Clinical Study

Crossectomy and Foam Sclerotherapy of the Great Saphenous Vein versus Stripping of Great Saphenous Vein and Varicectomy in the Treatment of the Legs Ulcers

Alvaro Delgado-Beltran
Vascular Surgery Center of Girardot, Girardot, Colombia

Correspondence should be addressed to Alvaro Delgado-Beltran; alvarodelgado17@yahoo.com

Received 26 August 2013; Accepted 13 October 2013

Academic Editor: Arkadiusz Jawien

Copyright © 2013 Alvaro Delgado-Beltran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To show our results in the surgical treatment of legs varicose ulcers, with crossectomy and foam sclerotherapy (CAFE) of the great saphenous vein (GSV) in group I and stripping of GSV and varicectomy in group II.

Methods. 35 patients with active venous leg ulcers were recruited and treated. They were collected in two groups. Group I were treated by crossectomy and foam sclerotherapy of the GSV and group II were treated by stripping of GSV and varicectomy. The healing time of the ulcer and the complications were recorded after the procedure in the follow-up visits.

Results. 29 out of the 35 patients completed the follow-up. There were eight cases of incomplete healing of the leg ulcer, 4 in group I (19.04%) and 4 in group II (40%), \( P < 0.05 \). The average rate of healing in group I was 0.38 cm/day and 0.13 in group II, \( P < 0.05 \).

Conclusion. CAFE technique of the great saphenous vein in the treatment of 6 CEAP patients is a procedure that improves the rate of ulcer healing as compared to these two groups. It is a safe and reliable minimally invasive method, with less morbidity.

1. Introduction

Venous ulcers are the last state of the chronic venous insufficiency which treatment is long, expensive, and disappointing. The affected patients are usually treated by compressive therapy of the legs and wound dressings of different kinds [1].

The association of venous ulcers and saphenous vein reflux is well established, and therefore we encourage a rapid surgical decision on these patients focused on the hemodynamic control rather than the treatment of the ulcer alone [2, 3]. Ablative procedures of the superficial venous system with complete resection of the saphenous veins and varix imply the risk of complications such as contamination and infection of the surgical wounds. Reliability of this technique and the recent reintroduction of sclerosing agents with higher foam stability allow the possibility to occlude saphenous trunks with minimal invasiveness and in a very practical way [4].

We report our early experience with crossectomy and foam sclerotherapy (CAFE) of the great saphenous vein in patients with saphenous vein reflux and venous ulceration.

2. Materials and Methods

2.1. Patients and Groups. Between September 2008 and January 2010, 35 patients with active venous leg ulcer were recruited for the study. Twenty-nine accomplished the follow-up period.

Group I consisted of 21 patients (23 limbs), 6 males, and 15 females, with an average age of 58.9 years (range: 36–86). Of the 21 patients, 17 had primary CVI and 4 had post-thrombotic limbs.

Group II had 8 patients (10 limbs), 2 males and 8 females, with an average age of 58.5 years (range: 43–71). Three patients had post-thrombotic limbs and 5 had primary CVI (Table 1).

A complete vascular examination was performed in order to rule out significant arterial disease and ABI > 0.9 was found in all the patients; venous ultrasound was done in order to confirm greater or lesser saphenous vein reflux and exclude any occlusive thrombus in the deep or perforator systems. The Doppler duplex scan color evaluations were done with Sonosite MicroMaxx Ultrasound System.
Figure 1: (a) Foam preparation. (b) Foam injection in the great saphenous vein.

Table 1: Patients.

<table>
<thead>
<tr>
<th></th>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Limbs</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Primary CVI (Patients)</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Secondary CVI (Patients)</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Mean age</td>
<td>59</td>
<td>58.5</td>
</tr>
</tbody>
</table>

(Sonisite, Inc. Bothell, WA, USA), 5–10 MHz electronic linear array probe, in standing position in order to find reflux, which was considered positive if it was 1 second or longer, and the saphenous vein diameter was 4 mm or more at the saphenofemoral junction. Then the patient was examined in prone position to exclude the aforementioned thrombus. Size of the ulcer was measured by the use of a metrical strip. These observations were registered in the record of each patient and they were conducted to elective surgery.

In group I the surgical procedure consisted in crosssection of the affected saphenous vein and the distal saphenous vein was canalized with a 6 F silicon Nelaton urethral tube until the knee level and slowly filled with foam; meanwhile the tube was withdrawn; the foam was built with 6 cc of polidocanol 1% (Polydosclerol, Sigvaris, Sig Med, 16 Parkway North Deerfield, IL, USA) foamed with 18 cc of air (3:1) using Tessari’s technique [5] (Figures I(a) and I(b)) with a three-way stopcock (Elcam Medical A.C.A.L., Bar-Am 13860 Israel) and two plastic syringes, BD Plastipak, Becton Dickinson, Mexico. A severe spasm of the saphenous vein and its main tributaries was observed immediately (Figure 2). The surgical incision was closed and medium stretch elastic bandage compression of the limb was sustained through the first ambulatory control, 3 or 4 days after the surgery. Then it was changed daily.

In Group II all the 8 patients have a crosssection and removal of the saphenous vein between the groin and the ankle. The medium stretch elastic bandage compression was changed daily. Both, the patients and their relatives were instructed about the way to change and to put the elastic bandages from the forefoot to the above knee area of the leg. The first change was done by us.

Clinical and ultrasound follow-up was performed 7 and 14 days after the surgery (Figure 3) and elastic bandage compression was maintained until the ulcer healed. Complete ulcer healing was defined as a full epithelization of the wound and absence of secretions (Figure 4). Ultrasound parameters during follow-up included: detection of possible deep vein thrombosis in both groups and absence of color in
the saphenous vein during the Valsalva or the compression-release maneuver in the thigh and in the calf, in Group I.

All data were expressed in terms of means and standard deviation from the mean. Fischer’s test was used to compare the two groups at the end points: ulcer healing and healing rate. \( P < 0.05 \) was considered statistically significant.

### 3. Results

The follow-up ranged from 2 to 17 months. At the time of procedure the area of ulceration ranged from 0.5 to 204 cm\(^2\) (mean: 41.9 cm\(^2\)) in group I. In group II the follow-up ranged from 2 to 15 months and the size of ulceration ranged from 2 to 30 cm\(^2\) (mean: 12.7 cm\(^2\)).

During follow-up there were eight cases of incomplete healing of the ulcer, four in Group I (19.04%)—in one of them an incompetent Cockett perforating vein was showed and later treated by ultrasound guided sclerotherapy—and four in Group II (40%) \( P < 0.05 \).

In the Group I ulcer healing occurred in average time of 56.6 days, ranged from 17 to 160 during the follow after the procedure, and the rate of healing was of 19 of 23 limbs (82.6%). None of these patients have had recurrence in the follow up period. In group II ulcer healing occurred in average time of 39 days, ranged from 15 to 89, and the rate of healing was of 6 of 10 limbs. None had recurrence. Mean ulcer healing speed was 0.38 cm/day in group I and 0.13 cm/day in group II \( P < 0.05 \). There was one patient with clinical evidence of infection on the leg after surgery in the group II (Figure 5).

Table 2 summarizes the characteristics and evolution of Group I patients.

Table 3 summarizes the characteristics and evolution of Group II patients.
Table 3: Characteristics and evolution of group II patients.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Gender</th>
<th>Leg</th>
<th>Comorbidities</th>
<th>Ulcer area</th>
<th>Evolution time (months)</th>
<th>Date of surgery</th>
<th>Date of healing</th>
<th>Days</th>
<th>Rate cm/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>F</td>
<td>Right</td>
<td>SAH</td>
<td>10</td>
<td>60</td>
<td>26/07/2009</td>
<td>24/11/2009</td>
<td>89</td>
<td>0.112</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>M</td>
<td>Right</td>
<td>SAH, CHF</td>
<td>8</td>
<td>60</td>
<td>31/07/2009</td>
<td>30/09/2009</td>
<td>60</td>
<td>0.133</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>F</td>
<td>Bilat.</td>
<td></td>
<td>4.5</td>
<td>8</td>
<td>29/11/2009</td>
<td>12/01/2010</td>
<td>14</td>
<td>0.071</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>M</td>
<td>Bilat.</td>
<td>DVT</td>
<td>30</td>
<td>36</td>
<td>25/10/2008</td>
<td>Not healed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>69</td>
<td>F</td>
<td>Left</td>
<td>SAH</td>
<td>15</td>
<td>24</td>
<td>11/02/2009</td>
<td>Not healed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>F</td>
<td>Left</td>
<td>DVT</td>
<td>4</td>
<td>36</td>
<td>31/01/2010</td>
<td>17/02/2010</td>
<td>17</td>
<td>0.235</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>F</td>
<td>Left</td>
<td></td>
<td>2</td>
<td>12</td>
<td>12/06/2009</td>
<td>27/06/2009</td>
<td>15</td>
<td>0.133</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>F</td>
<td>Left</td>
<td>DVT</td>
<td>20</td>
<td>6</td>
<td>20/08/2009</td>
<td>Not healed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean 58.5 12.714 30.25 39 0.136


4. Discussion

Venous ulcer is the latest state of venous disease with high social and healthcare cost and with deterioration of quality of life [6, 7]. Several approaches to heal them have been made with high recurrence rate due to the hemodynamic problem that is beneath it, deriving the focus of therapy to the surgical options [8, 9], and now with minimally invasive concepts [10, 11]. Foam sclerotherapy was reintroduced in 1990 for the treatment of venous disorders and it has shown to be an important alternative in the management of patients with venous ulcers, as reported, Garrido et al. [12].

Our goal is the development of a definitive treatment, with minimal chances of complications and recurrences and a low cost. This technique must eradicate the reflux from the main incompetent vein just in its origin and among the incompetent saphenous trunk and its main incompetent tributaries, it must be minimally invasive, with proven effectiveness not affected by the vein size or tortuosity, and finally it must have wide availability and low cost.

Sclerotherapy is widely used as a cosmetic practice to treat spider veins to treat venous malformations [13]. More recently, with the development of the foam it gained more indications as to treat the great superficial trunks. Tessari’s technic made more affordable the use of foam in venous practice, so we are now able to convert a tensioactive agent into foam, giving it longer time of contact with the venous endothelium and therefore producing a more effective vein fibrosis with relative independence of the vein size or shape and their flow speed [14].

Foam has the extra advantages of being visible under ultrasound, painless, easy to handle, and is not expensive. The rate of occlusion of veins with this technique is very high [15] and is accepted as a reliable option to occlude main trunks in chronic venous insufficiency settings [16]. Furthermore, with the filling of the main tributaries of the saphenous vein with foam and a good compression, varicose veins resection was not needed. That was why we infused 24 cc of foam in the saphenous vein and its main tributaries in each leg.

Stability of the foam is an issue and it depends on the tensioactive properties of the product and Polidocanol is a detergent with good foam stability.

Under a CEAP 6 patient, as we have shown in this study, CAFE of the great saphenous vein in this group of patients made it possible to reach the healing of more than 80% of the ulcers without complications and faster than in the stripping of the saphenous vein group.

References


