) if it satisfies the following condition:

\[
f \in \Sigma \quad \left| \arg \left(\frac{(1 - \lambda) H_{q,s} [a_1; b_1; z]}{z} + \lambda \left(H_{q,s} [a_1; b_1; z] \right)' \right) \right| < \frac{\alpha \pi}{2}, \quad (18)
\]

where the function \(g \) is given by

\[
g(w) = H_{q,s}^{-1} [a_1; b_1; z]
= w - \Gamma_3 [a_1; b_1] a_2 w^2 + \left(2(\Gamma_2 [a_1; b_1])^2 a_2^2 - \Gamma_3 [a_1; b_1] a_3 \right) w^3 - \left(5(\Gamma_2 [a_1; b_1])^3 a_2^3 - 5\Gamma_2 [a_1; b_1] \right)
\times \left(\Gamma_3 [a_1; b_1] a_2 a_3 + \frac{\Gamma_4 [a_1; b_1]}{a_2} \right) w^4 + \cdots.
\]

Remark 3. (i) For \(q = 2, s = 1, \alpha = a_2 = b_1 = 1, \) we have \(T_{q,s}^\alpha [1, 1; 2; \alpha, \lambda] = B_2(\alpha, \lambda), \) where the class \(B_2(\alpha, \lambda) \) was introduced and studied by Frasin and Aouf [11].

(ii) For \(q = 2, s = 1, \alpha = a_2 = b_1 = \lambda = 1, \) we have \(T_{q,s}^\alpha [1, 1; 2; \alpha, 1] = H_2(\alpha, \lambda), \) where the class \(H_2(\alpha, \lambda) \) was introduced and studied by Srivastava et al. [5].

Theorem 4. Letting \(f(z) \) given by (1) be in the class \(T_{q,s}^\alpha [a_1; b_1, \alpha, \lambda], \) then

\[
|a_2| = \frac{2\alpha}{\Gamma_2 [a_1; b_1] \sqrt{(\lambda + 1)^2 + \alpha (1 + 2\lambda - \lambda^2)}}, \quad (20)
\]

\[
|a_3| = \frac{4\alpha^2}{\Gamma_2 [a_1; b_1] (\lambda + 1)^2} + \frac{2\alpha}{\Gamma_3 [a_1; b_1] (\lambda + 1)}, \quad (21)
\]

Proof. It follows from (18) that

\[
(1 - \lambda) H_{q,s} [a_1; b_1; z] z + \lambda (H_{q,s} [a_1; b_1; z])' = \left(p(z) \right)^2,
\]

\[
(1 - \lambda) \frac{g(w)}{w} + \lambda g'(w) = \left(q(w) \right)^2,
\]

where \(p(z) \) and \(q(w) \) in \(P \) have the forms

\[
p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots, \quad (23)
\]

\[
q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \cdots. \quad (24)
\]

Now, equating the coefficients in (22), we get

\[
(\lambda + 1) \Gamma_2 [a_1; b_1] a_2 = \alpha p_1, \quad (25)
\]

\[
(2\lambda + 1) \Gamma_3 [a_1; b_1] a_3 = \alpha p_2 + \frac{\alpha (\alpha - 1)}{2} p_1^2, \quad (26)
\]

\[
- (\lambda + 1) \Gamma_3 [a_1; b_1] a_3 = \alpha q_1, \quad (27)
\]

\[
(2\lambda + 1) \left(2(\Gamma_2 [a_1; b_1])^2 a_2^2 - \Gamma_3 [a_1; b_1] a_3 \right) = \frac{\alpha q_2}{2} + \frac{\alpha (\alpha - 1)}{2} q_1^2.
\]

From (25) and (27), we get

\[
p_1 = -q_1, \quad (29)
\]

\[
2(\lambda + 1)^2 (\Gamma_2 [a_1; b_1])^2 a_2^2 = \alpha^2 \left(p_1^2 + q_1^2 \right). \quad (30)
\]

Now from (26), (28), and (30), we obtain

\[
2 (2\lambda + 1) (\Gamma_2 [a_1; b_1])^2 a_2^2
= \alpha (p_2 + q_2) + \frac{\alpha (\alpha - 1)}{2} (p_1^2 + q_1^2)
= \alpha (p_2 + q_2) + \frac{\alpha (\alpha - 1)}{2} 2(\lambda + 1)^2 (\Gamma_2 [a_1; b_1])^2 a_2^2.
\]

Therefore, we have

\[
a_2^2 = \frac{\alpha^2 \left(p_2 + q_2 \right)}{(\Gamma_2 [a_1; b_1])^2 \left((\lambda + 1)^2 + \alpha (1 + 2\lambda - \lambda^2) \right)}. \quad (32)
\]

Applying Lemma 1 for the coefficients \(p_2 \) and \(q_2, \) we immediately have

\[
|a_2| \leq \frac{2\alpha}{\Gamma_2 [a_1; b_1] \sqrt{(\lambda + 1)^2 + \alpha (1 + 2\lambda - \lambda^2)}}. \quad (33)
\]

This gives the bound on \(|a_2| \) as asserted in (20).

Next, in order to find the bound on \(|a_3|, \) by subtracting (28) from (26) and using (29), we get

\[
2 (2\lambda + 1) \Gamma_3 [a_1; b_1] a_3 - 2(2\lambda + 1) (\Gamma_2 [a_1; b_1])^2 a_2^2
= \alpha p_2 + \frac{\alpha (\alpha - 1)}{2} p_1 - \left(\alpha q_2 + \frac{\alpha (\alpha - 1)}{2} q_1 \right)
= \alpha (p_2 - q_2).
\]

It follows from (30) and (34) that

\[
2(2\lambda + 1) \Gamma_3 [a_1; b_1] a_3
= \alpha^2 \left((\lambda + 1)^2 + q_1^2 \right) \left((\lambda + 1)^2 \right)^2 + \alpha (p_2 - q_2).
\]

And, then,

\[
a_3 = \frac{\alpha^2 \left(p_1^2 + q_1^2 \right)}{2(\lambda + 1)^2 \Gamma_3 [a_1; b_1]} + \frac{\alpha (p_2 - q_2)}{2(\lambda + 1)^2 \Gamma_3 [a_1; b_1]}. \quad (36)
\]
Applying Lemma 1 once again for the coefficients p_1, p_2, q_1, and q_2, we readily get

$$|a_3| \leq \frac{4\alpha^2}{(\lambda + 1)^2} |\Gamma_3[a_1; b_1]| + \frac{2\alpha}{(2\lambda + 1)} |\Gamma_3[a_1; b_1]|. \quad (37)$$

This completes the proof of Theorem 4. □

Remark 5. (i) Taking $q = 2, s = 1$, and $a_1 = a_2 = b_1 = 1$ in Theorem 4, we obtain the result obtained by Frasin and Aouf [11, Theorem 2.2].

(ii) Taking $q = 2, s = 1$, and $a_1 = a_2 = b_1 = \lambda = 1$ in Theorem 4, we obtain the result obtained by Srivastava et al. [5, Theorem 1].

3. Coefficient Bounds of the Function Class

$T_{q,s}^{\Sigma_1}[a_1; b_1, \beta; \lambda]$

Definition 6. One says that a function $f(z)$ given by (1) is said to be in the class $T_{q,s}^{\Sigma_1}[a_1; b_1, \beta; \lambda]$ if it satisfies the following condition:

$$f \in \Sigma, \quad \Re \left\{ (1 - \lambda) \frac{H_{q,s} [a_1; b_1; z]}{z} + \lambda \left(H_{q,s} [a_1; b_1; z] \right)' \right\} > \beta,$$

$$\Re \left\{ (1 - \lambda) \frac{g(w)}{w} + \lambda g'(w) \right\} > \beta,$$

where the function g is defined by (19).

Remark 7. (i) For $q = 2, s = 1$, and $a_1 = a_2 = b_1 = 1$, we have $T_{q,s}^{\Sigma_1}[1, 1; 2; \beta; \lambda] = \mathcal{B}_2(\beta, \lambda)$, where the class $\mathcal{B}_2(\beta, \lambda)$ was introduced and studied by Frasin and Aouf [11].

(ii) For $q = 2, s = 1$, and $a_1 = a_2 = b_1 = \lambda = 1$, we have $T_{q,s}^{\Sigma_1}[1, 1; 1; 1; \beta; \lambda] = \mathcal{H}_2(\beta, \lambda)$, where the class $\mathcal{H}_2(\beta, \lambda)$ was introduced and studied by Srivastava et al. [5].

Theorem 8. Letting $f(z)$ given by (1) be in the class $T_{q,s}^{\Sigma_1}[a_1; b_1, \beta; \lambda]$, $0 \leq \beta < 1$ and $\lambda \geq 1$, then

$$|a_3| = \sqrt{2(1 - \beta)} \frac{|\Gamma_2[a_1; b_1]|}{\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)}.$$

$$|a_3| = \sqrt{2(1 - \beta)} \frac{2(1 - \beta)^2}{\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)}. \quad (40)$$

Proof. It follows from (38) that

$$H_{q,s} [a_1; b_1; z] = \beta + (1 - \beta) \frac{g(z)}{z} + \lambda \left(H_{q,s} [a_1; b_1; z] \right)',$$

$$\frac{g(w)}{w} + \lambda g'(w) = \beta + (1 - \beta) q(w), \quad \text{or, equivalently,}$$

$$a_3 = \frac{(\lambda+1)^2}{\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)} + \frac{2(1 - \beta)^2}{\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)}.$$

Applying Lemma 1 once again for the coefficients $p_1, p_2, q_1,$ and q_2, we readily get

$$|a_3| \leq \frac{4(1 - \beta)^2}{\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)} \quad (54)$$

where $p(z)$ and $q(w)$ have the forms (23) and (24), respectively.

As in the proof of Theorem 4, by suitably comparing coefficients in (41), we get

$$(\lambda + 1) \Gamma_3[a_1; b_1] a_2 = (1 - \beta) p_1, \quad (42)$$

$$(2\lambda + 1) \Gamma_3[a_1; b_1] a_3 = (1 - \beta) p_2, \quad (43)$$

and

$$(\lambda + 1) \Gamma_2[a_1; b_1] a_2 = (1 - \beta) q_1, \quad (44)$$

$$2(\lambda + 1) \left(2(\Gamma_2[a_1; b_1])^2 a_2^2 - \Gamma_3[a_1; b_1] a_3 \right) = (1 - \beta) q_2. \quad (45)$$

From (42) and (44), we get

$$p_1 = -q_1, \quad (46)$$

$$2(\lambda + 1)^2(\Gamma_2[a_1; b_1])^2 a_2^2 = (1 - \beta)^2 \left(p_1^2 + q_1^2 \right). \quad (47)$$

Also, from (43) and (45), we find that

$$2(\lambda + 1) \left(2(\Gamma_2[a_1; b_1])^2 a_2^2 = (1 - \beta)^2 (p_2 + q_2). \quad (48)$$

Therefore, we have

$$|a_3| \leq \frac{(1 - \beta)}{(\Gamma_2[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1) + 1)(p_2 + q_2)}. \quad (49)$$

Applying Lemma 1 for the coefficients p_2 and q_2, we immediately have

$$|a_3| \leq \frac{\sqrt{2(1 - \beta)}}{|\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)}. \quad (50)$$

This gives the bound on $|a_3|$ as asserted in (39).

As in the proof of Theorem 4, by suitably comparing coefficients in (41), we get

$$(\lambda + 1) \Gamma_3[a_1; b_1] a_2 = (1 - \beta) p_1, \quad (42)$$

$$(2\lambda + 1) \Gamma_3[a_1; b_1] a_3 = (1 - \beta) p_2, \quad (43)$$

$$2(\lambda + 1)^2(\Gamma_2[a_1; b_1])^2 a_2^2 = (1 - \beta)^2 \left(p_1^2 + q_1^2 \right). \quad (47)$$

Also, from (43) and (45), we find that

$$2(\lambda + 1) \left(2(\Gamma_2[a_1; b_1])^2 a_2^2 = (1 - \beta)^2 (p_2 + q_2). \quad (48)$$

Therefore, we have

$$|a_3| \leq \frac{(1 - \beta)}{(\Gamma_2[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1) + 1)(p_2 + q_2)}. \quad (49)$$

Applying Lemma 1 for the coefficients p_2 and q_2, we immediately have

$$|a_3| \leq \frac{\sqrt{2(1 - \beta)}}{|\Gamma_3[a_1; b_1]|(\lambda + 1)^2 + 2(\lambda + 1)}. \quad (50)$$

This completes the proof of Theorem 8. □
Remark 9. (i) Taking $q = 2, s = 1$, and $a_1 = a_2 = b_1 = 1$, in Theorem 8, we obtain the result obtained by Frasin and Aouf [11, Theorem 3.2].

(ii) Taking $q = 2, s = 1$, and $a_1 = a_2 = b_1 = \lambda = 1$, in Theorem 8, we obtain the result obtained by Srivastava et al. [5, Theorem 2].

References

Submit your manuscripts at http://www.hindawi.com