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Abstract. 
The nonlinear dispersive Boussinesq-like 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation 
	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				+
				(
				𝑢
			

			

				2
			

			

				)
			

			
				𝑥
				𝑥
			

			
				−
				(
				𝑢
			

			

				2
			

			

				)
			

			
				𝑥
				𝑥
				𝑥
				𝑥
			

			
				=
				0
			

		
	
, which exhibits single peak solitons, is investigated. Peakons, cuspons and smooth soliton solutions are obtained by setting the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation under inhomogeneous boundary condition. Asymptotic behavior and numerical simulations are provided for these three types of single peak soliton solutions of the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation.


1. Introduction
 The 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 interest inspired by the well-known Camassa-Holm (CH) equation and its singular peakon solutions [1] prompted search for other integrable equations with nonsmooth solitons. An integrable CH-type equation with cubic nonlinearity 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑚
			

			

				𝑡
			

			
				+
				
				𝑚
				
				𝑢
			

			

				2
			

			
				−
				𝑢
			

			
				2
				𝑥
			

			
				
				
			

			

				𝑥
			

			
				=
				0
				,
				𝑚
				=
				𝑢
				−
				𝑢
			

			
				𝑥
				𝑥
			

			

				,
			

		
	

					was derived independently by Fokas [2], by Fuchssteiner [3], by Olver and Rosenau [4], and by Qiao [5]. It is shown in [5–7] that (1) admits Lax pair and bi-Hamiltonian structures and possesses the M/W-shape soliton solution and a new type of cusped soliton solution. Another peakon equation with cubic nonlinearity has been recently discovered by Novikov [8]. In the work by Hone and Wang [9], it is shown that Novikov's equation admits peakon solutions like the CH equation. Also, it has a Lax pair in matrix form and a bi-Hamiltonian structure.
The Boussinesq-like 
	
		
			
				𝐵
				(
				𝑚
				,
				𝑛
				)
			

		
	
 equation with nonlinear dispersion is given by 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				+
				𝑎
				(
				𝑢
			

			

				𝑛
			

			

				)
			

			
				𝑥
				𝑥
			

			
				+
				𝑏
				(
				𝑢
			

			

				𝑚
			

			

				)
			

			
				𝑥
				𝑥
				𝑥
				𝑥
			

			
				=
				0
				,
			

		
	

					where 
	
		
			

				𝑎
			

		
	
, 
	
		
			
				𝑏
				∈
				𝑅
			

		
	
 and 
	
		
			

				𝑚
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑍
			

			

				+
			

		
	
. This equation is the generalized form of the Boussinesq equation, where, in particular, the case 
	
		
			
				(
				𝑚
				,
				𝑛
				)
				=
				(
				1
				,
				2
				)
			

		
	
 leads to the Boussinesq equation. Equation (2), for 
	
		
			
				𝑎
				𝑏
				>
				0
			

		
	
, is the major equation for compactons (solitons with compact support). Abundant compactons [10–13] are developed by the Adominan decomposition method. For 
	
		
			
				𝑎
				𝑏
				<
				0
			

		
	
, exact solutions with solitary patterns of Boussinesq-like 
	
		
			
				𝐵
				(
				𝑚
				,
				𝑛
				)
			

		
	
 equations are obtained in the works by Shang [14] and Zhang et al. [15] by extending sinh-cosh method and by using the integral approach, respectively.
A natural question is that whether the Boussinesq-like 
	
		
			
				𝐵
				(
				𝑚
				,
				𝑛
				)
			

		
	
 equation (2) has nonsmooth solitons such as peakons or cuspons. The present paper focuses on the following Boussinesq-like 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation: 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				+
				
				𝑢
			

			

				2
			

			

				
			

			
				𝑥
				𝑥
			

			
				−
				
				𝑢
			

			

				2
			

			

				
			

			
				𝑥
				𝑥
				𝑥
				𝑥
			

			
				=
				0
				.
			

		
	

					We give all possible single peak soliton solutions of (3) through setting the traveling wave solution under the inhomogeneous boundary condition 
	
		
			
				𝑢
				→
				𝐴
			

		
	
 (
	
		
			

				𝐴
			

		
	
 is a nonzero constant) as 
	
		
			
				𝑥
				→
				±
				∞
			

		
	
. New cusped soliton solutions, and smooth soliton solutions are obtained. Asymptotic analysis and numerical simulations are provided for peaked solitons, cusped solitons and smooth solitons of the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation. The method used here is based on the phase portrait analysis technique which is similar to that in [16–18].
2. Asymptotic Behavior of Solutions
 In this section, we first introduce some notations. Let 
	
		
			

				𝐶
			

			

				𝑘
			

			
				(
				Ω
				)
			

		
	
 denote the set of all 
	
		
			

				𝑘
			

		
	
 times continuously differential functions on the open set 
	
		
			

				Ω
			

		
	
. 
	
		
			

				𝐿
			

			
				𝑝
				l
				o
				c
			

			
				(
				𝑅
				)
			

		
	
 refers to the set of all functions whose restriction on any compact subset is 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
 integrable. 
	
		
			

				𝐻
			

			
				1
				l
				o
				c
			

			
				(
				𝑅
				)
			

		
	
 stands for 
	
		
			

				𝐻
			

			
				1
				l
				o
				c
			

			
				(
				𝑅
				)
				=
				{
				𝑢
				∈
				𝐿
			

			
				2
				l
				o
				c
			

			
				(
				𝑅
				)
				∣
				𝑢
			

			

				
			

			
				∈
				𝐿
			

			
				2
				l
				o
				c
			

			
				(
				𝑅
				)
				}
			

		
	
.
Let us consider the traveling wave solution of the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) through the setting 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑈
				(
				𝑥
				−
				𝑐
				𝑡
				)
			

		
	
, where 
	
		
			

				𝑐
			

		
	
 is the wave speed. Let 
	
		
			
				𝜉
				=
				𝑥
				−
				𝑐
				𝑡
			

		
	
; then 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑈
				(
				𝜉
				)
			

		
	
. Substituting it into (3) yields 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑐
			

			

				2
			

			

				𝑈
			

			
				
				
			

			
				+
				
				𝑈
			

			

				2
			

			

				
			

			
				
				
			

			
				−
				
				𝑈
			

			

				2
			

			

				
			

			
				
				
				
				
			

			
				=
				0
				,
			

		
	

					where “
	
		
			

				′
			

		
	
” is the derivative with respect to 
	
		
			

				𝜉
			

		
	
. Integrating (4) once and neglecting the integration constant, we have 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑐
			

			

				2
			

			

				𝑈
			

			

				
			

			
				+
				
				𝑈
			

			

				2
			

			

				
			

			

				
			

			
				−
				
				𝑈
			

			

				2
			

			

				
			

			
				
				
				
			

			
				=
				0
				.
			

		
	

					Integrating (5) once again, we obtain 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑐
			

			

				2
			

			
				𝑈
				+
				𝑈
			

			

				2
			

			
				−
				2
				𝑈
			

			
				
				2
			

			
				−
				2
				𝑈
				𝑈
			

			
				
				
			

			
				=
				𝑔
			

			

				1
			

			

				,
			

		
	

					where 
	
		
			

				𝑔
			

			

				1
			

		
	
 is an integration constant. Furthermore, we get 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑈
			

			
				
				2
			

			
				=
				𝑈
			

			

				2
			

			
				
			
			
				4
				+
				𝑐
			

			

				2
			

			

				𝑈
			

			
				
			
			
				3
				−
				𝑔
			

			

				1
			

			
				
			
			
				2
				+
				𝑔
			

			

				2
			

			
				
			
			

				𝑈
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			

				𝑔
			

			

				2
			

		
	
 is also an integration constant.
To seek exact solutions with solitary patterns for (7), we impose the boundary condition 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜉
				→
				±
				∞
			

			
				𝑈
				(
				𝜉
				)
				=
				𝐴
				,
			

		
	

					where 
	
		
			

				𝐴
			

		
	
 is a nonzero constant. Equation (7) can be cast into the following ordinary differential equation:
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑈
			

			
				
				2
			

			
				=
				(
				𝑈
				−
				𝐴
				)
			

			

				2
			

			
				
				3
				𝑈
			

			

				2
			

			
				+
				
				6
				𝐴
				+
				4
				𝑐
			

			

				2
			

			
				
				𝑈
				+
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

			

				
			

			
				
			
			
				1
				2
				𝑈
			

			

				2
			

			

				.
			

		
	

					The fact that both sides of (9) are nonnegative implies that 
	
		
			
				3
				𝑈
			

			

				2
			

			
				+
				(
				6
				𝐴
				+
				4
				𝑐
			

			

				2
			

			
				)
				𝑈
				+
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

			
				≥
				0
			

		
	
. If 
	
		
			
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				≥
				0
			

		
	
, then (9) reduces to 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑈
			

			
				
				2
			

			
				=
				(
				𝑈
				−
				𝐴
				)
			

			

				2
			

			
				
				𝑈
				−
				𝐵
			

			

				1
			

			
				
				
				𝑈
				−
				𝐵
			

			

				2
			

			

				
			

			
				
			
			
				4
				𝑈
			

			

				2
			

			

				,
			

		
	

					where 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝐵
			

			

				1
			

			
				=
				−
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				+
				
			

			
				
			
			
				2
				𝑐
			

			

				2
			

			
				
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			

				
			

			
				
			
			
				3
				,
				𝐵
			

			

				2
			

			
				=
				−
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				−
				
			

			
				
			
			
				2
				𝑐
			

			

				2
			

			
				
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			

				
			

			
				
			
			
				3
				.
			

		
	

					Obviously, 
	
		
			

				𝐵
			

			

				1
			

			
				≥
				𝐵
			

			

				2
			

		
	
.
Definition 1. A function 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝑈
				(
				𝑥
				−
				𝑐
				𝑡
				)
			

		
	
 is said to be a single peak soliton solution for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) if 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 satisfies the following conditions.(A1)
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is continuous on 
	
		
			

				𝑅
			

		
	
 and has a unique peak point 
	
		
			

				𝜉
			

			

				0
			

		
	
, where 
	
		
			
				𝑢
				(
				𝜉
				)
			

		
	
 attains its global maximum or minimum value.(A2)
	
		
			
				𝑈
				(
				𝜉
				)
				∈
				𝐶
			

			

				4
			

			
				(
				𝑅
				−
				{
				𝜉
			

			

				0
			

			
				}
				)
			

		
	
 satisfies (8) on 
	
		
			
				𝑅
				−
				{
				𝜉
			

			

				0
			

			

				}
			

		
	
.(A3)
	
		
			
				l
				i
				m
			

			
				𝜉
				→
				±
				∞
			

			
				𝑈
				(
				𝜉
				)
				=
				𝐴
			

		
	
. 
Definition 2. A wave function 
	
		
			

				𝑈
			

		
	
 is called peakon if  
	
		
			

				𝑈
			

		
	
 is smooth locally on either side of 
	
		
			

				𝜉
			

			

				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝜉
				↑
				𝜉
			

			

				0
			

			

				𝑈
			

			

				
			

			
				(
				𝜉
				)
				=
				−
				l
				i
				m
			

			
				𝜉
				↓
				𝜉
			

			

				0
			

			

				𝑈
			

			

				
			

			
				(
				𝜉
				)
				=
				𝑎
				,
				𝑎
				≠
				0
				,
				𝑎
				≠
				±
				∞
			

		
	
. 
Definition 3. A wave function 
	
		
			

				𝑈
			

		
	
 is called cuspon if 
	
		
			

				𝑈
			

		
	
 is smooth locally on either side of 
	
		
			

				𝜉
			

			

				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝜉
				↑
				𝜉
			

			

				0
			

			

				𝑈
			

			

				
			

			
				(
				𝜉
				)
				=
				−
				l
				i
				m
			

			
				𝜉
				↓
				𝜉
			

			

				0
			

			

				𝑈
			

			

				
			

			
				(
				𝜉
				)
				=
				±
				∞
			

		
	
. 
Without any loss of generality, we choose the peak point 
	
		
			

				𝜉
			

			

				0
			

		
	
 as vanishing, 
	
		
			

				𝜉
			

			

				0
			

			
				=
				0
			

		
	
.
Theorem 4.   Suppose that 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is a single peak soliton solution for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) at the peak point 
	
		
			

				𝜉
			

			

				0
			

			
				=
				0
			

		
	
. Then one has the following. (i) If 
	
		
			
				𝐴
				<
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
.(ii) If 
	
		
			
				𝐴
				≥
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
 or 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				1
			

		
	
 or 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				2
			

		
	
. 
 Proof. If 
	
		
			
				𝑈
				(
				0
				)
				≠
				0
			

		
	
, then 
	
		
			
				𝑈
				(
				𝜉
				)
				≠
				0
			

		
	
 for any 
	
		
			
				𝜉
				∈
				𝑅
			

		
	
 since 
	
		
			
				𝑈
				(
				𝜉
				)
				∈
				𝐶
			

			

				4
			

			
				(
				𝑅
				−
				{
				0
				}
				)
			

		
	
. Differentiating both sides of (9) yields 
	
		
			
				𝑈
				(
				𝜉
				)
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑅
				)
			

		
	
.(i) For 
	
		
			
				𝐴
				<
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, if 
	
		
			
				𝑈
				(
				0
				)
				≠
				0
			

		
	
, then 
	
		
			
				𝑈
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑅
				)
			

		
	
. By the definition of single peak soliton, we have 
	
		
			

				𝑈
			

			

				
			

			
				(
				0
				)
				=
				0
			

		
	
. However, by (9) we must have 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐴
			

		
	
, which contradicts the fact that 
	
		
			

				0
			

		
	
 is the unique peak point.(ii) For 
	
		
			
				𝐴
				≥
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, if 
	
		
			
				𝑈
				(
				0
				)
				≠
				0
			

		
	
, by (9) we know that 
	
		
			

				𝑈
			

			

				
			

			
				(
				0
				)
			

		
	
 exists. According to the definition of peak point, we have 
	
		
			

				𝑈
			

			

				
			

			
				(
				0
				)
				=
				0
			

		
	
. Thus we obtain 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				1
			

		
	
 or 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				2
			

		
	
 from (10) since 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐴
			

		
	
 contradicts the fact that 
	
		
			

				0
			

		
	
 is the unique peak point.
Theorem 5.  Suppose that 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is a single peak soliton solution for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) at the peak point 
	
		
			

				𝜉
			

			

				0
			

			
				=
				0
			

		
	
. Then one has the following solutions classification and asymptotic behavior. (i) If 
	
		
			
				𝑈
				(
				0
				)
				≠
				0
			

		
	
, then 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is a smooth soliton solution.(ii) If  
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			
				𝐴
				=
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 gives the peaked soliton solution 
	
		
			
				(
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
				)
				(
				1
				−
				𝑒
			

			
				−
				|
				𝑥
				−
				𝑐
				𝑡
				|
				/
				2
			

			

				)
			

		
	
.(iii) If 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			
				𝐴
				≠
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is a cusped soliton solution and  
										
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				|
				|
				𝜉
				|
				|
				𝑈
				(
				𝜉
				)
				=
				𝜇
			

			
				1
				/
				2
			

			
				
				|
				|
				𝜉
				|
				|
				
				𝑈
				+
				𝑂
				,
				𝜉
				⟶
				0
				,
			

			

				
			

			
				𝜇
				(
				𝜉
				)
				=
			

			
				
			
			
				2
				|
				|
				𝜉
				|
				|
			

			
				−
				1
				/
				2
			

			
				s
				g
				n
				(
				𝜉
				)
				+
				𝑂
				(
				1
				)
				,
				𝜉
				⟶
				0
				,
			

		
	
 where 
	
		
			
				
				𝜇
				=
				±
				(
				1
				/
				3
				)
			

			
				
			
			
				√
				3
				|
				𝐴
				|
			

			
				
			
			
				9
				𝐴
			

			

				2
			

			
				+
				6
				𝐴
				𝑐
			

			

				2
			

		
	
. Thus 
	
		
			
				𝑈
				(
				𝜉
				)
				∉
				𝐻
			

			
				1
				l
				o
				c
			

			
				(
				𝑅
				)
			

		
	
. 
Proof. (i) If 
	
		
			
				𝑈
				(
				0
				)
				≠
				0
			

		
	
, then 
	
		
			
				𝑈
				(
				𝜉
				)
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑅
				)
			

		
	
 for any 
	
		
			
				𝜉
				∈
				𝑅
			

		
	
, and so 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is a smooth soliton solution.(ii) If 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			
				𝐴
				=
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then (9) becomes 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑈
			

			
				
				2
			

			
				=
				1
			

			
				
			
			
				4
				
				𝑈
				+
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				
			

			

				2
			

			

				.
			

		
	

						Solving (13), we obtain the peaked soliton solution 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑈
				(
				𝜉
				)
				=
				−
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				
				1
				−
				𝑒
			

			
				−
				|
				𝑥
				−
				𝑐
				𝑡
				|
				/
				2
			

			
				
				.
			

		
	
(iii) If 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			
				𝐴
				≠
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then by the definition of single peak soliton solution we have 
	
		
			
				𝐴
				≠
				0
			

		
	
; thus, 
	
		
			
				3
				𝑈
			

			

				2
			

			
				+
				(
				6
				𝐴
				+
				4
				𝑐
			

			

				2
			

			
				)
				𝑈
				+
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

		
	
 does not contain the factor 
	
		
			

				𝑈
			

		
	
. From (9), we obtain 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑈
			

			

				
			

			
				=
				−
				s
				g
				n
				(
				𝐴
				)
				𝑈
				−
				𝐴
			

			
				
			
			
				𝑈
				×
				
			

			
				
			
			
				3
				𝑈
			

			

				2
			

			
				+
				
				6
				𝐴
				+
				4
				𝑐
			

			

				2
			

			
				
				𝑈
				+
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

			
				
			
			
				1
				2
				s
				g
				n
				(
				𝜉
				)
				.
			

		
	

						Let 
	
		
			
				√
				ℎ
				(
				𝑈
				)
				=
				2
			

			
				
			
			
				√
				3
				s
				g
				n
				(
				𝐴
				)
				/
				(
				𝐴
				−
				𝑈
				)
			

			
				
			
			
				3
				𝑈
			

			

				2
			

			
				+
				(
				6
				𝐴
				+
				4
				𝑐
			

			

				2
			

			
				)
				𝑈
				+
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

		
	
; then 
	
		
			
				√
				ℎ
				(
				0
				)
				=
				2
			

			
				
			
			
				√
				3
				/
				|
				𝐴
				|
			

			
				
			
			
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

		
	
 and 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				
				𝑈
				ℎ
				(
				𝑈
				)
				𝑑
				𝑈
				=
				s
				g
				n
				(
				𝜉
				)
				𝑑
				𝜉
				.
			

		
	

						Inserting 
	
		
			
				ℎ
				(
				𝑈
				)
				=
				ℎ
				(
				0
				)
				+
				𝑂
				(
				𝑈
				)
			

		
	
 into (16) and using the initial condition 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
, we obtain 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				ℎ
				(
				0
				)
			

			
				
			
			
				2
				𝑈
			

			

				2
			

			
				|
				|
				𝜉
				|
				|
				.
				(
				1
				+
				𝑂
				(
				𝑈
				)
				)
				=
			

		
	

						Thus 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				
				𝑈
				=
				±
			

			
				
			
			

				2
			

			
				
			
			
				|
				|
				𝜉
				|
				|
				ℎ
				(
				0
				)
			

			
				1
				/
				2
			

			
				(
				1
				+
				𝑂
				(
				𝑈
				)
				)
			

			
				−
				1
				/
				2
			

			
				
				=
				±
			

			
				
			
			

				2
			

			
				
			
			
				|
				|
				𝜉
				|
				|
				ℎ
				(
				0
				)
			

			
				1
				/
				2
			

			
				(
				1
				+
				𝑂
				(
				𝑈
				)
				)
				,
			

		
	

						which implies that 
	
		
			
				𝑈
				=
				𝑂
				(
				|
				𝜉
				|
			

			
				1
				/
				2
			

			

				)
			

		
	
. Therefore, we have 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				𝜉
				|
				|
				𝑈
				(
				𝜉
				)
				=
				𝜇
			

			
				1
				/
				2
			

			
				
				|
				|
				𝜉
				|
				|
				
				𝑈
				+
				𝑂
				,
				𝜉
				⟶
				0
				,
			

			

				
			

			
				𝜇
				(
				𝜉
				)
				=
			

			
				
			
			
				2
				|
				|
				𝜉
				|
				|
			

			
				−
				1
				/
				2
			

			
				s
				g
				n
				(
				𝜉
				)
				+
				𝑂
				(
				1
				)
				,
				𝜉
				⟶
				0
				,
			

		
	

						where 
	
		
			
				
				𝜇
				=
				±
				(
				1
				/
				3
				)
			

			
				
			
			
				√
				3
				|
				𝐴
				|
			

			
				
			
			
				9
				𝐴
			

			

				2
			

			
				+
				6
				𝐴
				𝑐
			

			

				2
			

		
	
. Thus 
	
		
			
				𝑈
				(
				𝜉
				)
				∉
				𝐻
			

			
				1
				l
				o
				c
			

			
				(
				𝑅
				)
			

		
	
.
3. Peakons, Cuspons, and Smooth Soliton Solutions
 Theorem 5 gives a classification for all single peak soliton solutions for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3). In this section, we will present all possible single peak soliton solutions. We should discuss three cases: 
	
		
			
				𝐴
				>
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, 
	
		
			
				𝐴
				=
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, and 
	
		
			
				𝐴
				<
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
.
Case I (
	
		
			
				𝐴
				>
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
). By virtue of Theorems 4 and 5, any single peak soliton solution for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) must satisfy the following initial and boundary values problem:
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑈
			

			
				
				2
			

			
				=
				(
				𝑈
				−
				𝐴
				)
			

			

				2
			

			
				
				𝑈
				−
				𝐵
			

			

				1
			

			
				
				
				𝑈
				−
				𝐵
			

			

				2
			

			

				
			

			
				
			
			
				4
				𝑈
			

			

				2
			

			
				,
				
				𝑈
				(
				0
				)
				∈
				0
				,
				𝐵
			

			

				1
			

			
				,
				𝐵
			

			

				2
			

			
				
				,
				l
				i
				m
			

			
				𝜉
				→
				±
				∞
			

			
				𝑈
				(
				𝜉
				)
				=
				𝐴
				.
			

		
	

					Equation (20) implies that 
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑈
				≥
				𝐵
			

			

				1
			

			

				,
			

			
				o
				r
			

			
				𝑈
				≤
				𝐵
			

			

				2
			

			
				,
				
				𝐴
				−
				𝐵
			

			

				1
			

			
				
				
				𝐴
				−
				𝐵
			

			

				2
			

			
				
				≥
				0
				.
			

		
	

					Since 
	
		
			
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				≠
				0
			

		
	
, introducing the constant 
	
		
			
				𝛼
				=
				(
				𝐴
				/
				(
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				)
				)
			

		
	
 yields 
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝛼
				(
				𝛼
				+
				1
				)
				≥
				0
				,
			

		
	

					which implies that
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝛼
				<
				−
				1
				,
				𝛼
				=
				−
				1
				,
				𝛼
				=
				0
				,
				𝛼
				>
				0
				.
			

		
	

From the standard phase analysis, we know that if 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 is a single peak soliton solution of the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3), then 
						
	
 		
 			
				(
				2
				4
				)
			
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑈
			

			

				
			

			
				=
				−
				s
				g
				n
				(
				𝐴
				)
				𝑈
				−
				𝐴
			

			
				
			
			
				
				2
				𝑈
			

			
				
			
			
				
				𝑈
				−
				𝐵
			

			

				1
			

			
				
				
				𝑈
				−
				𝐵
			

			

				2
			

			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				
				s
				g
				n
				(
				𝜉
				)
				,
				𝑈
				(
				0
				)
				=
				m
				a
				x
				0
				,
				𝐵
			

			

				1
			

			
				
				,
			

			
				i
				f
			

			
				𝑈
				(
				0
				)
			

			
				i
				s
				a
				m
				i
				n
				i
				m
				u
				m
			

			
				,
				
				m
				i
				n
				0
				,
				𝐵
			

			

				2
			

			
				
				,
			

			
				i
				f
			

			
				𝑈
				(
				0
				)
			

			
				i
				s
				a
				m
				a
				x
				i
				m
				u
				m
			

			

				.
			

		
	

Taking the integration of both sides of (24) leads to 
						
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
				|
				|
				𝜉
				|
				|
				𝜙
				(
				𝑈
				)
				𝑑
				𝑈
				=
				−
			

			
				
			
			
				2
				,
			

		
	

					where 
	
		
			
				√
				𝜙
				(
				𝑈
				)
				=
				−
				s
				g
				n
				(
				𝐴
				)
				(
				𝑈
				/
				(
				𝑈
				−
				𝐴
				)
			

			
				
			
			
				(
				𝑈
				−
				𝐵
			

			

				1
			

			
				)
				(
				𝑈
				−
				𝐵
			

			

				2
			

			
				)
				)
			

		
	
. When 
	
		
			
				𝛼
				≠
				0
				,
				−
				1
			

		
	
, that is, 
	
		
			
				2
				𝐴
				(
				2
				𝐴
				+
				𝑐
			

			

				2
			

			
				)
				≠
				0
			

		
	
, we obtain 
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				𝜙
				(
				𝑈
				)
				𝑑
				𝑈
				=
				s
				g
				n
				(
				𝐴
				)
				𝐼
			

			

				1
			

			
				|
				|
				𝐴
				|
				|
				(
				𝑈
				)
				+
			

			
				
			
			

				√
			

			
				
			
			
				4
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

			

				𝐼
			

			

				2
			

			
				(
				𝑈
				)
				−
				𝐾
				=
				Φ
				(
				𝑈
				)
				−
				𝐾
				,
			

		
	

					with
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝐼
			

			

				1
			

			
				|
				|
				|
				(
				𝑈
				)
				=
				l
				n
				2
				𝑈
				−
				𝐵
			

			

				1
			

			
				−
				𝐵
			

			

				2
			

			
				+
				
			

			
				
			
			
				
				𝑈
				−
				𝐵
			

			

				1
			

			
				
				
				𝑈
				−
				𝐵
			

			

				2
			

			
				
				|
				|
				|
				,
				𝐼
			

			

				2
			

			
				
				|
				|
				|
				|
				
				
				(
				𝑈
				)
				=
				l
				n
				𝐴
				−
				𝐵
			

			

				1
			

			
				
				
				𝑈
				−
				𝐵
			

			

				2
			

			
				
				+
				
				𝐴
				−
				𝐵
			

			

				2
			

			
				
				
				𝑈
				−
				𝐵
			

			

				1
			

			
				
				
				−
				2
			

			
				
			
			
				
				𝐴
				−
				𝐵
			

			

				1
			

			
				
				
				𝐴
				−
				𝐵
			

			

				2
			

			
				
				
				𝑈
				−
				𝐵
			

			

				1
			

			
				
				
				𝑈
				−
				𝐵
			

			

				2
			

			
				
				
				×
				(
				𝑈
				−
				𝐴
				)
			

			
				−
				1
			

			
				|
				|
				|
				
				,
			

		
	

					and 
	
		
			

				𝐾
			

		
	
 is an integration constant. Thus we obtain the implicit solution 
	
		
			
				𝑈
				(
				𝜉
				)
			

		
	
 defined by 
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				𝜉
				|
				|
				Φ
				(
				𝑈
				)
				=
				−
			

			
				
			
			
				2
				+
				𝐾
				.
			

		
	

					Obviously,  
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝐼
			

			

				1
			

			
				
				𝐵
			

			

				1
			

			
				
				=
				𝐼
			

			

				1
			

			
				
				𝐵
			

			

				2
			

			
				
				|
				|
				𝐵
				=
				l
				n
			

			

				1
			

			
				−
				𝐵
			

			

				2
			

			
				|
				|
				√
				=
				l
				n
			

			
				
			
			
				6
				𝐴
				𝑐
			

			

				2
			

			
				+
				4
				𝑐
			

			

				4
			

			
				
			
			
				3
				,
				𝐼
			

			

				2
			

			
				
				𝐵
			

			

				1
			

			
				
				=
				𝐼
			

			

				2
			

			
				
				𝐵
			

			

				2
			

			
				
				|
				|
				𝐵
				=
				l
				n
			

			

				1
			

			
				−
				𝐵
			

			

				2
			

			
				|
				|
				√
				=
				l
				n
			

			
				
			
			
				6
				𝐴
				𝑐
			

			

				2
			

			
				+
				4
				𝑐
			

			

				4
			

			
				
			
			
				3
				.
			

		
	

					So, for 
	
		
			
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				1
			

		
	
 or 
	
		
			

				𝐵
			

			

				2
			

		
	
, the constant 
	
		
			

				𝐾
			

			

				0
			

			
				=
				Φ
				(
				𝑈
				(
				0
				)
				)
			

		
	
 is defined by 
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝐾
			

			

				0
			

			
				√
				=
				s
				g
				n
				(
				𝐴
				)
				l
				n
			

			
				
			
			
				6
				𝐴
				𝑐
			

			

				2
			

			
				+
				4
				𝑐
			

			

				4
			

			
				
			
			
				3
				+
				|
				|
				𝐴
				|
				|
			

			
				
			
			

				√
			

			
				
			
			
				6
				𝐴
				𝑐
			

			

				2
			

			
				+
				4
				𝑐
			

			

				4
			

			
				√
				×
				l
				n
			

			
				
			
			
				6
				𝐴
				𝑐
			

			

				2
			

			
				+
				4
				𝑐
			

			

				4
			

			
				
			
			
				3
				,
			

		
	

					and for 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
, 
						
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝐾
			

			

				0
			

			
				=
				𝐼
			

			

				1
			

			
				(
				0
				)
				−
				2
				𝐴
			

			
				
			
			

				√
			

			
				
			
			
				4
				𝐴
			

			

				2
			

			
				𝐼
				−
				2
				𝐴
				𝑐
			

			

				2
			

			
				(
				0
				)
				.
			

		
	
(1)
	
		
			
				𝛼
				<
				−
				1
			

		
	
.
             If 
	
		
			
				𝛼
				<
				−
				1
			

		
	
, then 
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝐴
				<
				𝐵
			

			

				2
			

			
				<
				0
				<
				𝐵
			

			

				1
			

			
				,
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				2
			

			
				,
				𝐴
				<
				𝑈
				≤
				𝐵
			

			

				2
			

			

				.
			

		
	

					From 
	
		
			
				𝜙
				(
				𝑈
				)
				<
				0
			

		
	
, we know that 
	
		
			
				Φ
				(
				𝑈
				)
			

		
	
 is strictly decreasing on 
	
		
			
				(
				𝐴
				,
				𝐵
			

			

				2
			

			

				]
			

		
	
, and
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				Φ
			

			

				1
			

			
				(
				𝑈
				)
				=
				Φ
				∣
			

			
				(
				𝐴
				,
				𝐵
			

			

				2
			

			

				]
			

			
				(
				𝑈
				)
			

		
	

					has the inverse denoted by 
	
		
			

				𝑈
			

			

				1
			

			
				(
				𝜉
				)
				=
				Φ
			

			
				1
				−
				1
			

			
				(
				−
				(
				|
				𝜉
				|
				/
				2
				)
				+
				𝐾
			

			

				0
			

			

				)
			

		
	
. 
	
		
			

				𝑈
			

			

				1
			

			
				(
				𝜉
				)
			

		
	
 gives a smooth soliton solution satisfying 
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝑈
			

			

				1
			

			
				(
				0
				)
				=
				𝐵
			

			

				2
			

			
				,
				l
				i
				m
			

			
				𝜉
				→
				±
				∞
			

			

				𝑈
			

			

				1
			

			
				(
				𝜉
				)
				=
				𝐴
				,
				𝑈
			

			
				
				1
			

			
				(
				0
				)
				=
				0
				.
			

		
	

					The profile of smooth soliton solution is shown in Figure 1(a).(2)
	
		
			
				𝛼
				=
				−
				1
			

		
	
.
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(d)
Figure 1: The profiles of waves. (a) Smooth soliton, 
	
		
			
				𝐴
				=
				−
				5
				/
				2
			

		
	
, 
	
		
			
				𝑐
				=
				−
				2
			

		
	
. (b) Cuspon, 
	
		
			
				𝐴
				=
				2
			

		
	
, 
	
		
			
				𝑐
				=
				1
			

		
	
. (c) Peakon, 
	
		
			
				𝐴
				=
				−
				2
				/
				3
			

		
	
, 
	
		
			
				𝑐
				=
				1
			

		
	
. (d) Cuspon, 
	
		
			
				𝐴
				=
				−
				1
			

		
	
, 
	
		
			
				𝑐
				=
				−
				1
			

		
	
.


             If 
	
		
			
				𝛼
				=
				−
				1
			

		
	
, then 
	
		
			
				𝐴
				=
				𝐵
			

			

				2
			

			
				=
				−
				𝑐
			

			

				2
			

			
				/
				2
			

		
	
 and 
	
		
			

				𝐵
			

			

				1
			

			
				=
				𝑐
			

			

				2
			

			
				/
				6
			

		
	
; there is no single peak soliton solution.(3)
	
		
			
				𝛼
				=
				0
			

		
	
.
             In case 
	
		
			
				𝐴
				=
				0
			

		
	
, (9) becomes 
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝑈
			

			

				
			

			
				1
				=
				−
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑈
				
				𝑈
				+
				4
				𝑐
			

			

				4
			

			
				
			
			
				3
				
				s
				g
				n
				(
				𝜉
				)
				,
				𝑈
				(
				±
				∞
				)
				=
				0
				.
			

		
	

					Thus there is no single peak soliton solution for the previous boundary condition (8).(4)
	
		
			
				𝛼
				>
				0
			

		
	
.
             If 
	
		
			
				𝛼
				>
				0
			

		
	
, then 
	
		
			
				𝐴
				>
				0
			

		
	
 and 
						
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝐵
			

			

				2
			

			
				<
				𝐵
			

			

				1
			

			
				<
				0
				<
				𝐴
				,
				𝑈
				(
				0
				)
				=
				0
				,
				0
				≤
				𝑈
				<
				𝐴
				.
			

		
	

					From 
	
		
			
				𝜙
				(
				𝑈
				)
				>
				0
			

		
	
, we know that 
	
		
			
				Φ
				(
				𝑈
				)
			

		
	
 is strictly increasing on 
	
		
			
				[
				0
				,
				𝐴
				)
			

		
	
, and
						
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				Φ
			

			

				2
			

			
				(
				𝑈
				)
				=
				Φ
				∣
			

			
				[
				0
				,
				𝐴
				)
			

			
				(
				𝑈
				)
			

		
	

					gives a unique cusped soliton solution. Therefore, 
	
		
			

				𝑈
			

			

				2
			

			
				(
				𝜉
				)
				=
				Φ
			

			
				2
				−
				1
			

			
				(
				−
				(
				|
				𝜉
				|
				/
				2
				)
				+
				𝐾
			

			

				0
			

			

				)
			

		
	
 is the solution satisfying 
						
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝑈
			

			

				2
			

			
				(
				0
				)
				=
				0
				,
				l
				i
				m
			

			
				𝜉
				→
				±
				∞
			

			

				𝑈
			

			

				2
			

			
				𝑈
				(
				𝜉
				)
				=
				𝐴
				,
			

			
				
				2
			

			
				(
				0
				+
				)
				=
				+
				∞
				,
				𝑈
			

			
				
				2
			

			
				(
				0
				−
				)
				=
				−
				∞
				.
			

		
	

					The profile of cuspon is shown in Figure 1(b).
Case II (
	
		
			
				𝐴
				=
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
). If 
	
		
			
				𝐴
				=
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
, then the only possible single peak soliton solution is the peakon 
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝑈
				(
				𝜉
				)
				=
				−
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				
				1
				−
				𝑒
			

			
				−
				|
				𝑥
				−
				𝑐
				𝑡
				|
				/
				2
			

			
				
				.
			

		
	

The profile of peaked soliton is shown in Figure 1(c).
Case III (
	
		
			
				𝐴
				<
				−
				2
				𝑐
			

			

				2
			

			
				/
				3
			

		
	
). In this case, according to Theorem 4 and standard phase portrait analytical technique, we have 
	
		
			
				𝑈
				(
				0
				)
				=
				0
			

		
	
, 
	
		
			
				𝐴
				<
				𝑈
				≤
				0
			

		
	
, and 
						
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑈
			

			

				
			

			
				=
				𝑈
				−
				𝐴
			

			
				
			
			
				𝑈
				
			

			
				
			
			
				3
				𝑈
			

			

				2
			

			
				+
				
				6
				𝐴
				+
				4
				𝑐
			

			

				2
			

			
				
				𝑈
				+
				3
				𝐴
			

			

				2
			

			
				+
				2
				𝐴
				𝑐
			

			

				2
			

			
				
			
			
				1
				2
				s
				g
				n
				(
				𝜉
				)
				.
			

		
	

					Let  
						
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑋
				=
				𝑈
				+
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				1
			

			
				=
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				,
				𝑎
			

			
				2
				2
			

			
				2
				=
				−
			

			
				
			
			
				9
				
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				
				,
			

		
	

					and then (41) becomes 
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝜑
				(
				𝑋
				)
				𝑑
				𝑋
				=
				𝑋
				−
				𝑎
			

			

				1
			

			
				
			
			
				
				𝑋
				−
				𝑎
			

			

				1
			

			
				
				
				−
				𝐴
			

			
				
			
			

				𝑋
			

			

				2
			

			
				+
				𝑎
			

			
				2
				2
			

			
				1
				𝑑
				𝑋
				=
			

			
				
			
			
				2
				s
				g
				n
				(
				𝜉
				)
				𝑑
				𝜉
				.
			

		
	

					Integration of both sides of (43) gives 
						
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				𝜉
				|
				|
				Ψ
				(
				𝑋
				)
				=
			

			
				
			
			
				2
				+
				𝐾
				,
			

		
	

					where 
						
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				Ψ
				(
				𝑋
				)
				=
				𝐽
			

			

				1
			

			
				𝐴
				(
				𝑋
				)
				+
			

			
				
			
			

				
			

			
				
			
			
				
				𝑎
			

			

				1
			

			
				
				+
				𝐴
			

			

				2
			

			
				+
				𝑎
			

			
				2
				2
			

			

				𝐽
			

			

				2
			

			
				𝐽
				(
				𝑋
				)
				,
			

			

				1
			

			
				|
				|
				|
				
				(
				𝑋
				)
				=
				l
				n
				𝑋
				+
			

			
				
			
			

				𝑋
			

			

				2
			

			
				+
				𝑎
			

			
				2
				2
			

			
				|
				|
				|
				,
				𝐽
			

			

				2
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				2
				
				𝑎
				(
				𝑋
				)
				=
				l
				n
			

			
				2
				2
			

			
				+
				
				𝑎
			

			

				1
			

			
				
				
				+
				𝐴
				𝑋
				−
			

			
				
			
			
				
				𝑎
			

			

				1
			

			
				
				+
				𝐴
			

			

				2
			

			
				+
				𝑎
			

			
				2
				2
			

			

				
			

			
				
			
			

				𝑋
			

			

				2
			

			
				+
				𝑎
			

			
				2
				2
			

			

				
			

			
				
			
			
				𝑋
				−
				𝑎
			

			

				1
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				.
				−
				𝐴
			

		
	


	
		
			
				Ψ
				(
				𝑋
				)
			

		
	
 is strictly decreasing on the interval 
	
		
			
				[
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				1
			

			
				+
				𝐴
				)
			

		
	
. Define 
						
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				Ψ
			

			

				1
			

			
				(
				𝑋
				)
				=
				Ψ
				∣
			

			
				[
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				1
			

			
				+
				𝐴
				)
			

			
				(
				𝑋
				)
				.
			

		
	

					Then 
						
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				Ψ
			

			

				1
			

			
				|
				|
				𝜉
				|
				|
				(
				𝑋
				)
				=
			

			
				
			
			
				2
				+
				𝐾
			

			

				0
			

			

				,
			

		
	

					where 
						
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝐾
			

			

				0
			

			
				=
				𝐽
			

			

				1
			

			
				
				𝑎
			

			

				1
			

			
				
				+
				𝐴
			

			
				
			
			

				
			

			
				
			
			
				
				𝑎
			

			

				1
			

			
				
				+
				𝐴
			

			

				2
			

			
				+
				𝑎
			

			
				2
				2
			

			

				𝐽
			

			

				2
			

			
				
				𝑎
			

			

				1
			

			
				
				.
			

		
	

					Since 
	
		
			

				Ψ
			

			

				1
			

		
	
 is a strictly decreasing function, we can solve for 
	
		
			

				𝑋
			

		
	
 uniquely from (47) and obtain 
						
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝑈
				(
				𝜉
				)
				=
				Ψ
			

			
				1
				−
				1
			

			
				
				|
				|
				𝜉
				|
				|
			

			
				
			
			
				2
				+
				𝐾
			

			

				0
			

			
				
				−
				𝑎
			

			

				1
			

			

				,
			

		
	

					which satisfies 
						
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝑈
				(
				0
				)
				=
				0
				,
				l
				i
				m
			

			
				𝜉
				→
				±
				∞
			

			
				𝑈
				𝑈
				(
				𝜉
				)
				=
				𝐴
				,
			

			

				
			

			
				(
				0
				+
				)
				=
				−
				∞
				,
				𝑈
			

			

				
			

			
				(
				0
				−
				)
				=
				+
				∞
				.
			

		
	

					Therefore, the solution 
	
		
			

				𝑈
			

		
	
 defined by (49) is a cusped soliton solution for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3). The profile of cuspon is shown in Figure 1(d).
Let us summarize our results in the following theorem.
Theorem 6.  Suppose that 
	
		
			
				𝑈
				(
				𝑥
				−
				𝑐
				𝑡
				)
			

		
	
 is a single peak soliton solution for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) at the peak point 
	
		
			

				𝜉
			

			

				0
			

			
				=
				0
			

		
	
, which satisfies the inhomogeneous boundary condition (8). Then one has the following. (1) For 
	
		
			
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				≠
				0
			

		
	
, let 
	
		
			
				𝛼
				=
				𝐴
				/
				(
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			

				)
			

		
	
; then(i) if 
	
		
			
				−
				1
				≤
				𝛼
				≤
				0
			

		
	
, there is no soliton for the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3);(ii) if 
	
		
			
				𝛼
				<
				0
			

		
	
 and 
	
		
			
				𝐴
				<
				0
			

		
	
, the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) has the smooth soliton solution
													
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝑈
				(
				𝜉
				)
				=
				Φ
			

			
				1
				−
				1
			

			
				
				−
				|
				|
				𝜉
				|
				|
			

			
				
			
			
				2
				+
				𝐾
			

			

				0
			

			
				
				,
			

		
	
 with the following properties: 
													
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				𝑈
				(
				0
				)
				=
				𝐵
			

			

				2
			

			
				,
				𝑈
				(
				±
				∞
				)
				=
				𝐴
				,
				𝑈
			

			

				
			

			
				(
				0
				)
				=
				0
				;
			

		
	
(iii) if 
	
		
			
				𝛼
				>
				0
			

		
	
, the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) has the cusped soliton solution
													
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				𝑈
				(
				𝑥
				,
				𝑡
				)
				=
				Φ
			

			
				2
				−
				1
			

			
				
				−
				|
				|
				𝜉
				|
				|
			

			
				
			
			
				2
				+
				𝐾
			

			

				0
			

			
				
				,
			

		
	
 with the following properties: 
													
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				𝑈
				𝑈
				(
				0
				)
				=
				0
				,
				𝑈
				(
				±
				∞
				)
				=
				𝐴
				,
			

			

				
			

			
				(
				0
				+
				)
				=
				+
				∞
				,
				𝑈
			

			

				
			

			
				(
				0
				−
				)
				=
				−
				∞
				;
			

		
	
(iv) if 
	
		
			
				𝛼
				<
				0
			

		
	
 and 
	
		
			
				𝐴
				>
				0
			

		
	
, the 
	
		
			
				𝐵
				(
				2
				,
				2
				)
			

		
	
 equation (3) has the cusped soliton solution 
													
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝑈
				(
				𝑥
				,
				𝑡
				)
				=
				Ψ
			

			
				1
				−
				1
			

			
				
				|
				|
				𝜉
				|
				|
			

			
				
			
			
				2
				+
				𝐾
			

			

				0
			

			
				
				−
				𝑎
			

			

				1
			

			

				,
			

		
	
  with the following properties: 
													
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				𝑈
				𝑈
				(
				0
				)
				=
				0
				,
				𝑈
				(
				±
				∞
				)
				=
				𝐴
				,
			

			

				
			

			
				(
				0
				+
				)
				=
				−
				∞
				,
				𝑈
			

			

				
			

			
				(
				0
				−
				)
				=
				+
				∞
				.
			

		
	
(2)When 
	
		
			
				3
				𝐴
				+
				2
				𝑐
			

			

				2
			

			
				=
				0
			

		
	
, then 
	
		
			

				𝑈
			

		
	
 is the peakon 
										
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝑈
				(
				𝑥
				,
				𝑡
				)
				=
				−
				2
				𝑐
			

			

				2
			

			
				
			
			
				3
				
				1
				−
				𝑒
			

			
				−
				|
				𝑥
				−
				𝑐
				𝑡
				|
				/
				2
			

			
				
				,
			

		
	

                with the following properties: 
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				𝑈
				𝑈
				(
				0
				)
				=
				0
				,
				𝑈
				(
				±
				∞
				)
				=
				𝐴
				,
			

			

				
			

			
				𝑐
				(
				0
				+
				)
				=
				−
			

			

				2
			

			
				
			
			
				3
				,
				𝑈
			

			

				
			

			
				𝑐
				(
				0
				−
				)
				=
			

			

				2
			

			
				
			
			
				3
				.
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