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Abstract. 
Hoteling's 
	
		
			

				𝑇
			

			

				2
			

		
	
 control charts are widely used in industries to monitor multivariate processes. The classical estimators, sample mean, and the sample covariance used in 
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				2
			

		
	
 control charts are highly sensitive to the outliers in the data. In Phase-I monitoring, control limits
are arrived at using historical data after identifying and removing the multivariate outliers. We propose Hoteling's 
	
		
			

				𝑇
			

			

				2
			

		
	
 control charts with high-breakdown robust estimators based on
the reweighted minimum covariance determinant (RMCD) and the reweighted minimum
volume ellipsoid (RMVE) to monitor multivariate observations in Phase-I data. We assessed the performance of these robust control charts based on a large number of Monte
Carlo simulations by considering different data scenarios and found that the proposed control charts have better performance compared to existing methods.


1. Introduction
 Control charts are widely used in industries to monitor/control processes. Generally, the construction of a control chart is carried out in two phases. The Phase-I data is analyzed to determine whether the data indicates a stable (or in-control) process and to estimate the process parameters and thereby the construction of control limits. The Phase-II data analysis consists of monitoring future observations based on control limits derived from the Phase-I estimates to determine whether the process continues to be in control or not. But trends, step changes, outliers, and other unusual data points in the Phase-I data can have an adverse effect on the estimation of parameters and the resulting control limits. That is, any deviation from the main assumption (in our case, identically and independently distributed from normal distribution) may lead to an out-of-control situation. Therefore, it becomes very important to identify and eliminate these data points prior to calculating the control limits. In this paper, all these unusual data points are referred to as “outliers.”
Multivariate quality characteristics are often correlated, and to monitor the multivariate process mean Hoteling’s 
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 control chart [1, 2] is widely used. To implement Hoteling's 
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 control chart for individual observations in Phase-I, for each observation 
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 Phase-I observations. In Phase-I monitoring, the 
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 values are compared with the 
	
		
			

				𝑇
			

			

				2
			

		
	
 control limit derived by assuming that the 
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’s are multivariate normal so that the 
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. However, the classical estimators, sample mean, and sample covariance are highly sensitive to the outliers, and hence robust estimation methods are preferred as they have the advantage of not being unduly influenced by the outliers. The use of robust estimation methods is well suited to detect multivariate outliers because of their high breakdown points which ensure that the control limits are reasonably accurate. Sullivan and Woodall [3] proposed a 
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 chart with an estimate of the covariance matrix based on the successive differences of observations and showed that it is effective in detecting process shift. However, these charts are not effective in detecting multiple multivariate outliers because of their low breakdown point.
Vargas [4] introduced two robust 
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 control charts based on robust estimators of location and scatter, namely, the minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE) for identifying the outliers in Phase-I multivariate individual observations. Jensen et al. [5] showed that 
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  control charts have better performance when outliers are present in the Phase-I data. Chenouri et al. [6] used reweighted MCD estimators for monitoring the Phase-II data, without constructing Phase-I control charts. However, in many situations Phase-I control charts are necessary to assess the performance of the process and also to identify the outliers. We propose 
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 for monitoring Phase-I multivariate individual observations. RMCD/RMVE estimators are statistically more efficient than MCD/MVE estimators and have a manageable asymptotic distribution. We empirically arrive at Phase-I control limits for the 
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 control chart for some specific sample sizes and fitted a nonlinear model to determine control limits for any sample size for dimensions 2 to 10. Our simulation studies show that 
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 control charts for monitoring the Phase-I data.
The organization of the remaining part of the paper is as follows. In Section 2, we discuss the properties of a good robust estimator and we briefly explain the MCD/MVE estimators and their reweighted versions. The proposed 
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 control charts are given in Section 3 along with the control limits arrived at based on Monte Carlo simulations. We assess the performance of the proposed control charts in Section 4, and the implementation of the proposed methods is illustrated in a case example in Section 5. Our conclusions are given in Section 6. 
2. Robust Estimators
 The affine equivariance property of the estimator is important because it makes the analysis independent of the measurement scale of the variables as well as the transformations or rotations of the data. The breakdown point concept introduced by Donoho and Huber [7] is often used to assess the robustness. The breakdown point is the smallest proportion of the observations which can render an estimator meaningless. A higher breakdown point implies a more robust estimator, and the highest attainable breakdown point is 
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 in the case of median in the univariate case. For more details on affine equivariance and breakdown points one may refer to Chenouri et al. [6] or Jensen et al. [5].
An estimator is said to be relatively efficient compared to any other estimator if the mean square error for the estimator is the least for at least some values of the parameter compared to others. A robust estimator is considered to be good if it carries the property of affine equivariance along with a higher breakdown point and greater efficiency. In addition to the above three properties of a good robust estimator, it should be possible to calculate the estimator in a reasonable amount of time to make it computationally efficient.
It is difficult to get an affine equivariant and robust estimator as affine equivariance and high breakdown will not come simultaneously. Lopuhaä and Rousseeuw [8] and Donoho and Gasko [9] showed that the finite sample breakdown point of 
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 is difficult for an affine equivariant estimator. The largest attainable finite sample breakdown point of any affine equivariant estimator of the location and scatter matrix with a sample size 
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 [10]. Therefore relaxing the affine equivariance condition of the estimators to invariance under the orthogonal transformation makes it easy to find an estimator with the highest breakdown point.
The classical estimators, sample mean vector, and covariance matrix of location and scatter parameters are affine equivariant but their sample breakdown point is as low as 
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. The MCD and MVE estimators have the highest possible finite sample breakdown point 
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. However, both of these estimators have very low asymptotic efficiency under normality. But the reweighted versions of MCD and MVE estimators have better efficiency without compromising on the breakdown point and rate of convergence compared to MCD and MVE. In the next two subsections, we discuss in detail about the MCD and MVE estimators and their reweighted versions. 
2.1. MCD and RMCD Estimators
The MCD estimators of location and scatter parameters of the distribution are determined by a two-step procedure. In step 1, all possible subsets of observations of size 
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 are obtained. In step 2, the subset whose covariance matrix has the smallest possible determinant is selected. The MCD location estimator 
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 represents the breakdown point of the MCD estimators. The MCD estimator has its highest possible finite sample breakdown point when 
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 rate of convergence but has a very low asymptotic efficiency under normality. Computing the exact MCD estimators (
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) is computationally expensive or even impossible for large sample sizes in high dimensions [13], and hence various algorithms have been suggested for approximating the MCD. Hawkins and Olive [14] and Rousseeuw and van Driessen [15] independently proposed a fast algorithm for approximating MCD. The FAST-MCD algorithm of Rousseeuw and van Driessen finds the exact MCD for small datasets and gives a good approximation for larger datasets, which is available in the standard statistical software SPLUS, R, SAS, and Matlab.

MCD estimators are highly robust, carry equivariance properties, and can be calculated in a reasonable time using the FAST-MCD algorithm; however, they are statistically not efficient. The reweighted procedure will help to carry both robustness and efficiency. That is, first a highly robust but perhaps an inefficient estimator is computed, which is used as a starting point to find a local solution for detecting outliers and computing the sample mean and covariance of the cleaned data set as in Rousseeuw and van Zomeren [16]. This consists of discarding those observations whose Mahalanobis distances exceed a certain fixed threshold value. MCD is the current best choice for the initial estimator of a two-step procedure as it contains the robustness, equivariance, and computational efficiency properties along with its 
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				𝑝
			

		
	
 degrees of freedom.
This reweighting technique improves the efficiency of the initial MCD estimator while retaining (most of) its robustness. Hence the RMCD estimator inherits the affine equivariance, robustness, and asymptotic normality properties of the MCD estimators with an improved efficiency.
2.2. MVE and RMVE Estimators
 Determining the MVE estimators of location and scatter parameters of the distribution is almost in line with that of the MCD estimator. As in the case of MCD, all the possible subsets of data points with size 
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 is obtained first. Then the ellipsoid of minimum volume that covers the subsets are obtained to determine the MVE estimators. The MVE location estimator is the geometrical center of the ellipsoid, and the MVE scatter estimator is the matrix defining the ellipsoid itself, multiplied by an appropriate constant to ensure consistency [13, 16]. Thus MVE estimator does not correspond to the sample mean vector and the sample covariance matrix as in the case of the MCD estimator. Here 
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 rate of convergence and a nonnormal asymptotic distribution [17].
As in the case for MCD estimators, MVE estimators are also not efficient. Hence, a reweighted version similar to that for MCD has been proposed by Rousseeuw and van Zomeren [16]. Note that it has been shown more recently that the RMVE estimators do not improve on the convergence rate (and thus the 0% asymptotic efficiency) of the initial MVE estimator [8, 12]. Therefore, as an alternative, a one-step M-estimator can be calculated with the MVE estimators as the initial solution [13, 18] which results in an estimator with the standard 
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 convergence rate to a normal asymptotic distribution. For more details on MCD/MVE estimators one may refer to Chenouri et al. [6] or Jensen et al. [5]. The algorithm to determine the MVE/RMVE estimators is available in the statistical software SPLUS, R, SAS, and Matlab. 
3. Robust Control Charts
 We propose to use 
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 charts with robust estimators of location and dispersion parameters based on RMCD/RMVE for monitoring the process mean of Phase-I multivariate individual observations. RMCD/RMVE estimators inherit the nice properties of initial MCD estimators such as affine equivariance, robustness, and asymptotic normality while achieving a higher efficiency. We now define a robust 
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The exact distribution of 
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 estimators not available, hence the control limits for Phase-I data are obtained empirically. In the next subsection we apply Monte Carlo simulation to estimate quantiles of the distribution of 
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 for several combinations of sample sizes and dimensions. For each dimension, we further introduce a method to fit a smooth nonlinear model to arrive, the control limits for any given sample size. 
3.1. Computation of Control Limits
 We performed a large number of Monte Carlo simulations to obtain the control limits. We generated 
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Figure 1: Scatter plot of 
	
		
			

				𝑇
			

			

				2
			

			
				R
				M
				C
				D
			

			
				/
				𝑇
			

			

				2
			

			
				R
				M
				V
				E
			

		
	
 control limits and the fitted curve for 
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.
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Figure 2: Scatter plot of 
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 control limits and the fitted curve for 
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.
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Figure 3: Scatter plot of 
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 control limits and the fitted curve for 
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.


From Figures 1, 2, and 3, we can see that the nonlinear fit is very well supported by the high 
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 values, which help us to determine the 
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 and 
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 control limits for any given sample size. The least square estimates of the parameters 
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 when 
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				0
			

		
	
 for dimensions 
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				0
				)
			

		
	
 and 
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 = (0.05, 0.01 and 0.001) for 
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 control charts are given in Table 1. Using these estimates, the control limits for 
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 and 
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 can be found using (6) for any sample size.  
Table 1: Estimates of the model parameters 
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				2
				(
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				𝑝
				,
				𝛼
				)
			

		
	
 for 
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/
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 control charts.
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 = 0.05 	 	 	
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 = 0.01 	 	 	
	
		
			

				𝛼
			

		
	
 = 0.001 	 
	
	
		
			
				̂
				𝑎
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				𝑎
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				𝑎
			

			

				1
			

		
	
	
	
		
			
				̂
				𝑎
			

			

				2
			

		
	
	
	
		
			
				̂
				𝑎
			

			

				3
			

		
	
	
	
		
			
				̂
				𝑎
			

			

				1
			

		
	
	
	
		
			
				̂
				𝑎
			

			

				2
			

		
	
	
	
		
			
				̂
				𝑎
			

			

				3
			

		
	

	

	 	 	 	 	 	
	
		
			

				𝑇
			

			

				2
			

			
				R
				M
				C
				D
			

		
	
	 	 	 	 
	

	 2 	 17.223 	 41102 	 2.647 	 21.134 	 38170 	 2.329 	 27.051 	 192909 	 2.508 
	3 	 20.134 	 35844 	 2.209 	 24.287 	 128924 	 2.344 	 31.350 	 1144947 	 2.718 
	4 	 23.152 	 269357 	 2.548 	 28.181 	 1272773 	 2.773 	 35.575 	 5989325 	 2.973 
	5 	 24.685 	 467949 	 2.524 	 28.437 	 1417059 	 2.632 	 31.013 	 2666196 	 2.593 
	6 	 26.962 	 1762051 	 2.746 	 29.654 	 3061216 	 2.711 	 31.662 	 5414248 	 2.669 
	7 	 24.892 	 1099128 	 2.493 	 22.882 	 1585224 	 2.416 	 19.058 	 3465278 	 2.444 
	8 	 27.236 	 2908821 	 2.667 	 27.245 	 4922576 	 2.644 	 28.326 	 12134778 	 2.710 
	9 	 23.974 	 2447649 	 2.534 	 21.420 	 4726835 	 2.554 	 18.772 	 14096595 	 2.676 
	10 	 31.894 	 12572909 	 2.914 	 37.085 	 34375654 	 3.033 	 56.573 	 172176786 	 3.301 
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				R
				M
				V
				E
			

		
	
	 	 	 	 
	

	2 	 17.442 	 29553 	 2.494 	 21.365 	 31571 	 2.244 	 27.594 	 148747 	 2.434 
	3 	 20.286 	 22497 	 2.066 	 24.387 	 59096 	 2.13 	 31.326 	 338665 	 2.402 
	4 	 23.095 	 108855 	 2.286 	 27.549 	 291064 	 2.372 	 35.109 	 1255429 	 2.576 
	5 	 24.796 	 238966 	 2.334 	 28.302 	 508097 	 2.367 	 32.008 	 1063783 	 2.377 
	6 	 27.585 	 1041090 	 2.606 	 31.126 	 1882888 	 2.601 	 37.136 	 4714353 	 2.671 
	7 	 28.151 	 1541634 	 2.598 	 30.936 	 3183762 	 2.635 	 39.357 	 12199414 	 2.827 
	8 	 34.917 	 14798692 	 3.127 	 45.767 	 75616029 	 3.419 	 70.875 	 840512379 	 3.904 
	9 	 39.191 	 59094377 	 3.415 	 50.271 	 275604839 	 3.679 	 72.768 	 1960966919 	 4.039 
	10 	 50.733 	 950607720 	 4.099 	 68.154 	 4696452032 	 4.379 	 110.587 	 56398461817 	 4.881 
	



For the implementation of a robust control chart, first collect a sample of 
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 multivariate individual observations with dimension 
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. Compute robust estimates of mean and covariance matrix using R or any other software with 
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. Outliers can be determined by comparing the 
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