Research Article

On α-Cogenerated Commutative Unital C^*-Algebras

Ehsan Momtahan

Department of Mathematics, Yasouj University, Yasouj, Iran

Correspondence should be addressed to Ehsan Momtahan; momtahan_e@hotmail.com

Received 22 November 2012; Accepted 17 May 2013

Copyright © 2013 Ehsan Momtahan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gelfand-Naimark’s theorem states that every commutative C^*-algebra is isomorphic to a complex valued algebra of continuous functions over a suitable compact space. We observe that for a completely regular space X, βX is dense-α-separable if and only if $C(X)$ is α-cogenerated if and only if every family of maximal ideals of $C(X)$ with zero intersection has a subfamily with cardinal number less than α and zero intersection. This gives a simple characterization of α-cogenerated commutative unital C^*-algebras via their maximal ideals.

1. Introduction

In this paper, by R we always mean a commutative ring with identity. Let F denote the reals or the complexes. For a completely regular (topological space) X, let $C(X)$ stand for the F-algebra of continuous maps $X \to F$. The reader is referred to [1] for undefined terms and notations. By βX, we mean the Stone-Čech compactification of X. We denote the ring of all bounded continuous functions by $C^*(X)$. It is well known that for every completely regular space X, we have $C^*(X) \cong C(\beta X)$ (see [1, 71]). This note is a continuation of [2], in which we showed that for a compact space X, the following are equivalent: X is dense-separable if and only if $C(X)$ is \aleph_0-cogenerated if and only if $C(X)$ is separable. Here, we will drop the compactness condition of the space X and improve our main result in [2]. Furthermore we generalize our results to any regular cardinal α.

Let α be a regular cardinal. A set A is said to be an α-set if $|A| < \alpha$. Following Motamedi in [3], we call a ring R α-cogenerated if for any set $\{ A_i \mid i \in I \}$ of ideals of R with $\bigcap_{i \in I} A_i = (0)$ there exists an α-subset I_0 of I such that $\bigcap_{i \in I_0} A_i = (0)$ and α is the least regular cardinal with this property. Any left or right Artinian ring is \aleph_0-cogenerated. Any ring with countably many distinct ideals is α-cogenerated, where α is one of \aleph_0 or \aleph_1. In [2], it has been observed that $C[0,1]$, $C(\mathbb{K})$, where \mathbb{K} is the Cantor perfect set and $C(\beta \mathbb{K})$ are \aleph_1-cogenerated. We call a ring R α-separable if it has the following property: if $\{ M_i \}_{i \in I}$ is a family of maximal ideals with $\bigcap_{i \in I} M_i = (0)$, then there exists an α-subset I_0 of I such that $\bigcap_{i \in I_0} M_i = (0)$. In this note \aleph_1-separable rings are also called separable. Every α-cogenerated ring is α-separable. However, the converse is not true. In [2], we give an example of a separable ring which is not \aleph_1-cogenerated.

The density of a space X is defined as the smallest cardinal number of the form $|A|$, where A is a dense subset of X; this cardinal number is denoted by $d(X)$ (see [4]). A space X is called dense-α-separable if every dense subset A of X has a dense-α-subset B, which implies that $d(A)$ and hence $d(X)$ are less than α. Dense-separable (or in our terminologies dense-\aleph_1-separable) spaces are of great interest. Dense-separable spaces were introduced and studied by Levy and McDowell in [5]. It is evident that every dense-separable space is separable and every second countable space is dense-separable. It is well known that \mathbb{R}, the Sorgenfrey line satisfies all the countability axioms but the second (see [6], page 195, example 3). Since every dense subset of \mathbb{R} is also dense in \mathbb{R}, the Sorgenfrey line is dense-separable. In [5], it has been shown that $\beta \mathbb{Q}$ and $\beta \mathbb{Q} \setminus \mathbb{Q}$ are dense-separable.

2. Dense-α-Separable Spaces

Since it is easy to observe that $C(X)$ is \aleph_0-cogenerated if and only if X is a finite space, and in this case $C(X)$ is a finite direct product of F, we may suppose that in our discussion
Let X be a completely regular space; then the following hold.

1. Suppose Y is a subset of X; then Y is a dense subset of X if and only if $f \in C(X)$; $f_Y = 0$ implies that $f \equiv 0$.
2. Suppose Y is a subset of X; then Y is a dense subset of X if and only if $f \in C(X)$; $Y \subseteq \text{int}_X(Z(f))$ implies that $f \equiv 0$.

Proof. Part 1. (\Rightarrow): Let $x \in X$ and U_x an open set containing x. We must show that $U_x \cap Y \neq \emptyset$, and suppose on the contrary that $U_x \cap Y = \emptyset$; then $Y \subseteq X \setminus U_x$; by complete regularity of X, there exists a function $f \in C(X)$ such that $f(x) = 1$ and $f(Y) = 0$, and this is a contradiction to our hypothesis.

(\Leftarrow): Since R is a T_1-space and \emptyset is closed in R, hence $f^{-1}[0] = \emptyset$ is closed in X. Since $Y \subseteq f^{-1}[0]$, we conclude that $X = \overline{Y} \subseteq f^{-1}[0]$. Hence $f \equiv 0$.

Part 2. It is enough to show the necessary part: suppose that $\overline{Y} \neq X$; hence there exists $z \in X \setminus \overline{Y}$ and a function $f : X \to [0,1]$ such that $f(z) = 1$ and $f(Y) = 0$. In such as Y and z are contained in disjoint zero sets, there exists a function g such that $\overline{Y} \subseteq \text{int} Z(g)$ and $g(z) \neq 0$ (see [1, 1.15]). This is a contradiction.

Lemma 2. For $A \subseteq \beta X$, $O^A = (0)$ if and only if $M^A = (0)$.

Proof. Suppose that $O^A = (0)$; then by the previous lemma $\overline{A} = \beta X$. Now suppose that $f \in M^A$. There is a positive unit u in $C(X)$ such that $f = uf$ and $-1 \leq f \leq 1$ (see [1, 1.16]). Since $A \subseteq \text{cl}_X Z(f) \subseteq \text{Z}(\overline{f})$ and $A = \beta X$, we have $\overline{f} = 0$. Hence $f = 0$ and this implies that $f \equiv 0$.

In the next theorem, which is the main result of this note, we have generalized [2, Theorem 3] by removing the compactness hypothesis and also replacing X_0 with an arbitrary (regular) cardinal. Since βX, by its very definition, is compact and $\beta X = X$ whenever X is compact, the earlier form of our result is just a special case of the new one. On the other hand since βX always exists, we can (always, i.e., for an arbitrarily completely regular space X) judge when the ring $C(X)$ is α-cogenerated and also α-separating by looking at βX.

Remark 3. Before stating our main theorem, we need some useful facts. Let X be a completely space and $A \subseteq \beta X$. Suppose that $O^A = \{f \in C(X) \mid A \subseteq \text{int}_X \text{cl}_X Z(f)\}$ and $M^A = \{f \in C(X) \mid A \subseteq \text{cl}_X Z(f)\}$. Lemma 1 (Lemma 2, resp.) shows that $M^A = (0)$ ($O^A = (0)$, resp.), then A is dense in X and vice versa. Dietrich Jr. in [7] has shown that for every ideal I of $C(X)$, there exists $A \subseteq \beta X$ such that $O^A \subseteq I \subseteq M^A$. By McKnight Theorem [7, Theorem 1.3], the set A is $\bigcap_{f \in I} \text{cl}_X Z(f)$. Dietrich Jr. has also proved that

Theorem 4. Let X be an infinite completely regular space. The following are equivalent:

1. βX is dense-α-separable;
2. $C(X)$ is α-cogenerated;
3. $C(X)$ is α-separable.

Proof. (1) \Rightarrow (2): let $\bigcap_{j \in J} I_j = (0)$. For each $j \in J$, there exists $A_j \subseteq \beta X$ such that $O^{A_j} \subseteq I_j \subseteq M^{A_j}$. By the previous observations from [7] we have

$$O^{\bigcup_{j \in J} A_j} = \bigcap_{j \in J} O^{A_j} \subseteq \bigcap_{j \in J} I_j \subseteq \bigcap_{j \in J} M^{A_j} = M^{\bigcup_{j \in J} A_j},$$

but $\bigcap_{j \in J} I_j = (0)$; therefore $O^{\bigcup_{j \in J} A_j} = \bigcap_{j \in J} O^{A_j} = (0)$, and hence by Lemma 1, $\bigcup_{j \in J} A_j$ is dense in βX. Since βX is a dense-α-separable space, there exists an α-subset B of $\bigcup_{j \in J} A_j$, such that $\overline{B} = X$. Hence there exists an α-set $B_0 \subseteq J$ such that $\bigcap_{j \in B_0} A_j$ is dense in βX; that is, $O^{\bigcup_{j \in B_0} A_j} = (0)$. Now by Lemma 2, $\bigcap_{j \in B_0} M^{A_j} = (0)$, and this latter observation in its turn shows that $\bigcap_{j \in B_0} I_j = (0)$.

(2) \Rightarrow (3): it is evident.

(3) \Rightarrow (1): let D be a dense subset of βX. Then by Lemma 1, $\bigcap_{j \in J} O^{A_j} = O^D = (0)$. Now by Lemma 2, $M^D = (0)$. Since $C(X)$ is α-separable, there is an α-subset A of D such that $M^A = (0) = O^A$, and again by Lemma 1, this shows that A is dense in βX and hence dense in D.

Observe that when X is finite, $C(X)$ is artinian and hence \mathcal{N}_0-α-cogenerated. If $C(X)$ is separable, then X is dense-separable. A ring R is called von-Neumann regular if for every $a \in R$, there exists $b \in R$ such that $aba = a$. Kaplansky has shown that every ideal in a commutative von-Neumann regular ring can be written as the intersection of some family of maximal ideals. Hence, a commutative von-Neumann regular ring is α-separable if and only if it is α-cogenerated. This implies that for any p-space X, $C(X)$ is α-separable if and only if $C(X)$ is α-cogenerated. A ring is called right V-ring (after Villamayor) if every right simple R-module is injective. It is well known that over right V-rings, every submodule of a right R-module M can be written as the intersection of a family of maximal submodules of M. Hence over a right V-ring, a right R-module is α-cogenerated if and only if it is α-separable. Let $\{I_j\}_{j \in J}$ be a family of ideals of R; we have $\bigcap_{j \in J} M_n(I_j) = M_n(\bigcap_{j \in J} I_j)$. Hence as far as one is concerned with two sided ideals of $M_n(R)$, one obtains that $M_n(R)$ is α-separable (cogenerated, resp.) when R is α-separable (cogenerated, resp.).

Corollary 5. The following are equivalent:

1. βX is dense-α-separable;
2. $C(\beta X)$ is α-cogenerated;
3. $C(\beta X)$ is α-separable;
(4) \(C(X) \) is \(\alpha \)-cogenerated;
(5) \(C(X) \) is \(\alpha \)-separable;
(6) \(C^*(X) \) is \(\alpha \)-cogenerated;
(7) \(C^*(X) \) is \(\alpha \)-separable.

Proof. It is well known that \(C(\beta X) \cong C^*(X) \), and by Theorem 4 the verification is immediate. \(\square \)

Corollary 6. If \(X \) is either (1) separable metric or (2) separable and ordered, then \(C(X) \) is \(\aleph_1 \)-cogenerated.

Proof. By [5, Corollary 3.2.], for these two cases \(\beta X \) is dense-separable. Now by Theorem 3 the proof is thorough. \(\square \)

When \(C(X) \) is separable, then \(X \) is also separable. However, the converse is not true. In [5, example 5.3], a separable compact space \(Y \) has been introduced which is not dense-separable; for the space \(Y, C(Y) \) is not separable. Otherwise \(Y = \beta Y \) should be dense-separable which is not the case. Based on these observations we have the following.

Example 7. There exists a separable space \(Y \), such that \(C(Y) \) is not separable.

However, the converse is true when we have a much stronger property as we observe in the next proposition.

Proposition 8. Let \(R \) be a commutative ring. Then \(R \) is \(\alpha \)-separable if and only if \(X = \text{Max}(R) \) is dense-\(\alpha \)-separable.

Proof. Let \(X \) be dense-\(\alpha \)-separable and \(\mathcal{A} = \{M_i\}_{i \in I} \) a family of maximal ideals with zero intersection. This family then will be dense in \(X \). By dense-\(\alpha \)-separability of \(X \), \(\mathcal{A} \) has an \(\alpha \)-subset with zero intersection. Let \(R \) be an \(\alpha \)-separable ring and \(\mathcal{A} \) a dense subspace of \(X \). By definition \(\mathcal{A} \) has a zero intersection and by \(\alpha \)-separability of \(R \), it has an \(\alpha \)-subspace which is dense in \(X \). \(\square \)

According to Gelfand-Naimark's theorem every commutative \(C^* \)-algebra with identity is isomorphic to \(C(X, \mathbb{C}) \), where \(X \) is a suitable compact Hausdorff space. Based on Theorem 3 and Gelfand-Naimark's theorem, we have the following.

Corollary 9. Let \(A \) be a commutative \(C^* \)-algebra with identity and \(\alpha \) an arbitrary regular cardinal. Then the following are equivalent:

1. \(A \) is \(\alpha \)-separable;
2. \(A \) is \(\alpha \)-cogenerated.

Acknowledgment

The author would like to thank Mr. Olfati for his useful comments and discussion on the subject.

References

Submit your manuscripts at http://www.hindawi.com