Research Article

A Study on Fuzzy Ideals of \(N\)-Groups

B. Davvaz\(^1\) and O. Ratnabala Devi\(^2\)

\(^1\) Department of Mathematics, Yazd University, Yazd, Iran
\(^2\) Department of Mathematics, Manipur University, Imphal, Manipur 795003, India

Correspondence should be addressed to B. Davvaz; davvaz@yazd.ac.ir

Received 10 February 2013; Accepted 19 June 2013

Academic Editor: Antonio M. Cegarra

Copyright © 2013 B. Davvaz and O. Ratnabala Devi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using the idea of the new sort of fuzzy subnear-ring of a near-ring, fuzzy subgroups, and their generalizations defined by various researchers, we try to introduce the notion of \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideals of \(N\)-groups. These fuzzy ideals are characterized by their level ideals, and some other related properties are investigated.

1. Introduction and Basic Definitions

The concept of a fuzzy set was introduced by Zadeh [1] in 1965, utilizing what Rosenfeld [2] defined as fuzzy subgroups. This was studied further in detail by different researchers in various algebraic systems. The concept of a fuzzy ideal of a ring was introduced by Liu [3]. The notion of fuzzy subnear-ring and fuzzy ideals was introduced by Abou-Zaid [4]. Then in many papers, fuzzy ideals of near-rings were discussed for example, see [5–11]. In [12], the idea of fuzzy point and its belongingness to and quasi coincidence with a fuzzy set were used to define \((\alpha, \beta)\)-fuzzy subgroup, where \(\alpha, \beta\) take one of the values from \(\{e, q, e \land q, e \lor q\}\), \(\alpha \neq e \land q\). A fuzzy subgroup in the sense of Rosenfeld is in fact an \((e, e)\)-fuzzy subgroup. Thus, the concept of \((e, e \lor q)\)-fuzzy subgroup was introduced and discussed thoroughly in [7]. Bhakat and Das [13] introduced the concept of \((e, e \lor q)\)-fuzzy subrings and ideals of a ring. Davvaz [14, 15], Narayanan and Manikantan [16], and Zhan and Davvaz [17] studied a new sort of fuzzy subnear-ring (ideal and prime ideal) called \((e, e \lor q)\)-fuzzy subnear-ring (ideal and prime ideal) and gave characterizations in terms of the level ideals. In [18, 19], the idea of fuzzy ideals of \(N\)-groups was defined, and various properties such as fundamental theorem of fuzzy ideals and fuzzy congruence were studied, respectively. In the present paper, we extend the idea of \((e, e \lor q)\)-fuzzy ideals of near-rings to the case of \(N\)-groups and introduce the idea of fuzzy cosets with some results.

We first recall some basic concepts for the sake of completeness.

By a near-ring we mean a nonempty set \(N\) with two binary operations “+” and “⋅” satisfying the following axioms:

(i) \((N, +)\) is a group,

(ii) \((N, \cdot)\) is a semigroup,

(iii) \((x + y) \cdot z = x \cdot z + y \cdot z\) for all \(x, y, z \in N\).

It is in fact a right near-ring because it satisfies the right distributive law. We will use the word “near-ring” to mean “right near-ring.” \(N\) is said to be zero symmetric if \(0 \cdot x = x \cdot 0 = 0\) for all \(x \in N\). We denote \(x \cdot y\) by \(xy\).

Note that the missing left distributive law, \(x \cdot (y + z) = x \cdot y + x \cdot z\), has to do with linearity if \(x\) is considered as a function.

Example 1. Let \(\mathcal{G}\) be a group, and let \(M(\mathcal{G})\) be the set of all mappings from \(\mathcal{G}\) into \(\mathcal{G}\). We define + and \(\cdot\) on \(M(\mathcal{G})\) by

\[
(f + g)(x) := f(x) + g(x),
\]

\[
(f \cdot g)(x) := f(g(x)).
\]

Then, \((M(\mathcal{G})), +, \cdot)\) is a near-ring.

Just in the same way as \(R\)-modules or vector spaces are used in ring theory, \(N\)-groups are used in near-ring theory.
By an N-group we mean a nonempty set G together with a map $Φ : N \times G \to G$ written as $Φ(n, g) = ng$ satisfying the following conditions:

(i) $(G, +)$ is a group (not necessarily abelian),

(ii) $(n_1 + n_2)g = n_1g + n_2g$,

(iii) $(n_1n_2)g = n_1(n_2g)$ for all $n_1, n_2 \in N, g \in G$.

Example 2. Let N be a subnear-ring of $M(\mathcal{S})$. Then, \mathcal{S} is an N-group via function application as operation.

Example 3. The additive group $(N, +)$ of a near-ring $(N, +, \cdot)$ is an N-group via the near-ring multiplication.

An ideal I of N-group G is an additive normal subgroup of G such that $NI \subseteq I$ and $n(g + h) - ng \in I$ for all $h \in I, g \in G, n \in N$. A mapping between two N-groups G and G' is called an N-homomorphism if $f(g + h) = f(g) + f(h)$ and $f(n g) = n f(g)$ for all $g, h \in G, n \in N$.

Throughout this study, we use N to denote a zero-symmetric near-ring and G to denote an N-group.

For any fuzzy subset A of G, $ImA = \{A(x) \mid x \in G\}$ denotes the image of A. For any subset I of G, χ_I denotes the characteristic function of I.

Definition 4 (see [2]). A fuzzy subset A of a group G is called a fuzzy subgroup of G if it satisfies the following conditions:

(i) $A(x + y) \geq \min\{A(x), A(y)\}$,

(ii) $A(-x) \geq A(x)$,

for all $x, y \in G$.

Definition 5. For a fuzzy subset A of G, $t \in (0, 1]$, the subset $A_t = \{x \in G \mid A(x) \geq t\}$ is called a level subset of G determined by A and t.

The set $\{x \in G \mid A(x) > 0\}$ is called the support of A and is denoted by $SuppA$. A fuzzy subset A of G of the form

$$A(y) = \begin{cases} t & (t \neq 0) \\ 0 & (t \neq 0) \end{cases}$$

is said to be a fuzzy point denoted by x_t. Here x is called the support point, and t is called its value. A fuzzy point x_t is said to belong to (resp., quasi coincide with) a fuzzy set A written as $x_t \vDash A$ (resp., $x_t \vDash A$) if $A(x) \geq t$ (resp., $A(x) > t > 1$). If $x_t \in A$ or $x_t \vDash A$, then we write $x_t \vDash \vDash A$. The symbols $x_t \vDash A, x_t \vDash A, x_t \vDash \vDash A \vDash A$ mean that $x_t \in A, x_t \vDash A, x_t \vDash \vDash A$ do not hold, respectively.

Definition 6 (see [7, 12]). A fuzzy subset of a group G is said to be an $(\epsilon, \epsilon \lor \epsilon)$-fuzzy subgroup of G if it satisfies the following conditions:

(i) $x_t, y_t \in A \Rightarrow (x + y)_{min(t, r)} \vDash \vDash A$,

(ii) $x_t \in A \Rightarrow (-x)_{t} \vDash \vDash A$.

Remark 7 (see [7]). The conditions (i) and (ii) of Definition 6 are respectively equivalent to

(i) $A(x + y) \geq \min\{A(x), A(y), 0.5\}$,

(ii) $A(-x) \geq \min\{A(x), 0.5\}$,

for all $x, y \in G$.

Remark 8. For any $(\epsilon, \epsilon \lor \epsilon)$-fuzzy subgroup A of G such that $A(x) \geq 0.5$ for some $x \in G$, then $A(0) \geq 0.5$ and if $A(0) < 0.5$, then $A(x) < 0.5$ for all $x \in G$. So, A is just the usual fuzzy subgroup in the sense of Rosenfeld.

Remark 9. It is noted that if A is a fuzzy subgroup then it is an $(\epsilon, \epsilon \lor \epsilon)$-fuzzy subgroup of G. However the converse may not be true.

Here onwards we assume that A is an $(\epsilon, \epsilon \lor \epsilon)$-fuzzy subgroup in the nontrivial sense for which case we have $A(0) \geq 0.5$.

Definition 10 (see [7]). An $(\epsilon, \epsilon \lor \epsilon)$-fuzzy subgroup of a group G is said to be an $(\epsilon, \epsilon \lor \epsilon)$-fuzzy normal subgroup if for any $x, y \in G$ and $t \in (0, 1]$,

$$x_t \vDash A \Rightarrow (x + y - x)_{t} \vDash \vDash A$$

Remark 11. If χ is a fuzzy subset of a group G, then χ_S denotes the commutator of $x, y \in G$.

In the light of this fact, the condition of Definition 10 can be replaced by any one of the above conditions in Remark 8.

Definition 12 (see [18]). Let A be a fuzzy subset of an N-group G. It is called a fuzzy N-subgroup of G if it satisfies the following conditions:

(i) $A(x + y) \geq \min\{A(x), A(y)\}$,

(ii) $A(nx) \geq A(x)$,

for all $x, y \in G, n \in N$.

Remark 13. If G is a unitary N-group, the above conditions are equivalent to conditions $A(x - y) \geq \min\{A(x), A(y)\}$ and $A(nx) \geq A(x)$ for all $x, y \in G, n \in N$.

Definition 14 (see [18, 19]). A nonempty fuzzy subset A of an N-group G is called a fuzzy ideal if it satisfies the following conditions:

(i) $A(x - y) \geq \min\{A(x), A(y)\}$,

(ii) $A(nx) \geq A(x)$,

(iii) $A(y + x - y) \geq A(x)$,

(iv) $A(n(x + y) - nx) \geq A(y)$,

for all $x, y \in G, n \in N$.
Definition 15 (see [14]). A fuzzy set A of a near-ring N is called an $(\varepsilon, \varepsilon \vee q)$-fuzzy subnear-ring of N if for all $t, r \in (0, 1]$, and $x, y \in N$

(i) $x_t, y_t \in A \Rightarrow (x + y)_{\min(t, r)} \in \mathcal{V}A$,
(ii) $x_t, y_t \in A \Rightarrow (xy)_{\min(t, r)} \in \mathcal{V}A$.

A is called an $(\varepsilon, \varepsilon \vee q)$-fuzzy subnear-ring of N if it is an $(\varepsilon, \varepsilon \vee q)$-fuzzy near-ring of N and

(iii) $x_t \in A \Rightarrow (y + x - y) \in \mathcal{V}A$,
(iv) $y_t \in A, x \in N \Rightarrow (yx)_t \in \mathcal{V}A$,
(v) $q_t \in A \Rightarrow (y(x + a) - xy)_t \in \mathcal{V}A$, for all $x, y, a \in N$.

2. Generalized Fuzzy Ideals

In this section, we give the definition of $(\varepsilon, \varepsilon \vee q)$-fuzzy subgroup and ideal of an N-group G based on Definitions 14 and 15.

Definition 16. A fuzzy subset A of an N-group G is said to be an $(\varepsilon, \varepsilon \vee q)$-fuzzy subgroup of G if $x, y \in G, n \in N, t, r \in (0, 1]$,

(i) $x_t, y_t \in A \Rightarrow (x + y)_{\min(t, r)} \in \mathcal{V}A$,
(ii) $x_t \in A \Rightarrow (-x)_t \in \mathcal{V}A$,
(iii) $x_t, y_t \in A \Rightarrow (xy)_t \in \mathcal{V}A$.

Lemma 17. Let A be a fuzzy subset of G and $t, r \in (0, 1]$. Then,

(i) $x_t, y_t \in A \Rightarrow (x + y)_{\min(t, r)} \in \mathcal{V}A \Leftrightarrow A(x + y) \geq \min\{A(x), A(y), 0.5\}$,
(ii) $x_t \in A \Rightarrow (-x)_t \in \mathcal{V}A \Leftrightarrow A(-x) \geq \min\{A(x), 0.5\}$,
for all $x, n \in G$.

Proof. (i) Let $x, y \in G$. Consider the case (a): $\min\{A(x), A(y)\} < 0.5$.

Assume that $A(x + y) < \min\{A(x), A(y), 0.5\} = \min\{A(x), A(y)\}$. Choose t such that $A(x + y) < t < \min\{A(x), A(y)\}$ which implies that $x_t \in A, y_t \in A$ but $(x + y)_t \in \mathcal{V}A$ [as $A(x + y) + t < 1$ and $A(x + y) < t$]. Consider the case (b): $\min\{A(x), A(y)\} \geq 0.5$. Assume that $A(x + y) < \min\{A(x), A(y), 0.5\} = 0.5$. Choose t such that $A(x + y) < t < 0.5$ so that $x_t, y_t \in A$ but $(x + y)_t \in \mathcal{V}A$.

Conversely, let $x_t, y_t \in A$ and $A(x + y) \geq r$. Then, $A(x + y) \geq \min\{A(x), A(y), 0.5\} \geq \min\{A(x), A(y), r, 0.5\}$. Thus $A(x + y) \geq \min\{t, r\}$ if either t or $r \leq 0.5$ and $A(x + y) \geq 0.5$ if both t and $r > 0.5$ which means $(x + y)_{\min(t, r)} \in \mathcal{V}A$.

(ii) Let $x \in G$, $\min\{A(x), 0.5\} \leq 0.5$. Suppose $A(-x) < \min\{A(x), 0.5\} \leq 0.5$. Choose r such that $A(-x) < r < \min\{A(x), 0.5\} \leq 0.5$. Then, $x_t \in A$ but $(-x)_t \in \mathcal{V}A$ which contradicts the hypothesis. So, $A(-x) \geq \min\{A(x), 0.5\}$ for all $x \in G$.

Conversely, let $x_t \in A$. Then, $A(x) \geq t$. But we have $A(-x) \geq \min\{A(x), 0.5\} \geq \min\{t, 0.5\} \Rightarrow A(-x) \geq t$ or $A(-x) \geq 0.5$ according as $t \leq 0.5$ or $t > 0.5 \Rightarrow (-x)_t \in \mathcal{V}A$.

(iii) Let $x \in G$ and $\min\{A(x), 0.5\} \leq 0.5$. Suppose $A(nx) < \min\{A(x), 0.5\} \leq 0.5$. Choose r such that $A(nx) < r < \min\{A(x), 0.5\} \leq 0.5$. Then, $A(nx) > r$ that is, $x_t \in A$, but $(nx)_t \in \mathcal{V}A$ as $A(nx) < t$ and $(nx) + t \leq 1$.

Conversely let $x_t \in A, n \in N$; then $A(x) \geq t$. But $A(nx) \geq \min\{A(x), 0.5\} \geq \min\{r, 0.5\} \Rightarrow A(nx) \geq t$ or $A(nx) \geq 0.5$ according as $t \leq 0.5$ or $t > 0.5 \Rightarrow A(nx) \geq t$ or $A(nx) + t > 1 \Rightarrow (nx)_t \in \mathcal{V}A$.

Theorem 18. Let A be a fuzzy subset of G. Then, A is an $(\varepsilon, \varepsilon \vee q)$-fuzzy subgroup of G if and only if the following conditions are satisfied:

(i) $A(x + y) \geq \min\{A(x), A(y), 0.5\}$,
(ii) $A(-x) \geq \min\{A(x), 0.5\}$,
(iii) $A(nx) \geq \min\{A(x), 0.5\}$,
for all $x, y \in G, n \in N$.

Proof. It follows from the previous lemma.

Definition 19. A fuzzy subset A of an N-group G is said to be $(\varepsilon, \varepsilon \vee q)$-fuzzy ideal of G if it is an $(\varepsilon, \varepsilon \vee q)$-fuzzy subgroup and satisfies the following conditions:

(i) $x_t \in A \Rightarrow (y + x - y)_t \in \mathcal{V}A$,
(ii) $a_t \in A \Rightarrow (nx + a - nx)_t \in \mathcal{V}A$,
for any $n \in N, x, a \in G$.

Lemma 20. Let A be a fuzzy subset of G and $t, r \in (0, 1]$. Then,

(i) $x_t \in A \Rightarrow (y + x - y)_t \in \mathcal{V}A \Leftrightarrow A(y + x - y) \geq \min\{A(x), 0.5\}$,
(ii) $a_t \in A \Rightarrow (nx + a - nx)_t \in \mathcal{V}A \Leftrightarrow A(nx + a - nx) \geq \min\{A(x), 0.5\}$.

Proof. (i) Assume that $A(y + x - y) < \min\{A(x), 0.5\}$. Choose t such that $A(y + x - y) < t < \min\{A(x), 0.5\}$. But $\min\{A(x), 0.5\} \leq A(x) < 0.5$ or $A(x) \geq 0.5$ and $A(x) > 0.5$, respectively, which contradicts the hypothesis.

Conversely, assume that $x_t \in A$, then $A(x) \geq t$. For any $y \in G$, we have $A(y + x - y) \geq \min\{A(x), 0.5\} \geq \min\{t, 0.5\} \Rightarrow A(y + x - y) \geq t$ or 0.5 according as $t \leq 0.5$ or $t > 0.5 \Rightarrow (y + x - y)_t \in \mathcal{V}A$ or $(y + x - y)_{0.5} \in \mathcal{V}A$, respectively, which is in contradiction. $A(x) \geq 0.5$ or for some $n \in N, x, a \in G$. According $A(a) < 0.5$ or $A(a) > 0.5$. Choose $t \in (0, 1]$ such that $A(nx + a - nx) < t < \min\{A(a), 0.5\} \leq 0.5$. In either case, $A(nx + a - nx) < t$ or $A(nx + a - nx) + t > 1$. So, $(nx + a - nx)_t \in \mathcal{V}A$, which is a contradiction.

Conversely, assume that $A(nx + a - nx) \geq \min\{A(a), 0.5\}$ for all $a, x \in G, n \in N$. Let $a_t \in A$. Then, $A(a) \geq t$. So, $A(nx + a - nx) \geq \min\{t, 0.5\} \leq 0.5$ or 0.5 according as $t \leq 0.5$ or $t > 0.5$. So, $A(nx + a - nx)_t \in \mathcal{V}A$. □
Theorem 21. Let A be an $(e, \varepsilon \lor q)$ fuzzy subgroup of G. Then, A is an $(e, \varepsilon \lor q)$-fuzzy ideal of G if and only if

(i) $A(y + x - y) \geq \min[A(x), 0.5]$, for all $x, y \in G$,

(ii) $A(n(x + a) - nx) \geq \min[A(a), 0.5]$, for all $n \in N$, $x, a \in G$.

Proof. It is immediate from Lemma 20. \square

By definition, a fuzzy ideal of G is an $(e, \varepsilon \lor q)$-fuzzy ideal of G. But the converse is not true in general as shown by the following example.

Example 22. Consider $G = S_3 = \{i, r_1, r_2, r_3\}$ (written additively) to be a \mathcal{Z}-group. Define a fuzzy subset A of G as $A(i) = 1$, $A(r_1) = A(r_2) = A(r_3) = 0.6$, $A(r_1) = 0.8$ which is not a fuzzy ideal as $A[2(r_1 + r_2) - 2r_3] = A(r_1) = 0.6 < A(r_1)$; it contradicts the condition (iv) of Definition 14. As $A(x - y), A(nx), A(y + x - y)$ and $A(n(x + a) - nx)$ are 0.6 or $0.8 \geq \min(0.5, 0.6 \lor 0.8) = 0.5$, thus, the notion of $(e, \varepsilon \lor q)$-fuzzy ideal is a successful generalization of fuzzy ideals of G as introduced in [18].

Theorem 23. Let $\{A_i, i \in I\}$ be any family of $(e, \varepsilon \lor q)$-fuzzy ideals of G. Then, $A = \bigcap_{i \in I} A_i$ is an $(e, \varepsilon \lor q)$-fuzzy ideal of G.

Proof. It is straightforward. \square

Theorem 24. A nonempty subset I of G is an ideal of G if and only if χ_I is an $(e, \varepsilon \lor q)$-fuzzy ideal of G.

Proof. If I is an ideal of G, it is clear from [18, Proposition 2.1] that χ_I is fuzzy ideal of G. Since every fuzzy ideal is an $(e, \varepsilon \lor q)$-fuzzy ideal, χ_I is an $(e, \varepsilon \lor q)$-fuzzy ideal of G.

Conversely, let χ_I be an $(e, \varepsilon \lor q)$-fuzzy ideal of G. Let $x, y \in I, \chi_I(x - y) \geq \min[\chi_I(x), \chi_I(y), 0.5] = 0.5$. So, $\chi_I(x - y) = 1 \Rightarrow x - y \in I$. Let $n \in N, x \in I, \chi_I(nx) \geq \min[\chi_I(x), 0.5] = 0.5 \Rightarrow \chi_I(nx) = 1 \Rightarrow nx \in n'I \in G, x \in I, \chi_I(y + x - y) \geq \min[\chi_I(x), 0.5] = 0.5 \Rightarrow \chi_I(x + y - x - y) = 1 \Rightarrow y + x - y \in 1n'I \in G, x \in I, y \in G, \chi_I(n(y + x - ny)) = 0.5 \Rightarrow \chi_I(n(y + x - ny)) = 1 \Rightarrow n(y + x - ny) \in I$. Then, I is an ideal of G. \square

Theorem 25. A fuzzy subset A of G is an $(e, \varepsilon \lor q)$-fuzzy (subgroup) ideal of G if and only if the level subset A_i is a (subgroup) ideal for $0 < t \leq 0.5$.

Proof. We prove the result for $(e, \varepsilon \lor q)$-fuzzy ideal S. Let A be an $(e, \varepsilon \lor q)$-fuzzy ideal of G. Let $t \leq 0.5, x, y, i \in A_i, n \in N$.

(i) $A(x - y) \geq \min[A(x), A(y), 0.5] \geq \min[t, 0.5] = t \Rightarrow x - y \in A_i$,

(ii) $A(nx) \geq \min[A(a), 0.5] \geq \min[t, 0.5] = t \Rightarrow nx \in A_i$,

(iii) $A(y + x - y) \geq \min[A(x), 0.5] \geq \min[t, 0.5] = t \Rightarrow y + x - y \in A_i, y \in G$

(iv) $A(n(y + x) - ny) \geq \min[A(x), 0.5] \geq \min[t, 0.5] = t \Rightarrow n(y + x) - ny \in A_i, y \in G, n \in N$.

Hence, A_i is an ideal of G. Again, let A_i be an ideal of G for all $t \leq 0.5$. If possible, let there exist $x, y \in G$ such that $A(x - y) < t < \min[A(x), A(y), 0.5]$. Let t be such that $A(x - y) < t < \min[A(x), A(y), 0.5] \Rightarrow x, y \in A_i, x - y \notin A_i$, a contradiction. So, $A(x - y) \geq \min[A(x), A(y), 0.5]$, for all $x, y \in G$. For $n \in N, x \in G$ let $A(nx) < \min[A(x), 0.5]$. If possible let t be such that $A(nx) < t < \min[A(x), 0.5]$. This implies $x \notin A_i, n \in A_i$, a contradiction. Similarly, we can prove that $A(y + x - y) \geq \min[A(x), 0.5], A(n(y + x) - ny) \geq \min[A(x), 0.5], x, y \in G, n \in N$. \square

Remark 26. For $t \in (0.5, 1)$, A may be an $(e, \varepsilon \lor q)$-fuzzy ideal of G, but A_i may not be an ideal of G. Let $t = 0.8$ in Example 22. Then, $A_i = \{i, r_1\}$. A_i is not an ideal of S_3 as it is not a normal subgroup of S_3.

We are looking for a corresponding result when A_i is an ideal of G for all $t \in (0.5, 1]$.

Theorem 27. Let A be a fuzzy subset of an N-group G. Then, $A_i \neq \emptyset$ is an ideal of G for all $t \in (0.5, 1]$ if and only if A satisfies the following conditions:

(i) $\max[A(x - y), 0.5] \geq \min[A(x), A(y)]$,

(ii) $\max[A(nx), 0.5] \geq A(x),$

(iii) $\max[A(y + x - y), 0.5] \geq A(x),$

(iv) $\max[A(n(y + x) - ny), 0.5] \geq A(x),$

for all $x, y \in G, n \in N$.

Proof. Suppose that $A_i \neq \emptyset$ is an ideal of G for all $t \in (0.5, 1]$. In order to prove (i), suppose that for some $x, y \in G, \max[A(x - y), 0.5] < \min[A(x), A(y)]$. Let $t = \min[A(x), A(y)]$. So, $x, y \in A_i$, and $t \in (0.5, 1]$. Since A_i is an ideal, $x - y \notin A_i$. So, $A(x - y) \geq \max[A(x - y), 0.5], 0.5$, a contradiction. In order to prove (ii), suppose that $x \in G, n \in N$ and $\max[A(nx), 0.5] < A(x) = t$ (say). Then, $x \in A_i \Rightarrow nx \in A_i \Rightarrow A(nx) \geq t > \max[A(nx), 0.5]$, a contradiction. Similarly, we can prove (iii) and (iv).

Conversely, suppose that conditions (i) to (iv) hold. We show that A_i is an ideal of G for all $t \in (0.5, 1]$. Let $x, y \in A_i$. Then, $0.5 < t \leq \min[A(x), A(y)] \leq \max[A(x - y), 0.5] = A(x - y)$. So, $x - y \in A_i$. Let $n \in N, x \in A_i$. Then, $0.5 < t \leq \min[A(x), 0.5] = A(x) \Rightarrow nx \in A_i$. For $x \in A_i, y \in G, 0.5 < t \leq \min[A(x + y - x), 0.5] = A(x + y - x) \Rightarrow y + x - y \in A_i$. Also, if $n \in N, x \in A_i, y \in G, 0.5 < t \leq \min[A(n(y + x) - ny), 0.5] = A(n(y + x) - ny)$.

Hence, $n(y + x) - ny \in A_i$. Then, A_i is an ideal of G. \square

A definition for the previous kind of fuzzy subset was given for the case of near-rings in [17]. Now, we give the definition for N-groups.

Definition 28. A fuzzy subset of G is called an $(\bar{e}, \bar{\varepsilon} \lor \bar{q})$-fuzzy subgroup of G if for all $t, r \in (0, 1]$ and for all $x, y \in G, n \in N$,

(i) $(x + y)_{\min(t,r)} \bar{e}A$ implies $x_{\bar{e}q}y_{\bar{e}q}A$

(b) $(x + y)_{\min(t,r)} \bar{e}A$ implies $x_{\bar{e}q}y_{\bar{e}q}A$,
Algebra 5

(ii) \((nx), \overline{vA}\) implies \(x, \overline{vqA}\).
Moreover, \(A\) is called an \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideal of \(G\) if \(A\) is \((\varepsilon, \varepsilon \lor q)\)-fuzzy subgroup of \(G\) and

(iii) \((y + x - y), \overline{vA}\) implies \(x, \overline{vqA}\),
(iv) \((n(x - y) - ny), \overline{vA}\) implies \(x, \overline{vqA}\).

Theorem 29. A fuzzy subset \(A\) of \(G\) is an \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideal of \(G\) if and only if

\[
\begin{align*}
(1)(a) & \max\{A(x + y), 0.5\} \geq \min\{A(x), A(y)\}, \\
(b) & \max\{A(-x), 0.5\} \geq A(x), \\
(2) & \max\{A(y + x - y), 0.5\} \geq A(x), \\
(3) & \max\{A(nx), 0.5\} \geq A(x), \\
(4) & \max\{A(n(x + y) - ny), 0.5\} \geq A(x).
\end{align*}
\]

Proof. (1a) ⇒ (1a). Let \(x, y \in G\) be such that \(\max\{A(x + y), 0.5\} < \min\{A(x), A(y)\}\). Let \(t = \min\{A(x), A(y)\}\); then \(0.5 \leq t \leq 1\). So we must have \(x, \overline{vqA}\) or \(y, \overline{vqA}\).

Conversely, let \((x + y), \min\{t, r\}\) \(\overline{vA}\). Then, \(\min\{A(x), A(y)\}\) \(\leq A(0.5)\). It follows that either \(x, \overline{vqA}\) or \(y, \overline{vqA}\), and thus \(x, \overline{vqA}\).

(1b) ⇔ (1b). Suppose that there exists \(x \in G\) such that \(\max\{A(-x), 0.5\} < A(x)\). If \(A(x) = t\) then \(0.5 < t \leq 1\) and \(A(-x) < t\) so that \(\max\{A(-x), 0.5\} < t\). But then we must have either \(x, \overline{vA}\) or \(y, \overline{vA}\). Also we have \(x, \overline{vqA}\) and \(y, \overline{vqA}\).

Again if \(A(x + y) < \min\{A(x), A(y)\}\), then by (1a)

\[
0.5 \geq \min\{A(x), A(y)\} > A(x + y). \tag{4}
\]

Suppose that \(x, y \in A\) then \(t \leq A(x) \leq 0.5\) or \(r \leq A(y) \leq 0.5\). It follows that either \(x, \overline{vqA}\) or \(y, \overline{vqA}\), and thus \(x, \overline{vqA}\).

(iii) (1a) \(\implies\) (1b): Suppose that there exists \(x \in G\) such that \(\max\{A(-x), 0.5\} < A(x)\). If \(A(x) = t\) then \(0.5 \leq t \leq 1\) and \(A(-x) < t\) so that \(\max\{A(-x), 0.5\} < t\). But then we must have either \(x, \overline{vA}\) or \(y, \overline{vA}\). Also we have \(x, \overline{vqA}\) and \(y, \overline{vqA}\).

Similarly, we can prove the remaining parts. \(\Box\)

Theorem 29. A fuzzy subset \(A\) of \(G\) is an \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideal of \(G\) if and only if \(A\) is an ideal of \(G\) for all \(t \in [0.5, 1]\).

3. Fuzzy Cosets and Isomorphism Theorem

In this section, we first study the properties of \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideals under a homomorphism. Then, we introduce the fuzzy cosets and prove the fundamental isomorphism theorem on \(N\)-groups with respect to the structure induced by these fuzzy cosets.

Theorem 31. Let \(G\) and \(G'\) be two \(N\)-groups, and let \(f : G \to G'\) be an \(N\)-homomorphism. If \(f\) is surjective and \(A\) is an \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideal of \(G\), then so is \(f(A)\). If \(B\) is an \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideal of \(G'\), then \(f^{-1}(B)\) is a fuzzy ideal of \(G\).

Proof. We assume that \(A\) is an \((\varepsilon, \varepsilon \lor q)\)-fuzzy ideal of \(G\). For any \(x, y \in G\); it follows that

\[
f(A)(x + y)
\]

\[
= \sup_{x+y}=f(z)\{A(z)\}
\]

\[
\geq \sup_{f(u)=x, f(v)=y}\{A(u + v)\}
\]

\[
= \min\{\sup_{f(u)=x}\{A(u)\}, \sup_{f(v)=y}\{A(v)\}, 0.5\}
\]

\[
= \min\{f(A)(x), f(A)(y), 0.5\}.
\]

Also,

\[
f(A)(-x)
\]

\[
= \sup_{f(z)=-x}\{A(z)\} = \sup_{f(z)=x}\{A(z)\}
\]

\[
\geq \sup_{f(z)=x}\{\min\{A(u), 0.5\}\}
\]

\[
= \min\{\sup_{f(z)=x}\{A(z)\}, 0.5\}
\]

\[
= \min\{f(A)(x), 0.5\}.
\]

Again,

\[
f(A)(nx)
\]

\[
= \sup_{f(z)=nx}\{A(z)\} \geq \sup_{f(u)=x}\{A(mu)\}
\]

\[
= \sup_{f(u)=x}\{\min\{A(u), 0.5\}\}
\]

\[
= \min\{\sup_{f(u)=x}\{A(u)\}, 0.5\}
\]

\[
= \min\{f(A)(x), 0.5\},
\]

\[
f(A)(y - x)
\]

\[
= \sup_{f(z)=y-x-y}\{A(z)\}
\]

\[
\geq \sup_{f(v)=x,f(u)=y}\{A(u + v - u)\}
\]

\[
= \min\{f(A)(x), f(A)(y), 0.5\}.
\]
\(f(A) \geq \sup_{f(x) = x} \{\min \{A(y), 0.5\}\}\)

\(= \min \left\{ \sup_{f(x) = x} \{A(y)\}, 0.5 \right\}\)

\(= \min \{f(A)(x), 0.5\}\),

\(f(A) (n(y + x) − ny)\)

\(= \sup_{f(x) = y} \{A(n(x + y) − ny)\}\)

\(\geq \sup_{f(x) = x, f(y) = y} \{\min \{A(u), 0.5\}\}\)

\(\geq \sup_{f(x) = x, f(y) = y} \{\min \{A(0), 0.5\}\}\)

\(= \min \{f(A)(x), 0.5\}\).

\(\text{(7)}\)

Therefore, \(f(A)\) is an \((e, e \vee q)\)-fuzzy ideal of \(G\). Similarly, we can show that \(f^{-1}(A)\) is an \((e, e \vee q)\)-fuzzy ideal of \(G\).

Definition 32. Let \(A\) be \((e, e \vee q)\)-fuzzy subgroup of \(G\). For any \(x \in G\), let \(A_x\) be defined by \(A_x(g) = \min \{A(g - x), 0.5\}\) for all \(g \in G\). This fuzzy subset \(A_x\) is called the \((e, e \vee q)\)-fuzzy left coset of \(G\) determined by \(A\) and \(x\).

Remark 33. Let \(A\) be an \((e, e \vee q)\)-fuzzy subgroup of \(G\). Then, \(A\) is an \((e, e \vee q)\)-fuzzy normal if and only if \(A(x - y) \geq 0.5\) for all \(x, y \in G\). If \(A\) is an \((e, e \vee q)\)-fuzzy ideal, we simply denote fuzzy coset by \(A_x\).

Lemma 34. Let \(A\) be an \((e, e \vee q)\)-fuzzy ideal of \(G\). Then, \(A_x = A_y\) if only if \(A(x - y) \geq 0.5\).

Proof. Assume that \(A(x - y) \geq 0.5\) and \(y \in G\). \(A_x(g) = \min \{A(g - x), 0.5\}\) for all \(g \in G\). If \(A\) is an \((e, e \vee q)\)-fuzzy ideal, we simply denote fuzzy coset by \(A_x\).

Proposition 35. Every fuzzy coset \(A_x\) is constant on every coset of \(G = \{x \in G | A(x) = (0)\}\).

Proof. Let \(y + y_0 \in y + G_0\). Now, we have \(A_x(y + y_0) = \min \{A(y + y_0 - x), 0.5\}\) for all \(y, y_0 \in G\). Also, \(A_x(y) = \min \{A(x - y), 0.5\}\) for all \(x \in A\). Therefore, \(A_x(y) = \min \{A(x - y), 0.5\}\) for all \(x \in G_0\).

Theorem 36. For any \((e, e \vee q)\)-fuzzy ideal \(A\) of \(G\), \(A_x\) is defined by \(A_x = \{x \in G | A(x) = (0)\}\) for all \(x \in G\). Then, \(A_x = \{x \in G | A(x) = (0)\}\) for all \(x \in G\).

References

Submit your manuscripts at http://www.hindawi.com