Research Article

Postulation of a Union $X \subset \mathbb{P}^r$, $r \geq 4$, of a Given Zero-Dimensional Scheme and Several General Lines

E. Ballico

Department of Mathematics, University of Trento, Povo, 38123 Trento, Italy

Correspondence should be addressed to E. Ballico; ballico@science.unitn.it

Received 10 October 2013; Accepted 5 November 2013

Academic Editors: E. Previato and F. Shi

Copyright © 2013 E. Ballico. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the Hilbert function of a general union of disjoint lines. We assume almost nothing on integers $t \geq 0$. Since $T \cap T = 0$, we have $Z \not\subset T$, and hence $h^0(T \cup Z, \mathcal{O}_{T \cup Z}(x)) = (x + 1)t + z$ for all $x \geq 0$. To study the Hilbert function of a general union of Z and T disjoint lines, we need the following relations:

$$z + (k + 1)e_{z,r,k} + f_{z,r,k} = \binom{k + r}{r}, \quad 0 \leq f_{z,r,k} \leq k. \quad (1)$$

The scheme $T \cup Z$ has maximal rank if and only if $h^0(\mathcal{I}_{T \cup Z}(k)) = 0$ for all integers k with $t > e_{z,r,k}$ and $h^0(\mathcal{I}_{T \cup Z}(k)) = 0$ for the minimal integer $k \geq c$ such that either $e_{z,r,k} > t$ or $e_{z,r,k} + f_{z,r,k} = t$ and $f_{z,r,k} = 0$.

We first prove the following result, which says that if we may handle general unions of Z and T disjoint lines with respect to homogeneous polynomials in two consecutive degrees (not small with respect to the integer $z := \text{deg}(Z)$), then these information propagates to higher degree polynomials.

Theorem 1. Fix a zero-dimensional scheme $Z \subset \mathbb{P}^r$, $r \geq 4$, and an integer $c > 0$. Set $z := \text{deg}(Z)$. Assume $z \leq \binom{r+c}{c}$. If $r = 4$, assume $c \geq 8$. Let δ_1 be any nonnegative integer such that $h^0(\mathcal{I}_{Z \cup X}(c)) \leq f_{z,r,c} + \delta_1$ for a general $X \in L(r,e_{z,r,c})$. Let δ_2 be any nonnegative integer such that $h^0(\mathcal{I}_{Z \cup X}(c + 1)) \leq f_{z,r,c+1} + \delta_2$ for a general $X \in L(r,e_{z,r,c+1})$. Set $\delta := \max\{\delta_1,\delta_2\}$.

Fix an integer $y > e_{z,r,c+1}$, and let Y be a general element of $L(r,y)$.

(a) For all integers $k \geq c$, either $h^0(\mathcal{I}_{Z \cup Y}(k)) \leq \delta$ or $h^0(\mathcal{I}_{Z \cup Y}(k)) \leq \delta$.

(b) Assume $f_{z,r,c} \leq f_{z,r,c+1}$. Then for all integers $k \geq c$, either $h^0(\mathcal{I}_{Z \cup Y}(k)) \leq \delta$ or $h^0(\mathcal{I}_{Z \cup Y}(k)) \leq \delta_1$.

Then we go to a case in which we only assume something about the integer $z = \text{deg}(Z)$ and prove the following result.
Theorem 2. Fix positive integers \(r, z, \) and \(c \) such that \(r \geq 4 \) and a zero-dimensional scheme \(Z \subset \mathbb{P}^r \) such that \(\deg(Z) = z \) and \(h^0(I(Z)) = 0 \). Set \(r' = (r^c - c)^{-1} - z \). If either \(r \geq 5 \) or \(r = 4 \) and \(c \geq 10 \), then set \(\tau' = \tau \). If \(r = 4 \) and \(c < 9 \), then set \(\tau' = r + 10 - c \). Fix any integer \(\tau \geq ((r^c - c + 1)^{-1} - z)/(c + \tau' + 1) \). Let \(X \subset \mathbb{P}^r \) be a general union of \(Z \) and \(t \) lines. Then \(X \) has maximal rank.

If \(z = (r^c) \), then we have the following result.

Proposition 3. Fix integers \(r \geq 4 \) and \(c > 0 \). Let \(Z \subset \mathbb{P}^r \) be a zero-dimensional scheme such that \(\deg(Z) = (r^c) \) and \(h^0(I(Z)) = 0 \). Then for each integer \(t \geq 0 \), a general union of \(Z \) and \(t \) lines has maximal rank.

In the case \(Z = (c + 1)P \), we get the case \(r \geq 4 \) of [4]. We omit the proof of Proposition 3, because the proof of [4] works verbatim (e.g., quote [4, Lemma 5.1] instead of Lemmas 10, 12, and 13).

2. The Proofs

For all integers \(z \geq 0, r \geq 4, c \geq 0, x \in Z, \) and \(k \geq 0 \), define the integers \(e_{z,r,k}, x \) and \(f_{z,r,k}, x \) by the relations

\[
 z + (k + 1)e_{z,r,k} + f_{z,r,k} = \left(\frac{r + k}{r} \right) + x, \tag{2}
\]

\[
 0 \leq f_{z,r,k} \leq k. \tag{3}
\]

Notice that \(e_{z,r,k} = e_{z,k,0} \) and \(f_{z,r,k} = f_{z,r,k,0} \). For any \(t \geq 0, c > 0 \), the critical value of the triple \((z, r, t) \) (resp., \((z, r, c) \)) is the minimal integer \(k > 0 \) (resp., \(k > c \)) such that \(z + (k + 1)t \leq (r^c) \), that is, the minimal integer \(k > 0 \) (resp., \(k > c \)) such that \(t \leq e_{z,r,k} \).

Taking the equation in (2) minus the same equation for the integer \(k := k - 1 \), we get

\[
e_{z,r,k-1,k} + (k + 1)(e_{z,r,k} - e_{z,r,k-1}) + f_{z,r,k} - f_{z,r,k-1} = (k + r - 1). \tag{3}
\]

Take \(Z, z, c, \delta, \) and \(\delta_1 \) as in Theorem 1. For each integer \(k \geq 0 \) consider the following assertion \(A_k \):

\(A_k \): we have \(h^0(I(X)) \leq f_{z,r,k} + \delta \) for a general \(A \in L(r, e_{z,r,k}) \).

Take any \(A \in L(r, e_{z,r,k}) \) such that \(Z \cap A = \emptyset \). Since \(h^0(I(Z) \cup A) = \deg(Z) + (k + 1)\deg(A) \), we have \(h^0(I(Z)) \geq h^0(I(X)) + f_{z,r,k} \). Hence \(A_k \) is true if and only if \(h^0(I(Z)) \leq \delta \) for a general \(A \in L(r, e_{z,r,k}) \). Call \(A_k \) the same assertion with \(\delta_1 \) instead of \(\delta \).

Remark 4. By the definition of the integers \(\delta_1 \) and \(\delta \), the assertions \(A_0, A_{c+1}, \) and \(A_{c+1} \) are true.

For any hyperplane \(H \subset \mathbb{P}^r \), and any closed subscheme \(W' \subset \mathbb{P}^r \), let \(\text{Res}_{H}(W') \) be the closed subscheme of \(\mathbb{P}^r \) with \(\mathcal{I}_{W'} : \mathcal{I}_{H} \) as its ideal sheaf. If \(W = Z \cup Y \) with \(Z \cap H = \emptyset \) and \(Y \) is a reduced scheme, then \(\text{Res}_{H}(W) = Z \cup Y' \), where \(Y' \) is the union of the irreducible components of \(Y \) not contained in \(H \).

Lemma 5. Fix a hyperplane \(H \subset \mathbb{P}^n, \) an integer \(k > 0 \) and a closed subscheme \(W \subset \mathbb{P}^r \). If \(h^0(I(W)) > h^0(I(W)) \) \((k-1)) \), then \(h^0(I(W)) \) \((k-1)) \) \(-1 \) for a general \(P \in H \).

Proof. The assumption implies that \(H \) is not contained in the base scheme of \(I(W) \). The long cohomology exact sequence associated to the following exact sequence

\[
 0 \to I_{W}(W) \to I_{W}(k-1) \to I_{W}(k) \to I_{W}(H) \to 0 \tag{4}
\]

gives the following inequalities:

\[
 (1) \quad h^0(I(W)) \leq h^0(I(W)) + h^0(H), \tag{1}
\]

\[
 (2) \quad h^0(I(W)) \leq h^0(I(W)) + h^0(H), \tag{2}
\]

We have \(\text{Res}_{H}(W \cup \{P\}) = \text{Res}_{H}(W) \) and \(h^0(H, I(W) \cup \{P\}) = h^0(H, I(W)) - 1 \), because a general \(P \in H \) is not in the base locus of \(I(W) \). Apply (4) first to \(W \) and then to \(W \cup \{P\} \).

As in [2–4], we will call Castelnuovo’s sequence for any of the inequalities in the proof of Lemma 5.

Lemma 6. Fix integers \(n \geq 3, k > 0, \) and \(f \geq 0 \) such that \((k + 1)(e + 2f) \leq (\frac{nk}{n-1}) \). Let \(X \subset \mathbb{P}^n \) be a general union of \(\ell \) lines and \(f \) reducible conics. Then \(h^1(I(X)) = 0 \).

Proof. For each \(P \in \text{Sing}(X) \), let \(C_P \subset X \) be the connected component of \(X \) containing \(P \). Write \(X = Y \cup \bigcup_{P \in \text{Sing}(X)} C_P \). For each \(P \in \text{Sing}(X) \), let \(N_P \subset \mathbb{P}^n \) be a general 3-dimensional linear space containing \(C_P \). Let \(E_P \subset N_P \) be the sundial with \(C_P \) as its support. Set \(X' := Y \cup \bigcup_{P \in \text{Sing}(X)} E_P \). Since \(X \) and each \(N_P \) are general, \(X' \) is a general union of \(\ell \) lines and \(f \) sundials. Hence \(X' \) has maximal rank [3]. Since \((k + 1)(e + 2f) \leq (\frac{nk}{n-1}) \), we get \(h^1(I(X')) = 0 \). Fix \(P \in \text{Sing}(X) \). Let \(\eta \) be the nilpotent sheaf of \(E_P \). We have an exact sequence

\[
 0 \to \eta \to \mathcal{O}_X(E_P) \to \mathcal{O}_{C_P} \to 0. \tag{5}
\]

Since \(\eta \) is supported by a single point, \(P \), we have \(h^1(E_P, \eta) = 0 \). Hence (5) gives the surjectivity of the restriction map \(h^0(E_P, \mathcal{O}_{E_P}(k)) \to h^0(C_P, \mathcal{O}_{C_P}(k)) \). Looking at all the connected components of \(X \) and \(X' \), we get the surjectivity of the restriction map \(h^1(X', \mathcal{O}_{X'}(k)) \to h^1(X, \mathcal{O}_X(k)) \). Hence \(h^1(I(X)) \leq h^1(I(X')) = 0 \).

Lemma 7. \(A_k \) is true for all integers \(k \geq c \).

Proof. By Remark 4 we may assume \(k \geq c + 2 \). We use induction on \(k \). Since \(A_{c+1} \) is true, we may assume that \(A_{k-1} \) is
true. Fix a hyperplane $H \subset \mathbb{P}^r$ such that $H \cap Z = \emptyset$. Fix a general $Y \in L(r, e_{z,r,k-1})$. We have $Y \cap Z = 0$, $H \cap Y$ is a general union of $e_{z,r,k-1}$ points of H, and $h^0(\mathcal{I}_{Z,Y}(k)) \leq f_{z,r,k-1} + \delta$.

(i) First assume $f_{z,r,k-1} < f_{z,r,k}$. Let $E \subset H$ be a general union of $e_{z,r,k} - e_{z,r,k-1}$ lines; this is possible, because $e_{z,r,k} - e_{z,r,k-1} \geq 0$ (Lemma 10). By (3), we have $e_{z,r,k} - e_{z,r,k-1} = (k + 1) - 1$. Since E has maximal rank in H if and only if $H \cap E$ is a general union of lines and sundials, the Castelnuovo's semicontinuity theorem for cohomology ([5, Theorem III.12.8]) implies that it is sufficient to prove that $h^0(\mathcal{I}_{Z,Y,U}(k)) \leq f_{z,r,k} + \delta$.

Lemma 8. Assume $f_{z,r,c} \leq f_{z,r,c+1}$. Then A_k^c is true for all $k \geq c$.

Proof. A_k^c is true (Remark 4). Now assume $k = c + 1$. To copy step (i) of the proof of Lemma 7, it is sufficient to have $e_{z,r,c+1} \geq e_{z,r,c}$. Use Lemma 12. The case $k \geq c + 2$ is done as in the proof of Lemma 7.

Lemma 9. Fix Z as in Theorem 1 and integers $k > c$ and $t > e_{z,r,k}$. Let Y be a general element of $L(r,t)$. Then $h^0(\mathcal{I}_{Z,Y}(k)) \leq \delta$.

Proof. It is sufficient to do the case $t = e_{z,r,k} + 1$. Fix a hyperplane $H \subset \mathbb{P}^r$. First assume $k \geq c + 2$. Take a general $A \subseteq L(r,e_{z,r,k-1})$. We have $A \cap Z = \emptyset$, A_{k-1} gives $h^0(\mathcal{I}_{A\cup Z}(k-1)) = f_{z,r,k-1}$. Let $F \subset \mathbb{P}^r$ be a general union of $e_{z,r,k} + 1 - 2f_{z,r,k-1}$ lines of H and $f_{z,r,k-1}$ sundials whose support in contained in H. We conclude as in step (ii) of the proof of Lemma 7.

Proof of Theorem 1. First assume $z + (k + 1) y \leq (t + k)$ (we allow the equality). By the semicontinuity theorem for cohomology ([5, Theorem III.12.8]), it is sufficient to find $A \subseteq L(r,y)$ such that $A \cap Z = \emptyset$ and $h^0(\mathcal{I}_{Z,Y}(k)) \leq \delta$. By (2) and the assumption $y > e_{z,r,c}$, we have $k \geq c + 2$ and $y \leq e_{z,r,k}$. Fix a general $W \subset L(r,e_{z,r,k})$. Let $U \subset W$ be the union of the lines of W. By A_k, we have $h^0(\mathcal{I}_{Z,U}(k)) \leq \delta$. Since $Z \cup U$ is a union of some of the connected components of $Z \cup W$, we have $h^0(\mathcal{I}_{Z,Z'}(k)) \leq \delta$.

Now we check part (b). Since $f_{z,r,c} \leq f_{z,r,c+1}$, Lemma 8 gives A_k^c for all $k \geq c$.

Lemma 10. Assume $f_{z,r,c} \leq f_{z,r,c+1}$. Then A_k^c is true for all $k \geq c$. Then we get Lemma 9 with δ_i instead of δ. Then we continue as in the proof of part (a).

Proof of Theorem 2. Fix a hyperplane $H \subset \mathbb{P}^r$ such that $H \cap Z = \emptyset$. If either $r \geq 5$ or $r = 4$ and $c \geq 10$ for each integer $k \geq c$, set $x_k = \max(0, -r + k - c - 1)$. If $r = 4$ and $c \leq 9$, set $x_k := -r$. Hence $x_k = x_{k+1} = -r$. If $r = 4$ and $c \leq 9$, we have $x_k = -r$ for all $k \leq 10$. Consider the following statement A_k^r, $k \geq c$:

a_k^r: we have $h^0(\mathcal{I}_{Z,U}(k)) = f_{z,r,k+1}$ for a general $A \subseteq L(r,e_{z,r,k+1})$.

Take any $A \subseteq L(r,e_{z,r,k+1})$ such that $Z \cap A = \emptyset$. We have $h^0(\mathcal{I}_{Z,U}(k)) = h^0(\mathcal{I}_{Y,Z}(k)) = f_{z,r,k+1} + \delta$. Hence A_k^r is true if and only if $h^0(\mathcal{I}_{Z,U}(k)) = 0$ for a general $A \subseteq L(r,e_{z,r,k+1})$.

(a) In this step we prove A_k^r and A_{k+1}^r. A_c^r is true, because we assumed that $h^0(\mathcal{I}_{Z,Y}(c)) = 0$. To check A_{c+1}^c, we first notice that $x_k = x_{k+1}$, and hence we may apply (3) for the integer $x := x_c$. Since $f_{z,r,c+1} = 0$, we
have $f_{x,x+1} \geq f_{z,x,r}$. Since $e_{z,x,r} = 0$, Lemma 15 gives $e_{z,x+1,r} \geq e_{z,x,r}$. Hence the construction in step (i) of the proof of Lemma 7 works verbatim.

(b) In this step we prove A''_k for all $k \geq c$. Since the cases $k = c, c+1$ are true by step (a), we may assume that $k \geq c + 2$ and that A''_{k-1} is true. Taking the difference of (2) with $k' := k - 1$ and $x := x'$ and integers k, x, x', we get

$$e_{z,k-1,x} + (k + 1)\left(e_{z,x,k} - e_{z,k-1,x'}\right) + f_{z,r,k,x} - f_{z,r,k-1,x'} + x - x' = \left(k + r - 1\right).$$

(7)

We apply (7) with $x' = x_{k-1}$ and $x = x_k$. Hence either $x = x_k$ or $x = x_{k-1}$. In both cases, we have $0 \leq x - x' \leq 1$. If $x = x_k$, then we may apply the numerical Lemmas 10, 12, and 13 used in the proof of Theorem 1. We need different numerical lemmas if $x \neq x'$, that is, if $x_{k-1} < 0$ and $x_k = x_{k-1} + 1$.

Fix a general $Y \in L(r, e_{z,k-1,1})$. We have $Z \cap Y = \emptyset$, hence $h^1(\mathcal{J}_{Z,Y}(k-1)) = 0$. Since $h^0(\mathcal{J}_{Z,Y}(k-1)) = f_{z,r,k-1,x_{k-1}} - x_{k-1}$ and $Y \cap H$ is a general union of $e_{z,k-1,1}$ points of H. Since $h^1(\mathcal{J}_{Z,Y}(k-1)) = 0$, $h^0(\mathcal{J}_{Z,Y}(k-1)) = f_{z,r,k-1,x_{k-1}} - x_{k-1}$, we have $0 = h^0(\mathcal{J}_{Z,Y}(k-1)) = f_{z,r,k-1,x_{k-1}} - x_{k-1} - 1$ for a general $P \in P^0$ (and even a general $P \in H$ by Lemma 5 if $f_{z,r,k-1,x_{k-1}} - x_{k-1} - 1 \geq 0$). This is always the case if $x_{k-1} < 0$, that is, if $x_{k-1} \neq x_{k-1}$.

(b1) First assume $f_{z,r,k-1,x_{k-1}} \leq f_{z,r,k,x_k}$. Since $0 \leq x_k - x_{k-1} - 1 \leq 1$, Lemma 15 gives $e_{z,r,x_k} \geq e_{z,r,k-1,x_{k-1}} + 2$. Let $E_i \subset H$ be a general union of $e_{z,r,k-1,x_{k-1}} - 2$ lines. Take a general reducible conic $T \subset H$. Let $T' \subset P^0$ be a general sundial of P^0, and let $T'' \subset H$ be a general sundial of H with T as its support. Set $F := E_1 \cup T'$. Since $Z \cup Y \cup E_1 \cup T'$ is a specialization of a union of Z and deg$(Y \cup E_1 \cup T')$ lines, it is sufficient to prove that $h^0(\mathcal{J}_{Z,Y\cup E_1}(k)) = 0$. Castelnuovo’s sequence gives $h^1(\mathcal{J}_{Z,Y\cup E_1}(k)) = 0$. Lemma 14 gives $e_{z,r,k-1} \geq 0$. By (7) to apply Lemma 5, we need that $Y \cap H$ has at least one point; this is the reason why this proof does not work if $k < c = 1$.

(b2) Now assume $f_{z,r,k-1,x_{k-1}} > f_{z,r,k,x_k}$. Since $0 \leq x_k - x_{k-1} - 1 \leq 1$, Lemma 16 gives $e_{z,r,x_k} - e_{z,r,k-1,x_{k-1}} \geq 2(f_{z,r,k-1,x_{k-1}} - f_{z,r,k-1,x_{k-1}}) + 2$. We repeat step (i) of the proof of Lemma 7 taking inside F of a general union F of $e_{z,r,x_k} - e_{z,r,k-1,x_{k-1}} - 2(f_{z,r,k-1,x_{k-1}} - f_{z,r,k-1,x_{k-1}} + 1)$ lines, $f_{z,r,k-1,x_{k-1}} - f_{z,r,k-1,x_{k-1}} + 1$ reducible conics. Then we take the general sundials (in H and in P^0) with these conics as their supports. To apply Lemma 6, we need $e_{z,r,k-1,x_{k-1}} \geq f_{z,r,k-1,x_{k-1}} - f_{z,r,k-1,x_{k-1}} + 1$. This inequality is true by Lemma 15.

(c) Fix an integer $t \geq \left(\frac{(r+c+1)}{r} - z\right)/(c + r + 1)$. Let k be the critical value for the triple (r, c, t), i.e. the minimal positive integer such that $z + (k + 1)t \leq (k + 1)r$. Since $t \geq \left(\frac{(r+c+1)}{r} - z\right)/(c + r + 1)$, either $k \geq c + r + 1$ or $k = c + r'$ and $f_{z,r,k} = 0$. To prove Theorem 2 for the integer t it is sufficient to prove $h^1(\mathcal{J}_{Z,Y}(k)) = 0$ and $h^0(\mathcal{J}_{Z,Y}(k - 1)) = 0$ for a general $Y \in L(r, t)$. Since $L(r, t)$ is irreducible, the semicontinuity theorem for cohomology says that to prove Theorem 2 for the integer t it is sufficient to prove the existence of $A \in L(r, t)$ and $B \in L(r, t)$ such that $A \cap Z = B \cap Z = 0$, $h^0(\mathcal{J}_{Z,Y}(k)) = 0$ and $h^1(\mathcal{J}_{Z,Y}(k - 1)) = 0$. Since $t \geq \left(\frac{(r+c+1)}{r} - z\right)/(c + r + 1)$, we have $k \geq r' + 1$. Hence $x_k = x_{k-1} = 0$ since $x_k = 0$ the existence of A is proved as.

3. Numerical Lemmas

Lemma 10. Assume $r \geq 4$. Fix an integer $c > 0$. One has $e_{z,r,k} \geq e_{z,r,k-1} + k$ for all $k \geq c + 2$.

Proof. Assume $e_{z,r,k} \leq e_{z,r,k-1} + k - 1$. From (3), we get

$$e_{z,r,k} + (k + 1)(k + 1) - f_{z,r,k} \geq f_{z,r,k-1} \geq \left(\frac{r + k - 1}{r - 1}\right)^2.$$ (8)

From (2) for the integer $k' := k - 1$, we get

$$e_{z,r,k-1} = \left(\frac{(r+1)}{r} - z - f_{z,r,k-1}\right).$$ (9)

Since $f_{z,r,k} \leq k$ and $k' = (r+1)(r+k)$, from (11) and (12), we get

$$k(k^2 + 2k + 1) - (k - 1) f_{z,r,k} \geq (r - 1) \left(\frac{r + k - 1}{r - 1}\right)^2 + z.$$ (10)

Set $\mu(r, k) := (r - 1)(r + k - 1) - k^2$ and $z > 0$, to get a contradiction, it is sufficient to prove that $\mu(r, k) \geq 0$. First assume $r = 4$. We have $8 \mu(4, k) = (k + 3)(k + 1)(k - 1) - 8(k^2 + k - 1)$. Obviously $8 \mu(4, k) \geq 0$ if $k \geq 6$. We have $\mu(4, 5) = 210 - 5\cdot 29, \mu(4, 4) = 105 - 76 > 0$, and $\mu(4, 3) = 45 - 33 > 0$.

We have $\mu(r, 1) - \mu(r, k) = k(k + 1) - (r + 1)^2 = (r + 1)(r + 1)[(k(r + 1)/(r + k)) - 1] > 0$. By induction on r, we get the lemma for all $k \geq 5$.

Lemma 11. Fix integers $r \geq 4, c > 0, z \geq 0$, and $x \leq 0$. Then $e_{z,c,x} \geq e_{z,c-1,x} + k$ for all $k \geq 2$.

Proof. Assume $e_{z,c,x} \leq e_{z,c-1,x} + k - 1$. From (3), we get

$$e_{z,c-1,x} + (k + 1)(k + 1) - f_{z,c,x} \geq f_{z,c-1,x} \geq \left(\frac{r + k - 1}{r - 1}\right)^2.$$ (11)

From (2) for the integer $k' := k - 1$, we get

$$e_{z,c-1,x} = \left(\frac{(r+k-1)}{k} + x - z - f_{z,c-1,x}\right).$$ (12)
Since \(f_{z, r, k} \leq k, \ (c+1)t \leq (\frac{r_c}{r^2}), \ k \ (\frac{rk-1}{r-1}) = r \ (\frac{rk-1}{r}), \ z \geq 0, \) and \(x \leq 0, \) from (11) and (12), we get
\[
k(k+1)(k-1)-(k-1) f_{z, r, k-1} \geq (r-1) \left(\frac{r+k-1}{r} \right).
\]
\[
(13)
\]
Set \(\phi(r, k) := (r-1) \ (\frac{rk-1}{r}) - k(k+1)(k-1). \) Since \(f_{z, r, k-1} \geq 0, \) to get a contradiction it is sufficient to prove that \(\phi(r, k) > 0. \) First assume \(r = 4. \) We have \(8\phi(4, k) = (k+3)(k-1)k - 8(k+1)(k-1) = (k+1)(k^2 - 3k + 8). \) Hence \(\phi(4, k) > 0 \) for all \(k \geq 2. \) Now assume \(r > 4. \) We have \(\phi(r+1, k) - \phi(r, k) = k \ (\frac{rk-1}{r}) - (\frac{rk}{r+1}) \ (k(r+1)/(r+k)] - 1) > 0. \) By induction on \(r, \) we get the lemma.

Lemma 12. Assume \(r \geq 4. \) Fix integers \(c, z \) such that \(c > 0 \) and \(0 \leq z \leq (\frac{c}{c+1}). \) One has \(e_{z, r, k} \geq e_{z, r, k-1} \) for all \(k > c. \)

Proof. By Lemma 10, it would be sufficient to do the case \(k = c + 1. \) Assume \(e_{z, r, k} \leq e_{z, r, k-1} - 1. \) From (3) and (12), we get
\[
\left(\frac{r+k-1}{r} \right) - k(k+1) - (k-1) f_{z, r, k-1} \geq k \left(\frac{r+k-1}{r} \right)
\]
which is obviously false.

Lemma 13. Assume \(r \geq 4, \ k > c > 0, \) and \(f_{z, r, k} < f_{z, r, k-1}. \) If \(r = 4, \) assume \(k \geq 9. \) Then \(e_{z, r, k}^e - e_{z, r, k-1}^e \geq 2(f_{z, r, k-1} - f_{z, r, k}). \)

Proof. Assume \(e_{z, r, k}^e - e_{z, r, k-1}^e \leq 2(f_{z, r, k-1} - f_{z, r, k}) - 1. \) From (3), we get
\[
e_{z, r, k-1} + (2k+1)(f_{z, r, k-1} - f_{z, r, k}) - 1 - k \geq \left(\frac{r+k-1}{r-1} \right).
\]
\[
(15)
\]
Since \(e_{z, r, k-1} \leq \left[(\frac{k+1}{r-1}) - z \right] - f_{z, r, k-1}/k, k \ (\frac{rk-1}{r}) = r \ (\frac{rk-1}{r}), \) and \(f_{z, r, k} \geq 0, \) from (15), we get
\[
(2k^2 + k - 1) f_{z, r, k-1} - k(k+1) \geq (r-1) \left(\frac{r+k-1}{r} \right) + z.
\]
\[
(16)
\]
Since \(f_{z, r, k-1} \leq k, \) we get
\[
2k(k+1)(k-1) \geq (r-1) \left(\frac{r+k-1}{r} \right) + z
\]
\[
(17)
\]
Set \(\alpha(r, k) := (r-1) \ (\frac{rk-1}{r}) - k(2k^2 - 2). \) Since \(z > 0, \) to get a contradiction and hence to prove the lemma, it is sufficient to prove that \(\alpha(r, k) > 0. \) First assume \(r = 4. \) We have \(8\alpha(4, k) = (k+3)(k+1)k - 8(2k^2 - 2) - k(k+1) \ (k+3)(k+2) - 16(k+1) \geq 16. \) Hence \(\alpha(4, k) \geq 0 \) if and only if \(k \geq 9. \)

Now assume \(r > 4. \) We have \(\alpha(r, k) - \alpha(r-1, k) = k \ (\frac{rk-1}{r}) - (\frac{r^2k}{r-1}) = \ (\frac{r^2k}{r-1}) [(rk/(k-1)-1] > 0 \) for all \(k \geq 2. \) We have \(\alpha(5, k) = 3 - 21 - 48 > 0, \) and \(\alpha(5, k) \) is an increasing function of \(k. \) Hence \(\alpha(r, k) \geq 0 \) if either \(r \geq 5 \) or \(k \geq 9. \)

Lemma 14. Assume \(r \geq 4. \) Fix integers \(k, \ c, \ z, \ x, \) and \(x' \) such that \(k > c > 0, \ 0 \leq z \leq (\frac{c}{c+1}), \ x' < 0, \) and \(x = x' + 1. \) One has \(e_{z, r, k}^e \geq e_{z, r, k-1}^e + x' + 2. \)

Proof. Assume \(e_{z, r, k}^e \leq e_{z, r, k-1}^e + x' + 1. \) By (7), we get
\[
e_{z, r, k}^e + f_{z, r, k} - f_{z, r, k-1} \geq \left(\frac{r+k-1}{r} \right).
\]
\[
(18)
\]
We have \(f_{z, r, k} - f_{z, r, k-1} \leq k. \) Since \(x' \leq 0, \) we have \(e_{z, r, k-1}^e + f_{z, r, k} - f_{z, r, k-1} \geq (\frac{r+k-1}{r}) \) / \(k. \) Hence
\[
\left(\frac{r+k-1}{r} \right) + k(2k+2) \geq k \left(\frac{r+k-1}{r-1} \right).
\]
\[
(19)
\]
Since \(k \ (\frac{rk-1}{r-1}) = r \ (\frac{rk-1}{r-1}), \) \(r \geq 4, \) and \(k \geq 2, \) we get a contradiction.

Lemma 15. Take the setup of Theorem 2. For each integer \(y > c \) with \(y \geq 0, \) then \(e_{z, r, y} \geq 2y. \)

Proof. By Lemma 14, it is sufficient to do the case \(y = c + 1. \) In this case, we have \(y = (\frac{z}{z+1}) - z. \) Assume \(e_{z, r, y} \geq 2c + 1. \) Since \(f_{z, r, x-1, y} \leq c + 1, \) we get \((c+2)(2c+1) + c+1 \geq (\frac{c+1}{c+2}) \) / \(r. \) The right-hand side of this inequality is an increasing function of \(r. \) For \(r = 4, \) this inequality fails for all \(c \geq 2, \) because \(24(2c^2 + 6c + 3) < (c+5)(c+4)(c+3)(c+2) \) for all \(c \geq 2. \)

Lemma 16. Take the setup of Theorem 2. Assume \(r \geq 4, \ k > c > 0, \) \(x_{k-1} < 0, \) and \(f_{z, r, k} < f_{z, r, k-1, x_{k-1}}. \) Then \(e_{z, r, k} - e_{z, r, k-1, x_{k-1}} \geq 2(f_{z, r, k} - f_{z, r, k-1}) + 2. \)

Proof. Assume \(e_{z, r, k} - e_{z, r, k-1, x_{k-1}} \leq 2(f_{z, r, k} - f_{z, r, k-1}) + 2. \) First with \(x_{k-1} = 1, \) we get
\[
\left(\frac{r+k-1}{r} \right) + (2k+1)(f_{z, r, k-1, x_{k-1}} - f_{z, r, k,x_{k-1}}) + (k+1) - 1 \geq \left(\frac{r+k-1}{r} \right).
\]
\[
(20)
\]
Since \(k \ (\frac{rk-1}{r-1}) = r \ (\frac{rk-1}{r-1}), \) we get
\[
2k^2(k+1) > (r-1) \left(\frac{r+k-1}{r} \right).
\]
\[
(21)
\]
This inequality is false if either \(r = 4 \) and \(k \geq 11 \) or \(r \geq 5 \) and \(k \geq 2. \)

Acknowledgment

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

