Research Article

Generalized Pattern-Matching Conditions for $C_k \wr S_n$

Sergey Kitaev, 1 Andrew Niedermaier, 2 Jeffrey Remmel, 2 and Manda Riehl 3

1 Department of Computer and Information Sciences, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK
2 Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA
3 Department of Mathematics, University of Wisconsin, Eau Claire, WI 54702-4004, USA

Correspondence should be addressed to Sergey Kitaev; sergey.kitaev@gmail.com

Received 3 May 2012; Accepted 1 July 2012

Copyright © 2013 Sergey Kitaev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product $C_k \wr S_n$ of the cyclic group C_k and the symmetric group S_n. In particular, we derive the generating functions for the number of matches that occur in elements of $C_k \wr S_n$ for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of $C_k \wr S_n$. Our research leads to connections to many known objects/structures yet to be explained combinatorially.

1. Introduction

The goal of this paper is to study pattern-matching conditions on the wreath product $C_k \wr S_n$ of the cyclic group C_k and the symmetric group S_n. $C_k \wr S_n$ is the group of k^n signed permutations where we allow k signs of the form $1 = \omega^0, \omega, \omega^2, \ldots, \omega^{k-1}$ for some primitive kth root of unity ω. We can think of the elements $C_k \wr S_n$ as pairs $\gamma = (\sigma, e)$ where $\sigma = \sigma_1 \cdots \sigma_n \in S_n$ and $e = e_1 \cdots e_n \in \{1, \omega, \ldots, \omega^{k-1}\}^n$. For ease of notation, if $e = (\omega^{e_1}, \omega^{e_2}, \ldots, \omega^{e_n})$ where $e_i \in \{0, 1, \ldots, k-1\}$ for $i = 1, 2, \ldots, n$, then we simply write $\gamma = (\sigma, w)$ where $w = \omega_{i_1} \omega_{i_2} \cdots \omega_{i_n} \in \{0, 1, \ldots, k-1\}^n$.

Given a sequence $\sigma = \sigma_1 \cdots \sigma_n$ of distinct integers, let red(σ) be the permutation found by replacing the ith largest integer that appears in σ by i. For example, if $\sigma = 2 7 5 4$, then red(σ) = 1 4 3 2. Given a permutation τ in the symmetric group S_n, we say a permutation $\sigma = \sigma_1 \cdots \sigma_n \in S_n$ has a τ-match starting at position i provided red($\sigma_i \cdots \sigma_{i+j-1}$) = τ. Let τ-mch(σ) be the number of τ-matches in the permutation σ. Similarly, we say that τ occurs in σ if there exist $1 \leq i_1 < \cdots < i_j \leq n$ such that red($\sigma_{i_1} \cdots \sigma_{i_j}$) = τ. We say that σ avoids τ if there are no occurrences of τ in σ.

We can define similar notions for words over a finite alphabet $[k] = \{0, 1, \ldots, k-1\}$. Given a word $w = w_1 \cdots w_n \in [k]^n$, let red($w$) be the word found by replacing the ith largest integer that appears in w by $i - 1$. For example, if $w = 2 7 2 4 7$, then red(w) = 0 2 0 1 2. Given a word $u \in [k]^j$ such that red(u) = u, we say a word $w \in [k]^n$ has a u-match starting at position i provided red($w_{i} \cdots w_{j-1}$) = u. Let u-mch(w) be the number of u-matches in the word w. Similarly, we say that u occurs in a word w if there exist $1 \leq i_1 < \cdots < i_j \leq n$ such that red($w_{i_1} \cdots w_{i_j}$) = u. We say that w avoids u if there are no occurrences of u in w.

There are a number of papers on pattern matching and pattern avoidance in $C_k \wr S_n$ [1–4]. For example, the following pattern matching condition was studied in [2–4].

Definition 1. Let $(\tau, u) \in C_k \wr S_j$, Y be a subset of $C_k \wr S_n$ and $(\sigma, w) \in C_k \wr S_n$.

1. One says that (σ, w) has an exact occurrence of (τ, u) (resp., Y) if there are $1 \leq i_1 < i_2 < \cdots < i_j \leq n$ such that red($\sigma_{i_1} \cdots \sigma_{i_j}$), $w_{i_1} \cdots w_{i_j}$) = (τ, u) (resp., red($\sigma_{i_1} \cdots \sigma_{i_j}$), $w_{i_1} \cdots w_{i_j}$) $\in Y$).

2. One says that $(\sigma, w) \in C_k \wr S_n$ avoids an exact occurrence of (τ, u) (resp., Y) if there are no exact occurrences of (τ, u) (resp., Y) in (σ, w).
(3) One says that there is an exact (τ,u)-match in (σ,w) starting at position i (resp., exact Y-match in (σ,w) starting at position i) if
\[
\left(\text{red}(\sigma_1\sigma_2\cdots\sigma_{i-1}, w_1w_2\cdots w_{i-1}), w_iw_{i+1}\cdots w_{i+j-1}\right) = (\tau,u)
\]
(resp., $\left(\text{red}(\sigma_1\sigma_2\cdots\sigma_{i-1}, w_1w_2\cdots w_{i-1}), w_iw_{i+1}\cdots w_{i+j-1}\right) \in Y$).
\[
(1)
\]
That is, an exact occurrence or an exact match of $(\tau,u) \in C_k \cap S_j$ in an element $(\sigma,w) \in C_k \cap S_n$ is just an ordinary occurrence or match of τ in σ where the corresponding signs agree exactly. For example, Mansour [3] proved via recursion that for any $(\tau,u) \in C_k \cap S_n$, the number of elements in $C_k \cap S_n$ which avoid exact occurrences of (τ,u) is $\sum_{j=0}^{n-1} j! (k-1)!^j \binom{n}{j}^2$. This generalized a result of Simion [5] who proved the same result for the hyperequivalent group $C_2 \times S_n$. Similarly, Mansour and West [4] determined the number of permutations in $C_k \cap S_n$ that avoid all possible exact occurrences of 2 or 3 element sets of patterns of elements of $C_k \cap S_n$. For example, let K^3_1 be the number of $(\sigma,e) \in C_2 \cap S_n$ that avoid all exact occurrences of the patterns in the set $(1,2,0,0),(1,2,0,1),(2,1,0,0)$, let K^3_{n+1} be the number of $(\sigma,e) \in C_2 \cap S_n$ that avoid all exact occurrences of the patterns in the set $(1,2,0,0),(1,2,0,1),(2,1,0,1)$, and let K^3_{n+2} be the number of $(\sigma,e) \in C_2 \cap S_n$ that avoid all exact occurrences of the patterns in the set $(1,2,0,0),(1,2,0,1),(2,1,0,0)$). Then Mansour and West [4] proved that
\[
K^3_1 = F_{2n+1},
K^3_2 = n! \sum_{j=0}^{n} \binom{n}{j}^{-1},
K^3_n = n! + n! \sum_{j=0}^{n-1} \binom{n}{j},
\]
where F_n is the nth Fibonacci number.

An alternative matching condition arises when we drop the requirement of the exact matching of signs and replace it by the condition that the two sequences of signs match in the sense of words described above. That is, we will consider the following matching conditions.

Definition 2. Let $(\tau,u) \in C_k \cap S_j$ where red$(u) = u$, Y be a subset of $C_k \cap S_j$ where for all $(\tau,u) \in Y$, red$(u) = u$, and $(\sigma,w) \in C_k \cap S_n$.

(1) One says that (σ,w) has an occurrence of (τ,u) (resp., Y-match in (σ,w) starting at position i) if $(\text{red}(\sigma_1\sigma_2\cdots\sigma_{i-1}, w_1w_2\cdots w_{i-1}), w_iw_{i+1}\cdots w_{i+j-1}) \in \text{red}(\tau_1\tau_2\cdots\tau_{i-1},u_1u_2\cdots u_{i-1}) \in Y$).

(2) We say that $(\sigma,w) \in C_k \cap S_n$ avoids (τ,u) (resp., Y) if there are no occurrences of (τ,u) (resp., Y) in (σ,w).

(3) One says that there is a (τ,u)-match in (σ,w) starting at position i (resp., Y-match in (σ,w) starting at position i) if
\[
\text{red}(\sigma_1\sigma_2\cdots\sigma_{i-1}, w_1w_2\cdots w_{i-1}, w_iw_{i+1}\cdots w_{i+j-1}) = (\tau,u)
\]
(resp., $\text{red}(\sigma_1\sigma_2\cdots\sigma_{i-1}, w_1w_2\cdots w_{i-1}, w_iw_{i+1}\cdots w_{i+j-1}) \in Y$).

For example, suppose that $(\tau,u) = (1,2,0,0)$ and $(\sigma,w) = (1,3,2,4,1,2,2,2)$. Then there are no exact occurrences or exact matches of (τ,u) in (σ,w). However, there are two occurrences of (τ,u), one in positions 2 and 4 and one in positions 3 and 4. Thus, there are two occurrences of (τ,u) in (σ,w), and there is a (τ,u)-match in (σ,w) starting at position 3.

Finally, we will consider a more general matching condition which generalizes both occurrences and matches and exact occurrences and exact matches in $C_k \cap S_n$.

Definition 3. Let $(\tau,u) \in C_k \cap S_j$, let Y be a subset of $C_k \cap S_j$, and let $A = (A_1, \ldots, A_j)$ be a sequence of subsets of $[k]$, and $(\sigma,w) \in C_k \cap S_n$.

(1) One says that (σ,w) has an occurrence of (τ,u,A) (resp., $(\sigma,w) \in C_k \cap S_n$ avoids (τ,u,A)) if there are $1 \leq i_1 < i_2 < \cdots < i_j \leq n$ such that
\[
\text{red}(\sigma_{i_1} \cdots \sigma_{i_j}, w_{i_1} \cdots w_{i_j}) = (\tau,u)
\]
(resp., $\text{red}(\sigma_{i_1} \cdots \sigma_{i_j}, w_{i_1} \cdots w_{i_j}) \in Y$).

(2) We say that $(\sigma,w) \in C_k \cap S_n$ avoids (τ,u,A) (resp., Y) if there are no occurrences of (τ,u,A) (resp., Y) in (σ,w).

(3) We say that there is a (τ,u)-match in (σ,w) starting at position i (resp., Y-match in (σ,w) starting at position i) if
\[
\text{red}(\sigma_1 \cdots \sigma_{i-1}, w_1 \cdots w_{i-1}, w_i \cdots w_{i+j-1}) = (\tau,u)
\]
(resp., $\text{red}(\sigma_1 \cdots \sigma_{i-1}, w_1 \cdots w_{i-1}, w_i \cdots w_{i+j-1}) \in Y$).

Thus, a (τ,u,A)-occurrence (resp., (τ,u,A)-match) where $u = u_1 \cdots u_j$ and $A = (A_1, \ldots, A_j)$ is such that $A_i = [u_i]$ for $i = 1, \ldots, j$ is just an exact occurrence or exact match of (τ,u). Similarly, a (τ,u,A)-occurrence (resp., (τ,u,A)-match) where $u = u_1 \cdots u_j$, red$(u) = u$, and $A = (A_1, \ldots, A_j)$ is such that $A_i = [k]$ for $i = 1, \ldots, j$ is just an occurrence or match of (τ,u).

Suppose we are given $(\tau,u) \in C_k \cap S_j$, $Y \subseteq C_k \cap S_j$, $A = (A_1, \ldots, A_j)$ where $A_i \subseteq [k]$ for $i = 1, \ldots, j$, and $(\sigma,w) \in C_k \cap S_n$. We let (τ,u)-mch(σ,w) (resp., (τ,u)-Emch(σ,w)) denote the number of (τ,u)-matches (resp., exact (τ,u)-matches) in (σ,w). We let Y-mch(σ,w) (resp., Y-Emch(σ,w)) denote the number of Y-matches (resp., exact Y-matches) in (σ,w). We let (τ,u,A)-mch(σ,w) be the number of (τ,u,A)-matches in (σ,w) and let Y, A-mch(σ,w) be the number of (Y,A)-matches in (σ,w).

The main result of this paper is to derive a generating function for the distribution of (τ,u,A)-matches where (τ,u) is any element of $C_k \cap S_j$. To state our main result, we first need some notation. We define the p,q-analogues of n, $nl_{\frac{m}{n}}$, $\binom{n}{j}$, and $(\{1,n\}^n,\{1,n\}^n)$ by
\[
[n]_{pq} = \frac{p^n - q^n}{p - q} = p^{n-1} + p^{n-2}q + \cdots + pq^{n-2} + q^{n-1},
[n]_{pq}^{-1} = [n]_{pq}^{-1}[n-1]_{pq}^{-1}[2]_{pq}^{-1}[1]_{pq}^{-1},
\]
respectively. We define the q-analogues of n, $\binom{n}{k}$, and \(\binom{n-a_{\cdots a_n}}{n-1}\), respectively.

Next suppose that $\Upsilon \subseteq C_k \wr S_n$, and $A = (A_1, A_2)$ where $A_1, A_2 \subseteq \{k\}$. Then we will say that $(\sigma, w) \in C_k \wr S_n$ is a *maximum packing* for (Υ, A) if there exists (A, A)-matches starting at positions $1, 2, \ldots, n-1$. We let $\mathcal{M}(\Upsilon, A, n)$ denote the set of $(\sigma, w) \in C_k \wr S_n$ which are maximum packings for (Υ, A). Given any word $w = w_1 \cdots w_n \in [k]^n$, we let $\epsilon(w) = \prod_{i=1}^n z_{w_i}$. For any $\sigma = \sigma_1 \cdots \sigma_n \in S_n$, we let $\text{inv}(\sigma)$ (resp., coinv(σ)) equal the number of pairs (i, j) such that $1 \leq i < j \leq n$ and $\sigma_i > \sigma_j$ (resp., $\sigma_i < \sigma_j$). We then define

$$\text{mp}(\Upsilon, A, n)(p, q; z_0, \ldots, z_{k-1}) = \sum_{\sigma: A \subseteq \sigma \subseteq A} p^{\text{inv}(\sigma)} q^{\text{coinv}(\sigma)} \epsilon(\sigma, w).$$

We shall also be interested in the specializations

$$\text{mp}(\Upsilon, A, n)(p, q; 1, \ldots, 1) = \sum_{\sigma: A \subseteq \sigma \subseteq A} p^{\text{inv}(\sigma)} q^{\text{coinv}(\sigma)},$$

$$\text{mp}(\Upsilon, A, n)(p, q; 1, r, \ldots, r^{k-1}) = \sum_{\sigma: A \subseteq \sigma \subseteq A} p^{\text{inv}(\sigma)} q^{\text{coinv}(\sigma)} r^{|\sigma| - 1},$$

where for any word $w = w_1 \cdots w_n \in [k]^n$, $|w| = w_1 + \cdots + w_n$. In the special case, where $\Upsilon = \{\{(r, t)\}\}$ where $(r, t) \in C_n \wr S_n$, we will denote $\text{mp}(\Upsilon, A, n)(p, q; z_0, \ldots, z_{k-1})$ as $\text{mp}(\Upsilon, A, n)(p, q; z_0, \ldots, z_{k-1})$.

For example, if $r = 12$, $u = 01$, and $A = ([k], [k])$, then $(\sigma, w) \in C_k \wr S_n$ is a maximum packing for (r, u, A) if and only if $\sigma = 12 \cdots n$ is the identity permutation and $w = w_1 \cdots w_n$ is such that $0 \leq w_1 < \cdots < w_n$ and $\leq k - 1$. Thus,

$$\text{mp}(\Upsilon, A, n)(p, q; z_0, \ldots, z_{k-1}) = p^2 \left(\prod_{i=0}^{k-1} \left(1 + z_i t\right)\right)^r,$$

where for any power series $f(t) = \sum_{n \geq 0} f_n t^n$, we write $f(t)|_{t^r} = f_r n$ for the coefficient of t^n in $f(t)$. Then it is easy to prove that

$$\text{mp}(\Upsilon, A, n)(p, q; 1, \ldots, 1) = p^{\frac{n}{2}} \binom{k}{n},$$

$$\text{mp}(\Upsilon, A, n)(p, q; 1, r, \ldots, r^{k-1}) = p^2 r^k \binom{k}{n}.$$
if and only if \(i_1 \leq i_2 \) and \(j_1 \leq j_2 \). Then we define the following sets and statistics for elements \((\sigma, w) \in C_k \wr S_n\):

- \(\text{Des}((\sigma, w)) = \{ i : \sigma_i > \sigma_{i+1} \land w_i \geq w_{i+1} \} \),
- \(\text{des}((\sigma, w)) = |\text{Des}((\sigma, w))| \),
- \(\text{Ris}((\sigma, w)) = \{ i : \sigma_i < \sigma_{i+1} \land w_i \leq w_{i+1} \} \),
- \(\text{ris}((\sigma, w)) = |\text{Ris}((\sigma, w))| \),
- \(\text{WDes}((\sigma, w)) = \{ i : \sigma_i > \sigma_{i+1} \land w_i = w_{i+1} \} \),
- \(\text{w des}((\sigma, w)) = |\text{WDes}((\sigma, w))| \),
- \(\text{WRis}((\sigma, w)) = \{ i : \sigma_i < \sigma_{i+1} \land w_i = w_{i+1} \} \),
- \(\text{wr is}((\sigma, w)) = |\text{WRis}((\sigma, w))| \),
- \(\text{WDes}((\sigma, w)) = \{ i : \sigma_i > \sigma_{i+1} \land w_i = w_{i+1} \} \),
- \(\text{s des}((\sigma, w)) = |\text{SDes}((\sigma, w))| \),
- \(\text{SRis}((\sigma, w)) = \{ i : \sigma_i < \sigma_{i+1} \land w_i > w_{i+1} \} \),
- \(\text{sr is}((\sigma, w)) = |\text{SRis}((\sigma, w))| \).

We shall refer to \(\text{Des}((\sigma, w)) \) as the descent set of \((\sigma, w)\), \(\text{WDes}((\sigma, w)) \) as the weak descent set of \((\sigma, w)\), \(\text{SDes}((\sigma, w)) \) as the strict descent set of \((\sigma, w)\), and \(\text{Sr is}((\sigma, w)) \) as the strict rise set of \((\sigma, w)\).

To see this, we need to find the distributions for only one of the corresponding pairs. Substituting \(z_0 = z_1 = \cdots = z_{k-1} = 1 \) into (12) in these special cases will yield the following generating functions for rises, strict rises, and weak rises in \(C_k \wr S_n \).

Theorem 5. Consider the following:

\[
\sum_{n \geq 0} \binom{n}{t} x^n \sum_{(\sigma, w) \in C_k \wr S_n} \mathcal{X}^{\text{ris}((\sigma, w))} = \frac{1 - x}{1 - x + \sum_{n \geq 1} \frac{((x - 1) n^n)}{n!} \left(\binom{n}{n-k-1}\right)},
\]

\[
\sum_{n \geq 0} \binom{n}{t} x^n \sum_{(\sigma, w) \in C_k \wr S_n} \mathcal{X}^{\text{wris}((\sigma, w))} = \frac{1 - x}{1 - x + \sum_{n \geq 1} \frac{((x - 1) n^n)}{n!} \left(\binom{n}{n-k-1}\right)},
\]

\[
\sum_{n \geq 0} \binom{n}{t} x^n \sum_{(\sigma, w) \in C_k \wr S_n} \mathcal{X}^{\text{sr is}((\sigma, w))} = \frac{1 - x}{1 - x + \sum_{n \geq 1} \frac{((x - 1) n^n)}{n!} \left(\binom{n}{n-k-1}\right)}.
\]

Other distribution results for \((r, u)\)-matches follow from these results. For example, if \(\sigma = \sigma_1 \cdots \sigma_n \in S_n \), then we define the complement of \(\sigma \), \(\sigma^c \) by

\[
\sigma^c = (n + 1 - \sigma_1) \cdots (n + 1 - \sigma_n).
\]

If \(w = w_1 \cdots w_n \in [k]^n \), then we define the complement of \(w \), \(w^c \) by

\[
w^c = (k - 1 - w_1) \cdots (k - 1 - w_n).
\]

We can then consider maps \(\phi_{a,b} : C_k \wr S_n \to C_k \wr S_n \) where \(\phi_{a,b}((\sigma, w)) = (\sigma^a, w^b) \) for \(a, b \in \{r, c\} \). Such maps will easily allow us to establish that the distribution of \((r, u)\)-matches is the same for various classes of \((r, u)\)'s. For example, one can use such maps to show that the distributions of \((1, 2, 0, 1)\)-matches, \((1, 0, 1)\)-matches, \((2, 1, 0)\)-matches, and \((2, 1, 1)\)-matches are all the same.

Another interesting case is when we let \(Y = \{(1, 2, 0, 1), (1, 2, 1, 0)\} \). In this case, we have a \(Y \)-match in \((\sigma, w)\) starting at \(i \) if and only if \(\sigma_i < \sigma_{i+1} \) and \(w_i \neq w_{i+1} \). In that case, (12) can be specialized to prove the following.

Theorem 6. Consider the following:

\[
\sum_{n \geq 0} \binom{n}{t} x^n \sum_{(\sigma, w) \in C_k \wr S_n} \mathcal{X}^{\text{mch}((\sigma, w))} = \frac{(k - 1)(1 - x)}{(k - 1)(1 - x) + \sum_{n \geq 1} \frac{((x - 1) n^n)}{n!} \left(\binom{n}{n-k-1}\right)}.
\]

Substituting \(z_i = r^i \) for \(i = 0, \ldots, k - 1 \) into (12) will yield the following generating function:

\[
D_k^r(x, p, q, r, t) = \sum_{n \geq 0} \frac{\binom{n}{t}}{P^{n!}} \sum_{\alpha \in C_k \wr S_n} q^{\alpha \sigma} \mathcal{X}^{\text{mch}((\sigma, w))}.
\]
Let
\[\Upsilon_r = \{(12, 00), (12, 01)\}, \]
\[\Upsilon_w = \{(12, 00)\}, \]
\[\Upsilon_s = \{(12, 01)\}, \]
\[\Upsilon_d = \{(12, 01), (12, 10)\}. \]

Thus, \(\Upsilon_r \)-matches correspond to rises, \(\Upsilon_w \)-matches correspond to weak rises, and \(\Upsilon_s \)-matches correspond to strict rises. We shall find \(D_k^{\Upsilon_r}(x, p, q, r, t) \) for \(a \in \{r, w, s\} \) and find \(D_k^{\Upsilon_d}(x, p, q, 1, t) \). For example, we will show that the following generating function for the distribution of inversions, coinversions, and rises over \(C_k \setminus S_n \) is an immediate consequence of (12).

Lemma 7. Consider the following:

\[D_k^{\Upsilon_r}(x, p, q, r, t) = \sum_{n \geq 0} \frac{1}{n!} \sum_{p, q, r, t} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} t^{\text{ris}(\sigma, w)} \]

\[= \frac{1 - x}{1 - x + \sum_{n \geq 1} \left(\binom{2}{n} (x - 1) t^n / n! \right) n^{k-1}}, \tag{22} \]

which reduces to (15) when one sets \(p = q = r = 1 \).

We shall prove (12) by applying a ring homomorphism, defined on the ring \(\Lambda \) of symmetric functions over infinitely many variables \(x_1, x_2, \ldots \) to a simple symmetric function identity. There has been a long line of research, \([6–15]\), which shows that a large number of generating functions for permutation statistics can be obtained by applying homomorphisms defined on the ring of symmetric functions \(\Lambda \) over infinitely many variables \(x_1, x_2, \ldots \) to simple symmetric function identities. For example, the \(n \)th elementary symmetric function, \(e_n \), and the \(n \)th homogeneous symmetric function, \(h_n \), are defined by the generating functions

\[E(t) = \sum_{n \geq 0} e_n t^n = \prod_{i} \left(1 + x_i t \right), \tag{23} \]

\[H(t) = \sum_{n \geq 0} h_n t^n = \prod_{i} \frac{1}{1 - x_i t}. \]

We let \(P(t) = \sum_{n \geq 0} P_n t^n \) where \(P_n = \sum x_i^n \) is the \(n \)th power symmetric function. A partition of \(n \) is a sequence \(\mu = (\mu_1, \ldots, \mu_k) \) such that \(0 < \mu_1 \leq \cdots \leq \mu_k \) and \(\mu_1 + \cdots + \mu_k = n \). We write \(\mu \vdash n \) if \(\mu \) is a partition of \(n \), and we let \(\ell(\mu) \) denote the number of parts of \(\mu \). If \(\mu \vdash n \), we set \(h_\mu = \prod_{i=1}^{\ell(\mu)} h_{\mu_i}, e_\mu = \prod_{i=1}^{\ell(\mu)} e_{\mu_i}, \) and \(p_\mu = \prod_{i=1}^{\ell(\mu)} p_{\mu_i} \). Let \(\Lambda_n \) denote the space of homogeneous symmetric functions of degree \(n \) over infinitely many variables \(x_1, x_2, \ldots \) so that \(\Lambda = \bigoplus_{n \geq 0} \Lambda_n \). It is well known that \(\{e_n : \lambda \vdash n\}, \{h_n : \lambda \vdash n\}, \) and \(\{p_n : \lambda \vdash n\} \) are all bases of \(\Lambda_n \). It follows that \(\{e_n, e_{n-1}, \ldots\} \) is an algebraically independent set of generators for \(\Lambda \) and, hence, we can define a ring homomorphism \(\xi : \Lambda \rightarrow R \) where \(R \) is a ring by simply specifying \(\xi(e_n) \) for all \(n \geq 0 \).

Now it is well known that

\[H(t) = \frac{1}{E(-t)}, \tag{24} \]

\[P(t) = \sum_{n \geq 0} (-1)^{n-1} h_n t^n / E(-t). \tag{25} \]

A surprisingly large number of results on generating functions for various permutation statistics in the literature and large number of new generating functions can be derived by applying homomorphisms on \(\Lambda \) to simple identities such as (24) and (25). We shall show that (12) can be proved by applying appropriate ring homomorphisms to identity (24).

The outline of this paper is as follows. In Section 2, we will provide the necessary background in symmetric functions that we will need to derive our generating functions. In Section 3, we will prove (12) and give a number of cases where we can compute \(\text{m}^{\Upsilon_r}(\Lambda, I) \) or \(\text{m}^{\Upsilon_d}(\Lambda, I) \) and find metric functions needed for our proofs of the generating functions. In Section 4, we will study \(N \bar{M}_{\Upsilon} \) as a function of \(k \), the size of the underlying cyclic group \(C_k \). We shall show that in several cases, \(N \bar{M}_{\Upsilon} \) is a polynomial in \(k \) whose coefficients have interesting combinatorial properties. Finally, in Section 5, we will discuss some related results and directions for future research.

2. Symmetric Functions

In this section, we give the necessary background on symmetric functions needed for our proofs of the generating functions.

Let \(\Lambda \) denote the ring of symmetric functions over infinitely many variables \(x_1, x_2, \ldots \) with coefficients in the field of complex numbers \(\mathbb{C} \). The \(n \)th elementary symmetric function \(e_n \) in the variables \(x_1, x_2, \ldots, x_n \) is defined by

\[E(t) = \sum_{n \geq 0} e_n t^n = \prod_{i} \left(1 + x_i t \right), \tag{26} \]

and the \(n \)th homogeneous symmetric function \(h_n \) in the variables \(x_1, x_2, \ldots, x_n \) is defined by

\[H(t) = \sum_{n \geq 0} h_n t^n = \prod_{i} \frac{1}{1 - x_i t}. \tag{27} \]

Thus,

\[H(t) = \frac{1}{E(e^{-t})}. \tag{28} \]

Let \(\lambda = (\lambda_1, \ldots, \lambda_l) \) be an integer partition, that is, \(\lambda \) is a finite sequence of weakly increasing positive integers. Let \(\ell(\lambda) = l \) denote the number of parts of \(\lambda \). If the sum of these integers is \(n \), we say that \(\lambda \) is a partition of \(n \) and write \(\lambda \vdash n \). For
Figure 1: A brick tabloid of shape (12) and type (1, 1, 2, 3, 5).

4 6 12 1 5 7 8 10 11 2 3 9

Figure 2: An element of IF(3, 6, 3).

Any partition \(\lambda = (\lambda_1, \ldots, \lambda_k) \), let \(e_\lambda = e_{\lambda_1} \cdots e_{\lambda_k} \). The well-known fundamental theorem of symmetric functions says that \(\{e_\lambda : \lambda \text{ is a partition}\} \) is a basis for \(\Lambda \) or that \(\{\epsilon_0, \epsilon_1, \ldots\} \) is an algebraically independent set of generators for \(\Lambda \). Similarly, if we define \(h_\lambda = h_{\lambda_1} \cdots h_{\lambda_k} \), then \(\{h_\lambda : \lambda \text{ is a partition}\} \) is also a basis for \(\Lambda \). Since \(\{\epsilon_0, \epsilon_1, \ldots\} \) is an algebraically independent set of generators for \(\Lambda \), we can specify a ring homomorphism \(\theta \) on \(\Lambda \) by simply defining \(\theta(e_\mu) \) for all \(n \geq 0 \).

Since the elementary symmetric functions \(e_\lambda \) and the homogeneous symmetric functions \(h_\lambda \) are both bases for \(\Lambda \), it makes sense to talk about the coefficient of the homogeneous symmetric functions when written in terms of the elementary symmetric function basis. These coefficients have been shown to equal the sizes of certain sets of combinatorial objects up to a sign. A brick tabloid of shape \((n) \), and type \(\lambda = (\lambda_1, \ldots, \lambda_k) \) is a filling of a row of \(n \) squares of bricks with lengths \(\lambda_1, \ldots, \lambda_k \) such that bricks do not overlap. One brick tabloid of shape \((12) \) and type \((1, 1, 2, 3, 5) \) is displayed in Figure 1.

Let \(\mathcal{B}_{\lambda,n} \) denote the set of all \(\lambda \)-brick tabloids of shape \((n) \) and let \(B_{\lambda,n} = |\mathcal{B}_{\lambda,n}| \). Through simple recursions stemming from (28), Egge and Remmel proved in [17] that

\[
|\lambda|_n = \sum_{\lambda \vdash n} (-1)^n \epsilon(\lambda) B_{\lambda,n} e_{\lambda}. \tag{29}
\]

We end this section with two lemmas that will be needed in later sections. Both of the lemmas follow from simple codings of a basic result of Carlitz [18] of the form:

\[
\binom{n}{k}_q = \sum_{\alpha \in \mathcal{R}(1^k \mathcal{0}^{n-k})} q^{\text{inv}(\alpha)}, \tag{30}
\]

where \(\mathcal{R}(1^k 0^{n-k}) \) is the number of rearrangements of \(k \) 1’s and \(n-k \) 0’s. We start with a lemma from [19]. Fix a brick tabloid \(T = (b_1, \ldots, b_{(\mu)}) \in \mathcal{B}_{\mu,n} \). Let \(\text{IF}(T) \) denote the set of all fillings of the cells of \(T = (b_1, \ldots, b_{(\mu)}) \) with the numbers 1, \ldots, \(n \) so that the numbers increase within each brick reading from left to right. We then think of each such filling as a permutation of \(S_n \) by reading the numbers from left to right in each row. For example, Figure 2 pictures an element of \(\text{IF}(3, 6, 3) \) whose corresponding permutation is 4 6 12 1 5 7 8 10 11 2 3 9.

Then the following lemma which is proved in [19] gives a combinatorial interpretation to \(\text{IF}(T) \).

Lemma 8. If \(T = (b_1, \ldots, b_{(\mu)}) \) is a brick tabloid in \(\mathcal{B}_{\mu,n} \), then

\[
\text{IF}(T) \cdot \left[\begin{smallmatrix} n \\ \mu \\ \mu \end{smallmatrix} \right] = \sum_{\sigma \in \text{IF}(T)} q^{\text{inv}(\sigma)} \text{IF}(T). \tag{31}
\]

Another well known combinatorial interpretation for \(\binom{n+k-1}{k}_q \) ([13]) is that it is equal to the sum of the sizes of the partitions that are contained in an \(n \times (k-1) \) rectangle. Thus one has the following lemma.

Lemma 9. Consider the following:

\[
\sum_{0 \leq a_1 \leq \ldots \leq a_k \leq k-1} q^{a_1 + \cdots + a_n} = \binom{n+k-1}{n}_q. \tag{32}
\]

3. Generating Functions

The main goal of this section is to prove (12). That is, we will prove the following theorem.

Theorem 10. Let \(Y \subseteq C_k \times S_2 \) and \(\bar{\mathcal{A}} = (A_1, A_2) \subseteq \{k\} \). For all \(k \geq 2 \),

\[
\sum_{n \geq 0} \left[n \right]_p \left[\left[n \right]_q \right] \sum_{(\sigma, w) \in \mathcal{C}_{\mu,k} S_n} p^{\text{coinv}(\sigma)} q^{\epsilon(\sigma)} x^{(\lambda, \bar{\mu}, \mu, \sigma)} z(x) \tag{33}
\]

Proof. Define a ring homomorphism \(\Gamma : \Lambda \to \mathbb{Q}(p, q, z_0, \ldots, z_{k-1}) \) by setting

\[
\Gamma(e_0) = 1, \quad \Gamma(e_1) = z_0 + \cdots + z_{k-1}, \quad \Gamma(e_n) = (-1)^n(x-1)^{1-n} \frac{1}{[n]_p q} \text{mp}(Y, \bar{\Lambda}, n)
\]

\[
\times (p, q; z_0, \ldots, z_{k-1}) \quad \text{for } n \geq 1.
\]

Then we claim that

\[
\left[n \right]_p \left[n \right]_q \Gamma(h_n) = \sum_{(\sigma, w) \in \mathcal{C}_{\mu,k} S_n} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} z(x)^{Y, \bar{\mu}, \mu, \sigma} \tag{34}
\]

for all \(n \geq 1 \). That is,

\[
\left[n \right]_p \Gamma(h_n) = \left[n \right]_p \sum_{\mu \vdash n} (-1)^{\epsilon(\mu)} B_{\mu,\mu} \Gamma(e_\mu) \tag{35}
\]

\[
= \left[n \right]_p \sum_{\mu \vdash n} (-1)^{\epsilon(\mu)}
\]
We then reorder by the proper contribution after reordering weights of all fillings of $p, r, r + 1, \ldots, r + s$. Let w_i be an element in $[k]$ to put on top of α_i. Next suppose that $b_j > 1$ and covers cells $r, r + 1, \ldots, r + s$. Let $\alpha_i < \alpha_{r+1} < \cdots < \alpha_{r+s}$ be the elements of α in cells $r, r + 1, \ldots, r + s$, respectively. Then we interpret $p^{-1}(\beta)_{\mp}^\alpha(\beta, (b_j, \beta))$ as the numbers of ways of picking a maximum packing $(\beta, (b_j, \beta)) \in \mathcal{M}_{\mathcal{S}k}(\alpha)$ where we weight $(\beta, (b_j, \beta))$ by $p^{\text{conv}(\beta, (b_j, \beta))} \text{inv}(\beta, (b_j, \beta))$. We then reorder by the proper contribution after reordering which is $\text{coinv}(\beta, (b_j, \beta))$ to the coinversion count of the resulting permutation and $\text{inv}(\beta, (b_j, \beta))$ to the inversion count of the resulting permutation. Finally, we interpret $\prod_{j=1}^{k}(x - 1)^{b_j - 1}$ as all ways of picking a label of the cells of each brick except the final cell with either an x or a -1. For completeness, we label the final cell of each brick with 1. For example, suppose that $Y = \{(21,00), (21,001)\}$, $k = 3$, and $\tilde{A} = \{[3], [3]\}$. Thus (σ, w) is a maximum packing for (Y, \tilde{A}) only if σ is strictly decreasing and w is a weakly increasing word over the alphabet $\{0, 1, 2\}$. Then at the top of Figure 3, we have pictured the brick tabloid $T = (3, 1, 5, 2)$ along with a permutation α which is increasing within bricks. Below that, we have picked our choices of $(\beta, (b_j, \beta))$ for the bricks b_j for $j = 1, 3, 4$ and choice of I for brick b_2 which is of length 1. These choices result in the filled brick tabloid pictured at the bottom of Figure 3. We have also specified a labeling of the cells with either $x, -1$, or 1 so that the last cell of each brick is labeled with 1 and the remaining cells are labeled with either x or -1. We shall call all such objects created in this way filled labeled brick tabloids, and let \mathcal{F}_n denote the set of all filled labeled brick tabloids that arise in this way. Thus, a $C \in \mathcal{F}_n$ consists of a brick tabloid $T = (b_1, \ldots, b_n)$, an element $(\sigma, w) \in \mathcal{S}k \times \mathcal{S}n$, and a labeling L of the cells of T with elements from $\{x, 1, -1\}$ such that

1. if $b_j = 1$ and covers cell r, then w_i is an arbitrary element of $[k]$,
2. if $b_j > 1$ and covers cells $r, r + 1, \ldots, r + s$, then $(\text{red}(\sigma, \sigma_{r+1} \cdots \sigma_{r+s}), w_r, w_{r+1}, \ldots, w_{r+s})$ is an element of $\mathcal{M}_{\mathcal{S}k}(\alpha)$,
3. the final cell of each brick is labeled with 1,
4. each cell which is not a final cell of a brick is labeled with x or -1.

We then define the weight $w(C)$ of C to be $\sum_{\gamma \in \mathcal{S}k} p^{\text{conv}(\gamma)} \text{inv}(\gamma) \sigma(\gamma)$ times the product of all the x labels in L and the sign $\text{sgn}(C)$ of C to be the product of all the -1 labels in L. For example, if $C = (T, (\sigma, w), L)$ is the filled labeled brick tabloid pictured at the bottom of Figure 3, then $w(C) = q^6 p^2 z_2^4 z_3^2 z_4^4 z_5^4$ and $\text{sgn}(C) = -1$. It follows that

$$\left[n \right]_{\mathcal{F}_n} \text{sgn}(C) = \sum_{C \in \mathcal{F}_n} \text{sgn}(C) \cdot w(C).$$

Next we define a weight-preserving sign-reversing involution $I : \mathcal{F}_n \rightarrow \mathcal{F}_n$. To define $I(C)$, we scan the cells of $C = (T, (\sigma, w), L)$ from left to right looking for the leftmost cell t
such that either (i) t is labeled with -1 or (ii) t is at the end of a brick b_j, and the brick b_{j+1} immediately following b_j has the property that if b_j together with b_{j+1} cover cells $r, r+1, \ldots, r+s$, then $(\text{red}(\sigma, r+1, \ldots, r+s), w, w_{r+1}, \ldots, w_{r+s})$ is a maximum packing for (Y, A). In case (i), $I(C) = (T', (\sigma', w'), L')$ where T' is the result of replacing the brick b in T containing t by two bricks b^* and b^{**} where b^* contains the cell t plus all the cells in b to the left of t and b^{**} contains all the cells of b to the right of t, $\sigma = \sigma'$, $w = w'$, and L' is the labeling that results from L by changing the label of cell t from -1 to 1. In case (ii), $I(C) = (T', (\sigma', w'), L')$ where T' is the result of replacing the bricks b_j and b_{j+1} in T by a single brick b, $\sigma = \sigma'$, $w = w'$, and L' is the labeling that results from L by changing the label of cell t from 1 to -1. If neither case (i) or case (ii) applies, then we let $I(C) = C$. For example, if C is the element of E_{12} pictured in Figure 3, then $I(C)$ is pictured in Figure 4.

It is easy to see that I is a weight-preserving sign-reversing involution and hence I shows that

$$\Gamma(h_n) = \sum_{C \in F_0(I(C) = C)} \text{sgn}(C) w(C).$$

(38)

Thus, we must examine the fixed points $C = (T, \sigma, w, L)$ of I. First there can be no -1 labels in L so that $\text{sgn}(C) = 1$. Moreover, if b_j and b_{j+1} are two consecutive bricks in T and t is the last cell of b_j, then it cannot be the case that there is a (Y, \bar{A})-match starting at position t in (σ, w) since otherwise we could combine b_j and b_{j+1}. For any such fixed point, we associate an element $(\sigma, w) \in C_k \times S_n$. For example, a fixed point of I is pictured in Figure 5 where $\sigma = 5 4 3 1 11 10 9 7 6 8 2$ and $w = 0 0 1 1 0 0 1 1 2 2 0 2$.

It follows that if cell t is at the end of a brick, then t is not the start of a (Y, \bar{A})-match. However, if v is a cell which is not at the end of a brick, then our definitions force v to be the start of a (Y, \bar{A})-match. Since each such cell v must be labeled with an x, it follows that $\text{sgn}(C) w(C) = q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} z(\sigma) x^{(Y, \bar{A})-\text{mch}(\sigma, w)}$. Vice versa, if $(\sigma, w) \in C_k \times S_n$, then we can create a fixed point $C = (T, (\sigma, w), L)$ by having the bricks in T at cells of the form t where t is not the start of a (Y, \bar{A})-match, labeling each cell t which is the start of a (Y, \bar{A})-match with x, and labeling the remaining cells with 1. Thus, we have shown that

$$\Gamma(h_n) = \sum_{(\sigma, w) \in C_k \times S_n} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} z(\sigma) x^{(Y, \bar{A})-\text{mch}(\sigma, w)}.$$

(39)

as desired.

![Figure 4: I(C) for C in Figure 3.](image1)

![Figure 5: A fixed point of I.](image2)

Applying Γ to the identity $H(t) = (E(-t))^{-1}$, we get

$$\sum_{n \geq 0} \Gamma(h_n) t^n = \sum_{n \geq 0} \frac{t^n}{[n]_{pq}!} \prod_{(\sigma, w) \in C_k \times S_n} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} z(\sigma) x^{(Y, \bar{A})-\text{mch}(\sigma, w)} \times \frac{1}{1 + \sum_{n \geq 1} (-t)^n \Gamma(\delta_n)}$$

$$= 1 \times \left(1 + \left(z_0 + \cdots + z_{k-1}\right) (-t) + \sum_{n \geq 1} (-1)^n t^n \times \left(\frac{1}{[n]_{pq}!} \right) \right)^{-1}$$

$$= 1 \times \left(1 - \left(z_0 + \cdots + z_{k-1}\right) t + \sum_{n \geq 2} \left((x-1)^{n-1} t^n / [n]_{pq}! \right) \right)$$

which proves (33). \qed

To be able to use Theorem 10, we need to be able to compute $\text{mp}_{(Y, \bar{A})}(p, q; z_0, \ldots, z_{k-1})$. In fact, this is easy to do in most cases. Thus, we end this section by giving several such examples. We will examine the cases when

(i) $Y = Y_s = \{(12, 01)\}$ and $\bar{A} = \{(k, k)\}$,
(ii) $Y = Y_r = \{(12, 00), (12, 01)\}$ and $\bar{A} = \{(k, k)\}$,
(iii) $Y = Y_w = \{(12, 00)\}$ and $\bar{A} = \{(k, k)\}$,
(iv) $Y = Y_d = \{(12, 01), (12, 10)\}$ and $\bar{A} = \{(k, k)\}$,
(v) $Y = \{(12, ab)\}$ and $\bar{A} = \{(a\bar{a}, b)\}$,
(vi) $Y = \{(12, 00), (12, 01)\}$ and $\bar{A} = \{(k, k-1)\}$,
(vii) \(\Upsilon = \{(12, 00), (12, 01)\} \) and \(\vec{A} = \{[k], [k - 2, k - 1]\} \),
(viii) \(\Upsilon = \{(12, 01)\} \) and \(\vec{A} = \{[k], [k - 2, k - 1]\} \).

Example 12. Let \(\Upsilon = \Upsilon_s = \{(12, 01)\} \) and \(\vec{A} = \{(k), (k, k - 1)\} \).

In this case for any \((\sigma, w) \in C_k : S_n, (Y, \vec{A}) - mch((\sigma, w)) =\)
\(\text{ris}((\sigma, w))\). It is easy to see that for \(n \geq 2, (\sigma, w) \in \mathcal{M}(\Upsilon, \vec{A})_n \)
if and only if \(\sigma = 12 \cdots n\) is the identity permutation and \(w = w_1 \cdots w_n\) where \(0 \leq w_1 \leq \cdots \leq w_n \leq k - 1\). As we pointed out in the introduction, it follows that

\[
mp(\Upsilon, \vec{A})_n (x, p, q, r, t) = p\left(\frac{2}{n}\right)\left(\prod_{i=0}^{k-1} (1 + z_i t)\right),
\]

\[
\text{(41)}
\]

Note that if \(0 \leq w_1 < \cdots < w_n \leq k - 1\) and \(a_i = w_i - (i - 1)\)
for \(i = 1, \ldots, n\), then \(0 \leq a_1 \leq a_2 \leq \cdots \leq a_n \leq k - n\) and
\(\sum_{i=1}^{n} a_i = (\frac{k}{2}) + \sum_{i=1}^{n} a_i\). Hence,

\[
mp(\Upsilon, \vec{A})_n (x, p, q, 1, \ldots, 1) = p\left(\frac{2}{n}\right)\left(\prod_{i=0}^{k-1} (1 + z_i t)\right),
\]

\[
\text{(42)}
\]

Here the last equality follows from Lemma 9. Thus, it follows that for all \(k \geq 2\),

\[
D(\Upsilon)_{x, p, q, r, t} = \sum_{n \geq 0} \frac{t^n}{[n]_p q^n} \sum_{(\sigma, w) \in C_k : S_n} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} r^{w_1 \cdots w_n}_{\text{ris}(\sigma, w)}
\]

\[
= 1 \times \left(1 - \left((1 + r + \cdots + r^{k-1}) t\right) + \sum_{n \geq 2} \frac{(x-1)^{n-1}}{[n]_p q^n} \right)
\]

\[
\times \text{mp(\Upsilon, \vec{A})}_n (x, p, q, 1, \ldots, 1)\right)^{-1}
\]

\[
= 1 - x \left(1 + \sum_{n \geq 1} \left(p\left(\frac{2}{n}\right)((x-1)^{n}/[n]_p q^n)\right)^{-1} r^{n} \right)
\]

\[
= 1 - x \left(1 + \sum_{n \geq 1} \left(p\left(\frac{2}{n}\right)((x-1)^{n}/[n]_p q^n)\right)^{-1} r^{n} \right)
\]

\[
\text{(43)}
\]

Example 13. Let \(\Upsilon = \Upsilon_s = \{(12, 00)\} \) and \(\vec{A} = \{(k), (k, k - 1)\} \).

In this case for any \((\sigma, w) \in C_k : S_n, (Y, \vec{A}) - mch((\sigma, w)) =\)
\(\text{ris}((\sigma, w))\). It is easy to see that for \(n \geq 2, (\sigma, w) \in \mathcal{M}(\Upsilon, \vec{A})_n \)
if and only if \(\sigma = 12 \cdots n\) is the identity permutation and \(w = w_1 \cdots w_n\) where \(0 \leq w_1 = \cdots = w_n \leq k - 1\). As we pointed out in the introduction, it follows that

\[
mp(\Upsilon, \vec{A})_n (p, q; z_1, \ldots, z_{k-1}) = p\left(\frac{2}{n}\right)\left(\prod_{i=0}^{k-1} (1 - z_i t)\right)_{p_i^n}
\]

\[
\text{mp(\Upsilon, \vec{A})}_n (p, q; 1, r, \ldots, r^{k-1}) = p\left(\frac{2}{n}\right)\left(\prod_{i=0}^{k-1} (1 - z_i t)\right)_{p_i^n}
\]

\[
\text{mp(\Upsilon, \vec{A})}_n (p, q; 1, \ldots, 1) = p\left(\frac{2}{n}\right)\left(\prod_{i=0}^{k-1} (1 - z_i t)\right)_{p_i^n}
\]

\[
\text{(46)}
\]

Hence,

\[
\text{mp(\Upsilon, \vec{A})}_n (p, q; 1, \ldots, 1) = kp\left(\frac{2}{n}\right),
\]

\[
\text{mp(\Upsilon, \vec{A})}_n (p, q; 1, r, \ldots, r^{k-1}) = p\left(\frac{2}{n}\right)\left(\prod_{i=0}^{k-1} (1 - z_i t)\right)_{p_i^n}
\]

\[
\text{(47)}
\]
Thus, for all $k \geq 2,$

$$D_k^Y(x, p, q, r, t) = \sum_{n \geq 0} \left(\frac{t^n}{n!} \right) \sum_{\sigma \in S_n} q^{|\sigma|} p^{|\text{inv} \sigma|} x^{\text{wris} \sigma} = 1 \times \left((1 + r + \cdots + r^{-1}) t \right)$$

$$= 1 - \frac{1 - \sqrt{(1 + r + \cdots + r^{-1}) t}}{1 - x} = \sum_{n \geq 0} \frac{1 - \sqrt{(1 + r + \cdots + r^{-1}) t}}{1 - x} n! \frac{t^n}{n!}.$$

(48)

Example 14. Let $Y = Y_d = \{(12, 01), (12, 10)\}$ and $\tilde{A} = (\{a\}, [k], k).$

In this case, it is easy to see that for $n \geq 2,$ $(\sigma, w) \in \mathcal{M}_{Y_d, \tilde{A}, n}$ if and only if $\sigma = 12 \cdots n$ and $w = w_1 \cdots w_n$ where $w_i \neq w_{i+1}$ for $i = 1, \ldots, n.$ In this case, one cannot find simple compact expressions for $\mp(Y, \tilde{A}, n)$ for $\tilde{A} = (\{a\}, [k], k).$

In particular,

$$\sum_{n \geq 0} \frac{t^n}{n!} \sum_{\sigma \in S_n} q^{|\sigma|} p^{|\text{inv} \sigma|} x^{\text{wris} \sigma} = 1 \times \left(1 - \frac{1 - \sqrt{(1 + r + \cdots + r^{-1}) t}}{1 - x} \right).$$

(51)

If $a \neq b,$ then the only possible maximum packings for $(12, ab)$ are when $n = 2$ in which case $(\sigma, w) \in C_k \cap S_2$ is an element of $\mathcal{M}_{Y_d, \tilde{A}, n}$ if and only if $(\sigma, w) = (12, ab).$

Example 15. Let $Y = \{(12, ab)\}$ and $\tilde{A} = (\{a\}, \{b\}).$

In this case, Y, \tilde{A}-mch($\sigma, w) = (r, u)$-Emch($\sigma, w),$ where $(r, u) = (12, ab).$ There are two cases that we have to consider depending on whether $\alpha = a$ or not. If $\alpha = a,$ then for $n \geq 2,$ $(\sigma, w) \in C_k \cap S_n$ is an element of $\mathcal{M}_{Y_d, \tilde{A}, n}$ if and only if $\sigma = 12 \cdots n$ and $w = a.$ Thus, $\mp(Y, \tilde{A}, n)$ for $\tilde{A} = (\{a\}, \{b\}).$

Example 16. Let $Y = \{(12, 00), (12, 01)\}$ and $\tilde{A} = (\{a\}, \{k\} - 1)$. In this case, it is easy to see that for all $n \geq 2,$ $(\sigma, w) \in \mathcal{M}_{Y_d, \tilde{A}, n}$ if and only if $\sigma = 12 \cdots n$ and $w = a(k-1)^{-1}.$

Thus, $\mp(Y, \tilde{A}, n)$ for $\tilde{A} = (\{a\}, \{k\} - 1).$
Hence,
\[
\sum_{n \geq 0} \frac{t^n}{n!} \sum_{(\sigma, w) \in C_k \wr S_n} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} z((\sigma, w)) x^{(\lambda, \tilde{A})-\text{mch}(\sigma, w)) = 1 \times (1 - ((z_0 + \cdots + z_{k-1}) t)
\]
\[+ \sum_{n \geq 2} \frac{(x - 1)^{n-1} t^n}{[n]_p q^!} x_{p} (\frac{1}{n!}) (z_0 + \cdots + z_{k-1})^{n-1})^{-1}.\]
\]

Setting \(p = q = z_0 = \cdots = z_{k-1} = 1 \) in (55), we obtain that
\[
\sum_{n \geq 0} \frac{t^n}{n!} \sum_{(\sigma, w) \in C_k \wr S_n} x^{(\lambda, \tilde{A})-\text{mch}(\sigma, w))}
\]
\[= \frac{1}{1 - k \sum_{n \geq 1} ((x - 1)^{n-1} t^n/n!)}
\]
\[= \frac{1}{1 - x + k \sum_{n \geq 1} ((x - 1) t^n/n!)}
\]
\[= \frac{1}{1 - x + k (e^{(x-1)t} - 1)}
\]
\[= \frac{1}{1 - k - x + ke^{(x-1)t}}.\]

Let \(N M_{((12,00),(12,01)),([k],[k-1]))} \) denote the number of \(\sigma \in C_k \wr S_n \) that have no \(((12,00),(12,01)), ([k],[k-1])) \)-matches. Then setting \(x = 0 \) in (56), we see that
\[
\sum_{n \geq 0} \frac{t^n}{n!} N M_{((12,00),(12,01)),([k],[k-1]))} = \frac{1}{1 - k} + ke^{-t}.\]

One can easily calculate that the sequence
\((N M_{((12,00),(12,01)),([0,1],[1]))} , n \geq 0 \) starts out with
\[1, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, \ldots\]

which is sequence A000629 in the OEIS and which also counts the number of necklaces of partitions of \(n + 1 \) labeled beads. Similarly, the sequence
\((N M_{((12,00),(12,01)),([0,1,2],[2]))} , n \geq 0 \) starts out with
\[1, 3, 15, 111, 1095, 13503, 199815, 3449631, 68062695, \ldots\]

and the sequence
\((N M_{((12,00),(12,01)),([0,1,2,3],[3]))} , n \geq 0 \) starts out with
\[1, 4, 28, 292, 4060, 70564, 1471708, 35810212, 995827420, \ldots\]

Neither of these two sequences appear in the OEIS.

Example 17. Let \(Y = \{(12,00), (12,01)\} \) and \(\tilde{A} = ([k], [k-2, k-1]) \).

In this case, it is easy to see that for all \(k \geq 2 \) and \(n \geq 2 \), \((\sigma, w) \in \mathcal{M}(\gamma, \tilde{A}) \), if and only if \(\sigma = 12 \cdots n \) and \(w \) is either of the form \(w = a(k-2)(k-1)^r \) where \(0 \leq a \leq k-3 \) and \(i + j = n-1 \) or \(w = (k-2)^r(k-1)^s \) where \(r + s = n \). Hence, for all \(n \geq 2 \),
\[
N M_{((12,00),(12,01)),([k],[k-1]))} = (k-1)n + 1 \) \(p^{(2)} \).
\]

It follows that
\[
\sum_{n \geq 0} \frac{t^n}{n!} \sum_{(\sigma, w) \in C_k \wr S_n} q^{\text{inv}(\sigma)} p^{\text{coinv}(\sigma)} x^{(\lambda, \tilde{A})-\text{mch}(\sigma, w))}
\]
\[= 1 \times (1 - ((z_0 + \cdots + z_{k-1}) t)
\]
\[+ \sum_{n \geq 2} \frac{(x - 1)^{n-1} t^n}{[n]_p q^!} x_{p} (\frac{1}{n!}) (z_0 + \cdots + z_{k-1})^{n-1})^{-1}.\]

Setting \(p = q = 1 \) in (62), we obtain that
\[
\sum_{n \geq 0} \frac{t^n}{n!} \sum_{(\sigma, w) \in C_k \wr S_n} x^{(\lambda, \tilde{A})-\text{mch}(\sigma, w))}
\]
\[= \frac{1}{1 - x + \sum_{n \geq 1} ((x - 1) t^n/n!)}
\]
\[= \frac{1}{1 - x + \sum_{n \geq 1} ((x - 1) t^n/n!)}
\]
\[= 1 - x \left(1 - x + (k - 1) (x - 1) t
ight)
\]
\[\times \left(\sum_{n \geq 1} \frac{((x - 1) t^n/n!)}{(n-1)!}\right)
\]
\[\times \left(\sum_{n \geq 1} \frac{((x - 1) t^n/n!)}{n!}\right)^{-1}
\]
\[= \frac{1 - x}{1 - x + (k - 1) (x - 1) t e^{(x-1)t} + e^{(x-1)t} - 1}
\]
\[= \frac{1 - x}{1 - x + (k - 1) (x - 1) t e^{(x-1)t}}.
\]

Let \(N M_{((12,00),(12,01)),([k],[k-2,k-1]))} \) denote the number of \(\sigma \in C_k \wr S_n \) that have no \(((12,00),(12,01)), ([k],[k-2,k-1])) \)-matches. Then setting \(x = 0 \) in (63), we see that
\[
\sum_{n \geq 0} \frac{t^n}{n!} N M_{((12,00),(12,01)),([k],[k-2,k-1]))} = \frac{1}{(1 - (k - 1) t) e^{-t}} = \frac{e^t}{1 - (k - 1) t}.
\]
Note that it follows that for \(n \geq 1 \),
\[
NM_{((1,2,00),(1,2,01)),(\{k\},(k−2,k−1)),n}
= n! \sum_{j=0}^{n} \frac{(k−1)^j}{(n−j)!}
= 1 + n! \sum_{j=1}^{n} \frac{(k−1)^j}{(n−j)!}
= 1 + (k−1)n \left(n−1 \sum_{j=1}^{n−1} \frac{(k−1)^j}{(n−j)!} \right)
= 1 + (k−1)nNM_{((1,2,00),(1,2,01)),(\{k\},(k−2,k−1)),n−1}.
\]

It would be interesting to find a direct combinatorial proof of this recursion, which we leave as an open problem.

One can easily calculate the sequence \((NM_{((1,2,00),(1,2,01)),(\{0,1\},(0,1)),n})_{n \geq 0} \) starts out with
\[
1, 2, 5, 16, 65, 326, 1957, 13706, 109601, 986410, \ldots
\]
which is sequence A000522 in the OEIS having multiple combinatorial interpretations including the number of permutations \(\sigma = \sigma_1 \cdots \sigma_{n+1} \) with no \(1 \leq i < j \) such that \(\sigma_i < \sigma_j \), \(\sigma_{i+1} < \sigma_i \), that is, in the Babson-Steingrimsson notation, the number of \(\sigma \) in \(S_{n+1} \) which avoid the pattern 1-2-3 [the same pattern is denoted 123 in the recently introduced notation [20]].

The sequence \((NM_{((1,2,00),(1,2,01)),(\{0,1,2\},(1,2)),n})_{n \geq 0} \) starts out with
\[
1, 3, 13, 79, 633, 6331, 75973, 1063623, 18017969, 306323443, \ldots
\]
which is sequence A010844 of the OEIS. This sequence does not have a combinatorial interpretation listed in the OEIS so that we have obtained a new combinatorial interpretation of this sequence. However, in general, if \(a(n) \) is the \(n \)th term of this sequence where \(a(0) = 1 \), then \(a(n) \) is equal to \(2^n \) times the permanent of the \(n \times n \) matrix with 2 on the main diagonal and 1’s everywhere else.

The sequence \((NM_{((1,2,00),(1,2,01)),(\{0,1,2\},(2,3)),n})_{n \geq 0} \) starts out with
\[
1, 4, 25, 226, 2713, 40696, 732529, 1538310, 369194641, 9968255308, \ldots
\]
is sequence A010844 of the OEIS. This sequence does not have a combinatorial interpretation listed in the OEIS. Thus, we have obtained a new combinatorial interpretation of this sequence. In this case, if \(a(n) \) is the \(n \)th term of the sequence where \(a(0) = 1 \), then \(a(n) \) is equal to \(3^n \) times the permanent of the \(n \times n \) matrix with 4/3 on the main diagonal and 1’s everywhere else.

Similarly, the sequences \((NM_{((1,2,00),(1,2,01)),(\{k\},(k−2,k−1)),n})_{n \geq 0} \) for \(k = 5, 6, \) and 7 appear in the OEIS as sequences A056545, A056546, and A056547, respectively.

Example 18. Let \(Y = \{(12,01)\} \) and \(\bar{A} = (\{k\}, |k−2,k−1|) \).

In this case, it is easy to see that \(\mathcal{M}_Y(\bar{A},n) = 0 \) for \(k > 3 \). That is, for \((\sigma, w) \in \mathcal{M}_{\mathcal{P}(\mathcal{Y}, \bar{A}),n} \), we must have \(\sigma = 12 \cdots n \) and \(w = w_1 \cdots w_n \) where \(0 \leq w_i < \cdots < w_n \leq k−1 \) and \(w_i \in \{k−2,k−1\} \) for \(i > 1 \). Now if \(n = 2 \), our choices for \(w \) are either \(a(k−2) \) or \(a(k−1) \) where \(a \in \{0, \ldots, k−3\} \) so that \(mp_{\mathcal{Y}, \bar{A}}(p, q; 1, \ldots, 1) = p(2(k−2) + 1) = p(2k−3) \).

Now if \(n = 3 \), our choices for \(w \) are \(a(k−2)(k−1) \) where \(a \in \{0, \ldots, k−3\} \), so that \(mp_{\mathcal{Y}, \bar{A}}(p, q; 1, \ldots, 1) = p^2(k−2) \).

It follows that
\[
\sum_{n \geq 0} x^n \sum_{\sigma, w \in C_k \wedge S_n} \frac{x^{\text{coinv}(\sigma)} p^{\text{coinv}(\sigma)}}{\mathcal{P}(\mathcal{Y}, \bar{A})-\text{mch}(\sigma, w)}
\]
\[
= 1 \times \left(1 - \left(k + p(2k−3)(x−1) \right) \frac{t^2}{2p^4} \right)^{-1} \cdot \left(1 + p^2(x−1)^2(k−2) \frac{t^3}{3p^4} \right)^{-1}.
\]

Setting \(p = q = 1 \) in (69), we obtain that for \(k \geq 2 \)
\[
\sum_{n \geq 0} x^n \sum_{\sigma, w \in C_k \wedge S_n} \frac{x^{\text{coinv}(\sigma)} p^{\text{coinv}(\sigma)}}{\mathcal{P}(\mathcal{Y}, \bar{A})-\text{mch}(\sigma, w)}
\]
\[
= 1 \times \left(1 - \left(k + p(2k−3)(x−1) \right) \frac{t^2}{2p^4} \right)^{-1} \cdot \left(1 + p^2(x−1)^2(k−2) \frac{t^3}{3p^4} \right)^{-1}.
\]

Let \(NM_{(1,2,01),(|k,|k–2,k–1|),n} \) denote the number of \(\sigma \in C_k \wedge S_n \) that have no \((12,01), (\{k\}, |k–2,k–1|) \) matches. Then setting \(x = 0 \) in (70), we see that
\[
\sum_{n \geq 0} x^n NM_{(1,2,01),(|k,|k–2,k–1|),n}
\]
\[
= \frac{1}{1−kt+(2k−3)(t^2/2)−(k−2)(t^3/6)}.
\]

One can easily calculate the initial terms of the sequences \((NM_{(1,2,01),(|k,|k–2,k–1|),n})_{n \geq 0} \). For example, the sequence \((NM_{(1,2,01),(|2,|2–2,2–1|),n})_{n \geq 0} \) starts out
\[
1, 2, 7, 36, 246, 2100, 21150, 257040, 3510360, 53933040, \ldots
\]
which is sequence A109484 of the OEIS. This sequence does not have a combinatorial interpretation listed in the OEIS. Thus, we have obtained a new combinatorial interpretation of this sequence. In this case, if \(a(n) \) is the \(n \)th term of the sequence where \(a(0) = 1 \), then \(a(n) \) is equal to \(3^n \) times the permanent of the \(n \times n \) matrix with 3/2 on the main diagonal and 1’s everywhere else.
4. Expressions for $NM_{(Y,\vec{A})_n}$ as Polynomials in k and Connections to Other Objects

Recall that for any $Y \subseteq C_k \times S_n$ and $\vec{A} = (A_1, A_2)$ where $A_i \subseteq [k]$, $NM_{(Y,\vec{A})_n}$ is the number of $(\sigma, w) \in C_k \times S_n$ such that (σ, w) has no (Y, \vec{A})-matches. We start out by considering the special case where $Y \subseteq C_2 \times S_2$ and $\vec{A} = ([k], [k])$. In that case, we will simply write A_{nk}^Y for $NM_{(Y,\vec{A})_n}$. Thus, A_{nk}^Y is the number of permutations $(\sigma, w) \in C_k \times S_n$ such that (σ, w) has no Y-matches. By setting $p = q = z_0 = \cdots = z_{k-1} = 1$ in (33), we see that

$$\sum_{n=0}^{\infty} A_{nk}^Y \frac{t^n}{n!} = 1 \times \left(1 - \sum_{n=2}^{\infty} m_p(Y, ([k], [k])) \frac{t^n}{n!} \right)^{-1} \times (1, 1, 1, \ldots, 1) \left(\frac{(-1)^{n-1}(n!/n!)}{1-1} \right).$$

(75)

We can easily compute the initial sequences of values for these generating functions using any computer algebra system such as Mathematica or Maple. In this section, we will demonstrate these values in several cases.

4.1. $NM_{nk}^{Y_1}$. For example, if $Y = Y_1 = \{(1, 2, 0, 0), (1, 2, 0, 1)\}$, $NM_{nk}^{Y_1}$ equals the number of $(\sigma, e) \in C_k \times S_n$ such that $\text{ris}(\sigma, e) = 0$. Table 1 gives initial values of $NM_{nk}^{Y_1}$.

Several of these sequences appear in the OEIS [16]. In fact, we can easily calculate $NM_{nk}^{Y_1}$ as a polynomial in k. For example, we have

$$NM_{2k}^{Y_1} = 1,$$

$$NM_{3k}^{Y_1} = k,$$

$$NM_{2k}^{Y_2} = \frac{1}{2}k(3k - 1),$$

$$NM_{3k}^{Y_2} = \frac{1}{6}k(19k^2 - 15k + 2),$$

$$NM_{4k}^{Y_1} = \frac{1}{24}k(211k^3 - 270k^2 + 89k - 6),$$

$$NM_{5k}^{Y_1} = \frac{1}{120}k(3651k^4 - 6490k^3 + 3585k^2 - 650k + 24).$$

(76)

We point out that $NM_{nk}^{Y_1}$ forms the familiar sequence of pentagonal numbers (A000326 in [16]). Otherwise documented sequences appearing in Table 1 include the structured octagonal antiprism numbers (A100184 in [16]) for $NM_{nk}^{Y_2}$, as well as $NM_{nk}^{Y_1}$ (A000522 in [16]), for which there are many known combinatorial interpretations, including the total number of arrangements of all subsets of $[n]$.

We conjecture that for $n \geq 1$ and $k \geq 2$, $NM_{nk}^{Y_1}$ is always of the form $(1/n!)kP_n(k)$ where $P_n(k)$ is a polynomial of degree $n - 1$ whose leading coefficient is positive and such that signs of the remaining coefficients alternate. Now we can prove that $NM_{nk}^{Y_1}$ is always of the form $(1/n!)kP_n(k)$ where $P_n(k)$ is a polynomial of degree $n - 1$ and the term of degree 1 in k is $(-1)^{n-1}(n-1)!$. That is, for any $k \geq 2$, if we set $p = q = z_0 = \cdots = z_{k-1} = 1$ and $x = 0$ in the proof of Theorem 10 and use the fact that $mp_{(Y, ([k], [k]))}(1, 1, 1, \ldots, 1) = (n^{k-1})$, we see that

$$n!\Gamma(h_n) = NM_{nk}^{Y_1},$$

(77)

where

$$\Gamma(e_n) = \frac{(n^{k-1})}{n!} = \frac{(k)_{\frac{n}{k}}}{(n!)^{2}}.$$

(78)

Here we let $(q)_{\frac{1}{2}} = 1$ and $(q)_{\frac{3}{2}} = q(q + 1)\cdots(q + n - 1)$ for $n \geq 1$. But then

$$\frac{n!\Gamma(h_n)}{n!} = \sum_{\mu \vdash \lambda} (-1)^{\ell(\mu)} B_{\mu} \Gamma(e_{\mu}).$$

$$= \frac{1}{n!} \sum_{\mu \vdash \lambda} (-1)^{\ell(\mu)} B_{\mu} \mu_{\lambda}(n) \prod_{\ell=1}^{\lambda} (k)_{\frac{n}{\ell}}.$$

(79)

It is easy to see that the right-hand side of (79) is a polynomial of degree n, and the lowest degree term comes from the term $(-1)^{\ell(\mu)} \mu_{\lambda}(n+1) \cdots (k+n-1)$ corresponding to $\mu = (n)$ which is of the form $(-1)^{\ell-1}(n-1)k + O(k^2)$. On the other hand, the highest-degree term arises when we pick the highest power of k from the products $\prod_{\ell=1}^{\lambda} (k)_{\frac{n}{\ell}}$ which is clearly just k^n. It follows that the highest power of k in $A_{nk}^{Y_1}$ is just

$$\frac{1}{n!} \sum_{\mu \vdash \lambda} (-1)^{\ell(\mu)} \prod_{\mu_{\lambda}(n)} \left(\frac{\mu_{\lambda}(n)}{n!}\right)^{2}.$$

(80)
We can give a combinatorial interpretation to

$$F_n = \sum_{\mu \in \mathcal{B}Bn} (-1)^{n-\ell(\mu)} \sum_{b_1, \ldots, b_{\ell(\mu)} \in \partial_{\mu, n}} \left(n \right)_b^2. \quad (81)$$

That is, we will show that F_n counts the number of pairs of permutations $(\alpha, \beta) \in S_n \times S_n$ such that if $\alpha = \alpha_1 \cdots \alpha_n$ and $\beta = \beta_1 \cdots \beta_n$, then there is no $1 \leq i \leq n-1$ such that $\alpha_i < \alpha_{i+1}$ and $\beta_i < \beta_{i+1}$. That is, F_n is the number of pairs $(\alpha, \beta) \in S_n \times S_n$ that have no common rises. To prove our claim, we can give a combinatorial interpretation to the right-hand side of (81). That is, if we start with a brick tabloid $T = (b_1, \ldots, b_{\ell(\mu)})$, then by Lemma 8, we can interpret $\left(n \right)_b^2$ as all ways to fill the cells of T with pairs of permutations (α, β) such that both α and β are increasing in each brick. Then we interpret $(-1)^{n-\ell(\mu)}$ as labeling each cell of T which is not at the end of brick with -1 and labeling each cell which is at the end of the brick with 1. We let \mathcal{CR}_n denote the set of all filled brick tabloids constructed in this way. For example, Figure 6 pictures a typical element of \mathcal{CR}_n. If $O \in \mathcal{CR}_n$, we define the sign of O, $\text{sgn}(O)$, as the product of labels at the top of the cells of O.

We now can define a sign-reversing involution I_r on \mathcal{CR}_n.

To define I_r, suppose that $O \in \mathcal{CR}_n$ and α and β are the two permutations in O with α on the bottom and β on the top. Then we scan the cells of O from left to right looking for the leftmost cell t such that either (i) t is labeled with -1 or (ii) t is at the end of a brick b_j, and the brick b_{j+1} immediately following b_j has the property that both α and β are strictly increasing in all the cells corresponding to b_j and b_{j+1}. In case (i), $I_r(O)$ is the result of replacing the brick b in O containing t by two bricks b^* and b^{**} where b^* contains the cell t plus all the cells in b to the left of t and changing the label of cell t from -1 to 1. In case (ii), $I_r(O)$ is the result of replacing the bricks b_j and b_{j+1} in T by a single brick b_j and changing the label of cell t from 1 to -1. If neither case (i) or case (ii) applies, then we let $I_r(O) = O$. For example, if O is the element of \mathcal{F}_{12} pictured in Figure 6, then $I_r(O)$ is pictured in Figure 7.

It is easy to see that I_r is a weight-preserving sign-reversing involution and, hence, I_r shows that

$$F_n = \sum_{O \in \mathcal{CR}_n} \text{sgn}(O). \quad (82)$$

Thus, we must examine the fixed points O of I_r. First there can be no -1 labels in O so that all bricks in O must be of size 1 and $\text{sgn}(O) = 1$. Moreover, if b_i and b_{i+1} are two consecutive bricks in T and t is the last cell of b_i, then it cannot be the case that $\alpha_i < \alpha_{i+1}$ and $\beta_i < \beta_{i+1}$, where α and β are the two permutations in O since otherwise we could combine b_i and b_{i+1}. Thus, (α, β) is a pair of permutations in S_n with no common rises. Vice versa, if (α, β) is a pair of permutations in S_n with no common rises, we can create a fixed point O of I_r by having α be the bottom permutation of O, having β be the top permutation of O, and having all bricks be of size 1. For example, Figure 8 pictures a fixed point of I_r.

It follows that F_n is the number of pairs $(\alpha, \beta) \in S_n^2$ with no common rises so that the leading coefficient of $A_{k,r}^Y$ is $F_n/n!$.

4.2. $\text{NM}_{n,k}^Y$. For $Y_r = \{(1, 2, 0, 1)\}$, $\text{NM}_{n,k}^Y$ equals the number of $(\sigma, \epsilon) \in C_k \times S_n$ such that $\text{ris}(\sigma, \epsilon) = 0$. Table 2 gives initial values of $\text{NM}_{n,k}^Y$.

<table>
<thead>
<tr>
<th>n</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>36</td>
<td>61</td>
<td>97</td>
<td>143</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>210</td>
<td>369</td>
<td>595</td>
<td>895</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>2100</td>
<td>4095</td>
<td>6795</td>
<td>10695</td>
</tr>
</tbody>
</table>

In fact, we can easily calculate $\text{NM}_{n,k}^Y$ as a polynomial in k. For example, we have

$$\text{NM}_{2k}^Y = 1,$$
$$\text{NM}_{3k}^Y = k,$$
$$\text{NM}_{4k}^Y = \frac{1}{2}k(3k+1),$$
$$\text{NM}_{5k}^Y = \frac{1}{6}k\left(19k^2 + 15k + 2\right),$$
$$\text{NM}_{6k}^Y = \frac{1}{24}k\left(211k^3 + 270k^2 + 89k + 6\right),$$
$$\text{NM}_{7k}^Y = \frac{1}{120}k\left(3651k^4 + 6490k^3 + 3585k^2 + 650k + 24\right). \quad (83)$$

We point out that $\text{NM}_{n,k}^Y$ forms the familiar sequence of the second pentagonal numbers (A005449 in [16]). None of the other rows or columns in Table 2 matched any previously known sequences in [16].
Table 3: $N M^w_{n,k}$ for $k, n \leq 5$.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k=2$</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>26</td>
<td>150</td>
<td>1082</td>
</tr>
<tr>
<td>$k=3$</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>111</td>
<td>1095</td>
<td>13503</td>
</tr>
<tr>
<td>$k=4$</td>
<td>1</td>
<td>4</td>
<td>28</td>
<td>292</td>
<td>4060</td>
<td>70564</td>
</tr>
<tr>
<td>$k=5$</td>
<td>1</td>
<td>5</td>
<td>45</td>
<td>605</td>
<td>10845</td>
<td>243005</td>
</tr>
</tbody>
</table>

We conjecture that for $n \geq 1$ and $k \geq 2$, $N M^w_{n,k}$ is always of the form $(1/n!)kR_n(k)$ where $R_n(k)$ is a polynomial of degree $n - 1$ with positive coefficients. In fact, we see that the coefficients of P_n and $R_n(k)$ are the same up to a sign for all n. We can prove this. That is, for any $k \geq 2$, if we set $p = q = z_0 = \cdots = z_{k-1} = 1$ and $s = 0$ in the proof of Theorem 10 and use the fact that $mP_{\mu,\nu}(k) = (k/e)_\mu$, we see that

$$n! \Gamma_s(e_n) = N M^w_{n,k},$$

where

$$\Gamma_s(e_n) = \binom{k}{s} \frac{(k)_{\downarrow s}}{(n/n!)}.$$

Here we let $(q)_0 = 1$ and $(q)_{\downarrow n} = q(q-1)\cdots(q-n+1)$ for $n \geq 1$. But then

$$n! \Gamma_s(e_n) = n! \sum_{\mu=0}^{\ell(\mu)} (-1)^{n-\ell(\mu)} B_{\mu,n} \Gamma_s(e_n)$$

$$= \frac{1}{n!} \sum_{\mu,\nu=0}^{\ell(\mu)} (-1)^{n-\ell(\mu)} B_{\mu,n} \prod_{i=1}^{\ell(\mu)} (k)_{\downarrow \nu}$$

$$= \frac{1}{n!} \sum_{\mu=0}^{\ell(\mu)} (-1)^{n-\ell(\mu)} \prod_{i=1}^{\ell(\mu)} (k)_{\downarrow \nu}$$

Since for any $n \geq 1$, $(k)_{\downarrow n} = (-1)^n (k)_n$, it is easy to see that the right-hand side of (86) is obtained from the right-hand side of (79) by replacing k by $-k$ and multiplying by $(-1)^n$. Thus, conjecture that $R_n(k)$ has positive coefficients is equivalent to the conjecture that the signs of the coefficients of $P_n(k)$ alternate.

4.3. $N M^w_{n,k}$. For $\Psi = \{(1 2, 0 0)\}$, $N M^w_{n,k}$ equals the number of $(\sigma, e) \in C_k \setminus S_n^w$ such that $w_{\Psi}(\sigma, e) = 0$. Table 3 gives initial values of $N M^w_{n,k}$.

In fact, we can easily calculate $N M^w_{n,k}$ as a polynomial in k. For example, we have

$$N M^w_{0,k} = 1,$$

$$N M^w_{1,k} = k,$$

$$N M^w_{2,k} = k(2k - 1),$$

$$N M^w_{3,k} = k(6k^2 - 6k + 1),$$

$$N M^w_{4,k} = k(24k^3 - 36k^2 + 14k - 1),$$

$$N M^w_{5,k} = k(120k^4 - 240k^3 + 150k^2 - 30k + 1).$$

We point out that $N M^w_{n,k}$ forms the familiar sequence of hexagonal numbers (A000384 in [16]). Additionally, $N M^w_{n,2}$ matches the sequence counting the number of necklaces on the set of labeled beads (A000629 in [16]). In fact, in this case, we can give a completely combinatorial interpretation of the coefficients of $N M^w_{n,k}$ as a polynomial in k. Let $Ostpn(n)$ denote the set of ordered set partitions of $\{1, 2, \ldots, n\}$. For any set partition $\pi \in Ostpn(n)$, let $\ell(\pi)$ denote the number of parts of π. Then we claim that

$$N M^w_{n,k} = \sum_{\pi \in Ostpn(n)} (-1)^{n-\ell(\pi)} k^{\ell(\pi)},$$

so that the coefficient of k^j in $N M^w_{n,k}$ is equal to $(-1)^{n-j} j S_{n,j}$ where $S_{n,j}$ is the Stirling number of the second kind which is the number of set partitions of $\{1, \ldots, n\}$ into j parts. That is, for any $k \geq 2$, if we set $p = q = z_0 = \cdots = z_{k-1} = 1$ and $s = 0$ in Theorem 10 and use the fact that $mP_{\mu,\nu}(k) = k$ for all $n \geq 2$, then we see that

$$n! \Gamma_w(e_n) = N M^w_{n,k},$$

where

$$\Gamma_w(e_n) = k^{\ell(e_n)}.$$

But then

$$n! \Gamma_s(e_n) = n! \sum_{\mu,\nu=0}^{\ell(\mu)} (-1)^{n-\ell(\mu)} \Gamma_s(e_n)$$

$$= n! \sum_{\mu=0}^{\ell(\mu)} (-1)^{n-\ell(\mu)} \prod_{i=1}^{\ell(\mu)} k_{\downarrow \nu}$$

$$= \sum_{\mu=0}^{\ell(\mu)} (-1)^{n-\ell(\mu)} \prod_{i=1}^{\ell(\mu)} k_{\downarrow \nu}$$

Since (b_1, \ldots, n) counts the number of ordered set partitions $\pi = \{\pi_1, \ldots, \pi_{\ell(e_n)}\}$ such that $|\pi_1| = b_1$, it is easy to see that the right-hand side of (91) equals the right-hand side of (88).
Table 4: $\text{NM}_{n,k}^Y$ for $k, n \leq 5$.

<table>
<thead>
<tr>
<th>n</th>
<th>$k = 0$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>26</td>
<td>150</td>
<td>1082</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>2</td>
<td>12</td>
<td>66</td>
<td>480</td>
<td>12324</td>
<td></td>
</tr>
<tr>
<td>$n = 2$</td>
<td>6</td>
<td>4</td>
<td>20</td>
<td>132</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>$n = 3$</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>$n = 4$</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 5$</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next we want to give a combinatorial interpretation to (96). Next we define a weight-preserving sign-reversing involution $J : \mathcal{D}_n \to \mathcal{D}_n$. To define $J(C)$, we scan the cells of $C = (T, \sigma, L)$ from left to right looking for the leftmost cell t such that either (i) t is labeled with $-k$ or (ii) t is at the end of a brick b_j, and the brick b_{j+1} immediately following b_j has the property that σ is strictly increasing in all the cells corresponding to b_j and b_{j+1}. In case (i), $J(C) = (T', \sigma', L')$ where T' is the result of replacing the brick b_j in T containing t by two bricks b' and b'' where b'' contains the cell t plus all the cells in b to the left of b and b'' contains all the cells of b to the right of t, $\sigma = \sigma'$, and L' is the labeling that results from L by changing the label of cell t from $-k$ to k. In case (ii), $J(C) = (T', \sigma', L')$ where T' is the result of replacing the bricks b_j and b_{j+1} in T by a single brick b, $\sigma = \sigma'$, and L' is the labeling that results from L by changing the label of cell t from $-k$ to k. If neither case (i) nor case (ii) applies, then we let $J(C) = C$. For example, if C is the element of \mathcal{D}_{12} pictured in Figure 9, then $J(C)$ is pictured in Figure 10.

It is easy to see that J is a weight-preserving sign-reversing involution, and hence J shows that

$$n! \Gamma_U (h_n) = \sum_{C \in \mathcal{D}_n} \text{sgn} (C) \omega (C).$$

(97)

Next we want to give a combinatorial interpretation to (96). For any brick tabloid $T = (b_1, \ldots, b_{\ell(T)}) \in \mathcal{D}_{n,k}$, we can interpret $(n_{-b_{\ell(T)}})$ as the set of all fillings of T with a permutation $\sigma \in S_n$ such that σ is increasing in each brick. We then interpret $\prod_{i=1}^{\ell(T)} k(1 - k)^{h_i - 1}$ as all ways of picking a label of the cells of each brick except the final cell with either an 1 or a $-k$ and letting the label of the last cell of each brick be k. We let \mathcal{D}_n denote the set of all filled labeled brick tabloids that arise in this way. Thus, a $C \in \mathcal{D}_n$ consists of a brick tabloid T, a permutation $\sigma \in S_n$, and a labeling L of the cells of T with elements from $\{k, -k, 1\}$ such that

1. σ is strictly increasing in each brick,
2. the final cell of each brick is labeled with k,
3. each cell which is not a final cell of a brick is labeled with 1 or $-k$.

We then define the weight $\omega(C)$ of C to be the product of all the k labels in L and the sign $\text{sgn}(C)$ of C to be the product of all the -1 labels in L. For example, if $n = 12$, $k = 4$, and $T = (4, 3, 3, 2)$, then Figure 9 pictures such a composite object $C \in \mathcal{D}_{12}$ where $\omega(C) = k'$ and $\text{sgn}(C) = -1$.

Thus,

$$n! \Gamma_U (h_n) = \sum_{C \in \mathcal{D}_n} \text{sgn} (C) \omega (C).$$

(97)

Figure 10: $J(C)$ for C in Figure 9.
Moreover, if b_j and b_{j+1} are two consecutive bricks in T and t is the last cell of b_j, then it cannot be the case that $\sigma_j < \sigma_{j+1}$ since otherwise we could combine b_j and b_{j+1}. For any such fixed point, we associate an element $(\sigma, \nu) \in C_k \times S_n$. For example, a fixed point of I is pictured in Figure 11 where

\[
\sigma = 2 \ 3 \ 4 \ 11 \ 6 \ 9 \ 10 \ 1 \ 8 \ 12 \ 5 \ 7.
\]

Figure 11: A fixed point of J.

It follows that if cell t is at the end of a brick which is not the last brick, then $\sigma_t > \sigma_{t+1}$. However, if ν is a cell which is not at the end of a brick, then our definitions force $\sigma_t < \sigma_{t+1}$. Since each such cell ν must be labeled with an 1, it follows that $\text{sgn}(C)\nu(C) = k^{\text{des}(\sigma)+1}$ where the $+1$ comes from the fact that the last cell of the last brick is also labeled with 1. Vice versa, if $\sigma \in S_n$, then we can create a fixed point $C = (T, \sigma, L)$ by having the bricks in T end at cells of the form t where $\sigma_t > \sigma_{t+1}$ and labeling each such cell with σ, labeling the last cell with k, and labeling the remaining cells with 1. Thus, we have shown that

\[
\text{des}(\sigma)^+ = \sum_{\sigma \in S_n} k^{\text{des}(\sigma)+1}
\]

as desired.

4.5. $\text{NM}_{(Y, \lambda)^n}$. Next we consider another case where we can show that as a polynomial in k, $\text{NM}_{(Y, \lambda)^n}$ has coefficients whose signs alternate. That is, it follows from (64) that

\[
\text{NM}_{(12,00), (12,01)} = n! \sum_{r=0}^{n} (k-1)^r (n-r)!
\]

(101)

We can easily calculate $\text{NM}_{(12,00), (12,01)}$ as a polynomial in k. For example, we have

\[
\text{NM}_{(12,00), (12,01)} = 1,
\]

\[
\text{NM}_{(12,00), (12,01)} = k,
\]

\[
\text{NM}_{(12,00), (12,01)} = 2k^2 - 2k + 1,
\]

\[
\text{NM}_{(12,00), (12,01)} = 6k^3 - 12k^2 + 9k - 2,
\]

\[
\text{NM}_{(12,00), (12,01)} = 24k^4 - 72k^3 + 84k^2 - 44k + 9,
\]

Thus, we see that the signs of the polynomial $\text{NM}_{(12,00), (12,01)}$ seem to alternate and that the leading term seems to be nk^s. We can prove both of these facts. Taking the coefficient of k^0 on both sides of (101), we see that

\[
\text{NM}_{(12,00), (12,01)} = \sum_{r=0}^{n} (n-\text{des}(\sigma)+1) (r)^{\text{des}(\sigma)} (-1)^{n-r}.
\]

(102)

Now we can give a combinatorial interpretation to the right-hand side of (103) as follows. First for each r, we interpret $(n-\text{des}(\sigma)+1)$, as the number of ways to pick a sequence $a_1 \cdots a_r$ of pairwise distinct elements from $[n]$. Then we interpret $(\nu)_{\text{des}(\sigma)}$ as picking s of the elements which we indicate by putting an x above each of the s elements picked. Finally, we interpret $(-1)^{n-r}$ as placing -1 above the elements in the sequence. We let $M_{n,s}$ denote the set of all labeled sequences constructed in this way. For example, if $n = 10$, $s = 3$, and $r = 6$, then the following labeled sequence would be in $M_{10,4,6}$:

\[
(a, L) = -1 \ x \ -1 \ -1 \ x \ x \ 6 \ 3 \ 10 \ 4 \ 5 \ 8.
\]

(104)

Given a labeled sequence $(a, L) \in M_{n,s}$, we let the sign of (a, L), $\text{sgn}(a, L)$, be the product of the -1 labels in L. We let $M_{n,s} = \bigcup_{r=0}^{n} M_{n,s}$. Then it is easy to see that

\[
\text{NM}_{(12,00), (12,01)} = \sum_{(a, L) \in M_{n,s}} \text{sgn}(a, L)
\]

(105)

Given a sequence $(a, L) = (a_1, \cdots, a_r, L_1 \cdots L_s)$, we say that the minimal sequence of (a, L) is the longest string $a_1a_2\cdots a_r$ such that for all $j = t, \cdots, r$, $a_j = \min([n] - \{a_1, \cdots, a_{j-1}\})$ and $L_j = -1$ for $j = t, \cdots, r$. The minimal sequence for (a, L) might be empty. For example, it could be the last label $L_r = x$ or it could be that $a_r \neq \min([n] - \{a_1, \cdots, a_{r-1}\})$. We let $\text{ms}(a, L)$ denote the length of the minimal sequence of (a, L). For example, the minimal sequence of

\[
(a, L) = -1 \ x \ x \ x \ -1 \ -1 \ 6 \ 3 \ 10 \ 4 \ 5 \ 8
\]

(106)

is empty so that $\text{ms}(a, L) = 0$. The minimal sequence of

\[
(a', L') = -1 \ x \ x \ x \ -1 \ -1 \ 1 \ 3 \ 10 \ 4 \ 2 \ 5
\]

(107)

is 25 so that $\text{ms}(a, L) = 2$.

Now suppose that $(a, L) \in M_{n,s}$ is such that $a = a_1 \cdots a_r, L = L_1 \cdots L_r$, and its minimal sequence is empty.
Let \(b_1 < \cdots < b_{n-r} \) be the elements of \([n] - \{a_1, \ldots, a_r\}\). Then we define the minimal sequence chain of \((a, L)\) to be
\[
(a^{(1)}, L^{(1)}), (a^{(r_1)}, L^{(r_1)}), \ldots, (a^{(r)}, L^{(r)})\]
where \((a^{(i)}, L^{(i)}) = (a_1 \cdots a_h \cdots b_{n-r}, L_1 \cdots L_r, (-1)^{y})\) for \(1 \leq p \leq n - r\). Note that the signs of the elements of the minimal sequence chain of \((a, L)\) alternate. Thus, if the minimal sequence chain of \((a, L)\) is of even length, then \(\text{ms}(a^{(r)}, L^{(r)})\) is odd, and the sum of the signs of elements in the minimal sequence chain of \((a, L)\) is 0. If the minimal sequence chain of \((a, L)\) is of odd length, then \(\text{ms}(a^{(r)}, L^{(r)})\) is even, and the sum of the signs of elements in the minimal sequence chain of \((a, L)\) is \(\text{sgn}(a^{(r)}, L^{(r)})\). Clearly every element of \(M_{n,r}\) is an element of a unique minimal sequence chain for some \((a, L) \in M_{n,a}\) whose minimal sequence is empty so that
\[
\sum_{(a, L) \in M_{n,a}} \text{sgn}(a, L) = \sum_{(a, L) \in M_{n,a}, \text{ms}(a, L) \text{ is even}} \text{sgn}(a, L)
\]
\[
= (-1)^{n-r} \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|.
\]
Thus, we have shown that
\[
\sum_{(a, L) \in M_{n,a}} \text{sgn}(a, L) = (-1)^{n-r} \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|.
\]
(108)
This shows that as a polynomial in \(k\),
\[
\sum_{(a, L) \in M_{n,a}} k^{|\text{ms}(a, L)|},
\]
is sign alternating starting with the leading term \(n!k^n\). That is, by (109),
\[
\sum_{(a, L) \in M_{n,a}} k^{|\text{ms}(a, L)|} = \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|
\]
(109)
Thus, \(\text{ms}(a^{(r)}, L^{(r)})\) is even, and the sum of the signs of elements in the minimal sequence chain of \((a, L)\) is \(\text{sgn}(a^{(r)}, L^{(r)})\). Clearly every element of \(M_{n,r}\) is an element of a unique minimal sequence chain for some \((a, L) \in M_{n,a}\) whose minimal sequence is empty so that
\[
\sum_{(a, L) \in M_{n,a}} \text{sgn}(a, L) = \sum_{(a, L) \in M_{n,a}, \text{ms}(a, L) \text{ is even}} \text{sgn}(a, L)
\]
\[
= (-1)^{n-r} \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|.
\]
Thus, we have shown that
\[
\sum_{(a, L) \in M_{n,a}} \text{sgn}(a, L) = (-1)^{n-r} \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|.
\]
(108)
where \(D_n\) is the number of derangements of \(S_n\), that is, the number of permutations with no fixed points. It is well known that
\[
D_n = n! \sum_{k=0}^{n} (-1)^k/k! \quad \text{for } n \geq 1.
\]
But by (105),
\[
\sum_{a \in S_n} (-1)^{|\text{ms}(a, L)|} k^{|\text{ms}(a, L)|} = n! \sum_{k=0}^{n} (-1)^k/k! \quad \text{for } n \geq 1.
\]
(113)
Thus, we must show that \(D_n = \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|\). Now if \((a, L) \in M_{n,a}\), then all the labels in \(L\) are \(-1\) so that we can identify each element \((a, L) \in M_{n,a}\) with just a permutation \(a = \sigma_1 \cdots \sigma_r \in S_n\). Now consider \(\sigma \in S_n\), whose minimal sequence has even length. If \(\sigma_1 \neq 1\), then clearly the minimal sequence of \(\text{red}(\sigma_1, \ldots, \sigma_r) \in S_n\) has the same length as the minimal sequence of \(\sigma\). Vice versa, given \(\tau_1 \cdots \tau_n \in S_n\), let \(\tau_i^{(0)} = \tau_i^{(1)} \cdots \tau_i^{(n)}\) be the permutation of \(S_n\) such that \(\text{red}(\tau_1^{(0)} \cdots \tau_n^{(0)}) = \tau\). Clearly for \(i = 2, \ldots, n+1\), \(\tau_i \) is a permutation in \(S_{n+1}\) whose minimal sequences have the same length as the minimal sequence of \(\tau\). It follows that
\[
\left| \{(a, L) \in M_{n,a+1} : \text{ms}(\sigma, L) \text{ is even} \} \right| = n \left| \{(a, L) \in M_{n,a} : \text{ms}(a, L) \text{ is even}\} \right|.
\]
(115)
Next suppose that \(\sigma \in S_n\) is such that \(\sigma_1 = 1\), and its minimal sequence has even length. Then we claim that \(\text{red}(\sigma_1, \ldots, \sigma_n)\) has a minimal sequence whose length has the same parity as the length of the minimal sequence of \(\sigma\). That is, if \(i\) is an element of the minimal sequence of \(\sigma\), then it must be the case that \(i = 12 \cdots (n+1)\) is the identity so that \(\text{red}(\sigma_1, \ldots, \sigma_n) = 1 \cdots n - 1\) has minimal sequence of length \(n - 1\). If \(i\) is not in the minimal sequence of \(\sigma\), then it cannot be the case that \(\sigma_i\) is in the minimal sequence of \(\sigma\) so that the lengths of the minimal sequences of \(\sigma\) and \(\text{red}(\sigma_1, \ldots, \sigma_n)\) are the same. Vice versa, given \(\tau_1 \cdots \tau_{n-1} \in S_{n-1}\), let \(\tau_i^{(0)} = 1\tau_i^{(1)} \cdots \tau_i^{(n)}\) be the permutation of \(S_{n+1}\) such that \(\text{red}(\tau_1^{(0)} \cdots \tau_n^{(0)}) = \tau\). Clearly for \(i = 2, \ldots, n+1\), \(\tau_i^{(0)} \) is a permutation in \(S_{n+1}\) whose lengths of the minimal sequences have the same parity as the length of the minimal sequence of \(\tau\). It follows that
\[
\left| \{(a, L) \in M_{n+1,a+1} : \text{ms}(\sigma, L) \text{ is even} \} \right| = n \left| \{(a, L) \in M_{n,a+1} : \text{ms}(a, L) \text{ is even}\} \right|.
\]
(116)
Hence, \(\left| \{(a, L) \in M_{n+1,a+1} : \text{ms}(\sigma, L) \text{ is even}\} \right|\) satisfies the same recursion as the recursion for \(D_n\).
Finally, it is not difficult to see that
\[
\left| \{(a, L) \in M_{n,a+1} : \text{ms}(\sigma, L) \text{ is even}\} \right| = |\{(a, L) \in M_{n,a+1} : \text{ms}(a, L) \text{ is even}\}|
\]
(117)
To prove this, we will construct a bijection $\theta : M_{n,1,n} \rightarrow M_{n+1,0,n+1}$ which has the property that for all $(a, L) \in M_{n,1,n}$, $ms(a, L)$ and $ms(\theta(a, L))$ have the same parity. Now suppose we are given an $(a, L) \in M_{n,1,n}$ where $a = a_1 \cdots a_n$ and $L = L_1 \cdots L_n$. Then it must be the case that there is a unique j such that $L_j = x$. Let $\theta(a, L) = (a', L') = (a_1 + 1, \ldots, a_{j-1} + 1, a_j + 1, \ldots, a_n + 1, (-1)^{a_n})$. That is, (a', L') arises from (a, L) by inserting 1 just before the element of a that is marked with x and adding 1 to all the elements of a and removing the x and replacing it with -1 and labeling 1 with -1. It is easy to see that θ is a bijection. Thus, all we need to do is to show that for all $(a, L) \in M_{n,1,n}$, $ms(a, L)$ and $ms(\theta(a, L))$ have the same parity. The minimal sequence of (a, L) does not contain a_j. In (a, L), the minimal sequence does not contain $a_j + 1 + 1 > 1$ since $1 = \min\{n + 1 - |a_1', \ldots, a_{j-2}'\}\). Now if the minimal sequence of (a, L) does not contain $a_{j+1} + 1$, then it is easy to see that the minimal sequence of (a', L') does not contain a_{j+1}' which means that the lengths of the minimal sequences of (a, L) and (a', L') are the same. So suppose that the minimal sequence of (a, L) is $a_1 \cdots a_n$. Then there are two cases. Namely, either (i) $a_j = \min\{n - |a_1, \ldots, a_{j-1}\}\) in which case the minimal sequence of (a', L') is $a_1 + 1, a_2 + 1, \ldots, a_{j-1} + 1, a_j + 1$ or (ii) $a_j \neq \min\{n - |a_1, \ldots, a_{j-1}\}\) in which case the minimal sequence of (a', L') is $a_1 + 1, \ldots, a_{j+1} + 1$. Hence in all cases, the lengths of the minimal sequences of (a, L) and (a', L') have the same parity. Thus, θ shows that

$$\left|\left\{ (a, L) \in M_{n+1,0,n+1} : ms(\sigma, L) \text{ is even} \right\} \right| = \left|\left\{ (a, L) \in M_{n,1,n+1} : ms(\sigma, L) \text{ is even} \right\} \right|,$$

which by (109) establishes (117).

5. Further Research

An obvious question is to ask whether the results of this paper can be extended to patterns of length ≥ 3. There are some partial results in this direction due to Duane and Remmel [21]. Given a word $u \in \{0, 1, \ldots, k - 1\}^t$ such that red(u) = u and $\tau \in S_j$, Duane and Remmel say that (τ, u) has the $C_k \circ S_n$-minimal overlapping property if the smallest i such that there exists a $(\sigma, w) \in C_k \circ S_j$ with (τ, u)-mch$(\sigma, w) = 2$ is $2j - 1$. This means that in a k-colored permutation, (σ, w), two (τ, u)-matches in (σ, w) can share at most one pair of letters, and this pair of letters must occur at the end of the first (τ, u)-match and at the start of the second (τ, u)-match. Similarly, we say that (τ, u) has the $C_k \circ S_n$-exact match minimal overlapping property if the smallest i such that there exists a $(\sigma, w) \in C_k \circ S_j$ with (τ, u)-Emch$(\sigma, w) = 2$ is $2j - 1$. Now if (τ, u) has the $C_k \circ S_n$-minimal overlapping property, then the shortest k-colored permutations, (σ, w), such that (τ, u)-mch$(\sigma, w) = n$, have length $n(j - 1) + 1$. We let $\mathcal{MP}_{(\tau,u)}^{k,n(\j-1)+1}$ equal the set of k-colored permutations, $(\sigma, w) \in C_k \circ S_n(\j-1)+1$, such that (τ, u)-mch$(\sigma, w) = n$. We refer to the k-colored permutations in $\mathcal{MP}_{(\tau,u)}^{k,n(\j-1)+1}$ as maximum packings for (τ, u). We let

$$mp_k^{(\tau,u),n(j-1)+1} = |\mathcal{MP}_{(\tau,u)}^{k,n(j-1)+1}|,$$

$$mp_k^{(\tau,u),n(j-1)+1}(p,q,r) = \sum_{(\sigma,w)\in\mathcal{MP}_{(\tau,u)}^{k,n(j-1)+1}} p^{\text{coinv}(\sigma)} q^{\text{inv}(\sigma)} r^{\text{w}} \sum_w$$

Similarly, we let $\mathcal{EMP}_{(\tau,u)}^{k,n(j-1)+1}$ equal the set of k-colored permutations, $(\sigma, w) \in C_k \circ S_n(\j-1)+1$, such that (τ, u)-Emch$(\sigma, w) = n$, and refer to the k-colored permutations in $\mathcal{EMP}_{(\tau,u)}^{k,n(j-1)+1}$ as exact match maximum packings for (τ, u). We let

$$\text{emp}_k^{(\tau,u),n(j-1)+1} = |\mathcal{EMP}_{(\tau,u)}^{k,n(j-1)+1}|,$$

$$\text{emp}_k^{(\tau,u),n(j-1)+1}(p,q,r) = \sum_{(\sigma,w)\in\mathcal{EMP}_{(\tau,u)}^{k,n(j-1)+1}} p^{\text{coinv}(\sigma)} q^{\text{inv}(\sigma)} r^{\text{w}} \sum_w$$

Then Duane and Remmel [21] proved that (I) if red(u) = u and (τ, u) has the $C_k \circ S_n$-minimal overlapping property, then

$$\sum_{n \geq 1} \sum_{(\sigma,u) \in C_k \circ S_n} x^{(\tau,u)\text{-mch}((\sigma,u))} p^{\text{coinv}(\sigma)} q^{\text{inv}(\sigma)} z^{(w)} = 1 \times \left(1 - \left(z_0 + \cdots + z_{k-1}\right) t\right)$$

$$+ \sum_{n \geq 1} \frac{\binom{n(j-1)+1}{j-1} (x-1)^n}{n(j-1)+1} \times mp_k^{(\tau,u),n(j-1)+1}(p,q,z_0,\ldots,z_{k-1}) \right)^{-1},$$

(121)
(II) if \((\tau, u) \in C_k \wr S_j\) has the \(C_k \wr S_n\)-exact match minimal overlapping property, then
\[
\sum_{n=0}^\infty t^n/n! \sum_{(\tau,u) \in C_k \wr S_j} x^{(\tau,u)} \cdot \text{Emch}(\sigma,p) \cdot p^{\text{coinv}(\sigma)} \cdot q^{\text{inv}(\sigma)} z(\omega)
\]
\[
= 1 \times \left(1 - \left(1 + z_0 + \cdots + z_{k-1}\right) t\right)
\]
\[
+ \sum_{n \geq 1} \left[\frac{n^{(j-1)+1}}{n(j-1) + 1} \right] (x-1)^n
\]
\[
\times \text{emp}_{(\tau,u),n(j-1)+1}(p,q,z_0,\ldots,z_{k-1})\right)^{-1}.
\]

(122)

Duane and Remmel’s proof of (I) and (II) works equally well for \((Y, \hat{A})\)-matches.

There are, however, several examples in the literature of generating functions for the number of \(\tau\)-matches in permutations where \(\tau\) does not have the minimal overlapping property, and we have found some analogues of such results for \(C_k \wr S_j\). In addition, there are many formulas in the literature for the number of permutations that avoid certain patterns in permutations. We have found several examples of such formulas for the matching conditions for \(C_k \wr S_j\) discussed in this paper. Such results will appear in subsequent papers.

Acknowledgments

J. Remmel was partially supported by NSF Grant DMS 0654060. M. Riehl was partially supported by a grant from the Office of Research and Sponsored Programs, UWEC. We define the \(q\)-analogues of \(n, n!, \binom{n}{k}\).

References

Submit your manuscripts at http://www.hindawi.com