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Abstract. 
The Newton secant method is a third-order iterative nonlinear solver. It requires two function and one first derivative evaluations. However, it is not optimal as it does not satisfy the Kung-Traub conjecture. In this work, we derive an optimal fourth-order Newton secant method with the same number of function evaluations using weight functions and we show that it is a member of the King family of fourth-order methods. We also obtain an eighth-order optimal Newton-secant method. We prove the local convergence of the methods. We apply the methods to solve a fourth-order polynomial arising in ocean acidifications and study their dynamics. We use the data of CO2 available from the National Oceanic and Atmospheric Administration from 1959 to 2012 and calculate the pH of the oceans for these years. Finally we further investigate the long-run implications of CO2 emissions on alkalinity of seawater using fully modified ordinary least squares (FMOLS) and dynamic OLS (DOLS). Our findings reveal that a one-percent increase in CO2 emissions will lead to a reduction in seawater alkalinity of 0.85 percent in the long run.


1. Introduction
Recent advancements in the study of higher-order multipoint methods have made this field of research very active. Much literature on the multipoint Newton-like methods for function of one variable and their convergence analysis can be found in [1] and the historical developments of the methods in [2]. Newton secant method is a third-order two-point method and it was rediscovered in [3] as a leapfrog Newton method. However, it is not optimal because the order of an optimal method with 3 function evaluations should be 4 according to the Kung-Traub conjecture. In this work, we derive an optimal fourth-order Newton secant method with same number of function evaluations using weight functions and we show that it is a member of the King family of fourth-order methods. We also obtain an eighth-order optimal Newton secant method. We prove the local convergence of the methods. We apply the methods to solve a fourth-order polynomial arising in ocean acidifications and study their dynamics. We use the data of 
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 available from the National Oceanic and Atmospheric Administration from 1959 to 2012 and calculate the pH of the oceans for these years. Finally, we further investigate the long-run implications of 
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 emissions on alkalinity of seawater using fully modified ordinary least squares (FMOLS) and dynamic OLS (DOLS). 
2. Developments of the Methods
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Kung-Traub Conjecture (see [6]). Let 
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					The 2nd NR IF is one-point IF with 2 function evaluations and it satisfies the Kung-Traub conjecture 
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The Halley IF (3rd Hal) is given by
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					It is one-point IF with 3 function evaluations and 
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. However, we need to calculate the second derivatives which can be computationally expensive for complex functions. A remedy to this is the Newton-secant IF (3rd NS) which can be written as
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 which is the highest efficiency index among all IFs considered in this work. 





3. Convergence Analysis
Theorem 3.  Let a sufficiently smooth function 
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Proof. Let 
	
		
			

				𝑐
			

			

				𝑗
			

			
				=
				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝑥
			

			

				∗
			

			
				)
				/
				𝑗
				!
				𝑓
			

			

				
			

			
				(
				𝑥
			

			

				∗
			

			

				)
			

		
	
,  
	
		
			
				𝑗
				=
				2
				,
				3
				,
				4
			

		
	
.Using the Taylor series and the symbolic software such as, Maple we have
							
	
 		
 			
				(
				1
				4
				)
			
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝑓
			

			

				
			

			
				
				𝑥
			

			

				∗
			

			
				𝑒
				
				
			

			

				𝑛
			

			
				+
				𝑐
			

			

				2
			

			

				𝑒
			

			
				2
				𝑛
			

			
				+
				𝑐
			

			

				3
			

			

				𝑒
			

			
				3
				𝑛
			

			
				+
				𝑐
			

			

				4
			

			

				𝑒
			

			
				4
				𝑛
			

			
				
				,
				𝑓
				+
				⋯
			

			

				
			

			
				(
				𝑥
				)
				=
				𝑓
			

			

				
			

			
				
				𝑥
			

			

				∗
			

			
				
				
				1
				+
				2
				𝑐
			

			

				2
			

			

				𝑒
			

			

				𝑛
			

			
				+
				3
				𝑐
			

			

				3
			

			

				𝑒
			

			
				2
				𝑛
			

			
				+
				4
				𝑐
			

			

				4
			

			

				𝑒
			

			
				3
				𝑛
			

			
				
				,
				+
				⋯
			

		
	

						so that
							
	
 		
 			
				(
				1
				6
				)
			
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				)
				=
				𝑒
			

			

				𝑛
			

			
				−
				𝑐
			

			

				2
			

			

				𝑒
			

			
				2
				𝑛
			

			
				
				𝑐
				+
				2
			

			
				2
				2
			

			
				−
				𝑐
			

			

				3
			

			
				
				𝑒
			

			
				3
				𝑛
			

			
				+
				
				7
				𝑐
			

			

				2
			

			

				𝑐
			

			

				3
			

			
				−
				4
				𝑐
			

			
				3
				2
			

			
				−
				3
				𝑐
			

			

				4
			

			
				
				𝑒
			

			
				4
				𝑛
			

			
				𝜓
				+
				⋯
				,
			

			

				2
			

			
				n
				d
				N
				R
			

			
				(
				𝑥
				)
				−
				𝑥
			

			

				∗
			

			
				=
				𝑐
			

			

				2
			

			

				𝑒
			

			
				2
				𝑛
			

			
				
				𝑐
				−
				2
			

			
				2
				2
			

			
				−
				𝑐
			

			

				3
			

			
				
				𝑒
			

			
				3
				𝑛
			

			
				−
				
				7
				𝑐
			

			

				2
			

			

				𝑐
			

			

				3
			

			
				−
				4
				𝑐
			

			
				3
				2
			

			
				−
				3
				𝑐
			

			

				4
			

			
				
				𝑒
			

			
				4
				𝑛
			

			
				+
				⋯
				.
			

		
	

						Now, the Taylor expansion of 
	
		
			
				𝑓
				(
				𝑦
				)
			

		
	
 about 
	
		
			

				𝑥
			

			

				∗
			

		
	
 gives
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑦
				)
				=
				𝑓
			

			

				
			

			
				
				𝑥
			

			

				∗
			

			
				
				×
				
				
				𝑦
				−
				𝑥
			

			

				∗
			

			
				
				+
				𝑐
			

			

				2
			

			
				
				𝑦
				−
				𝑥
			

			

				∗
			

			

				
			

			

				2
			

			
				+
				𝑐
			

			

				3
			

			
				
				𝑦
				−
				𝑥
			

			

				∗
			

			

				
			

			

				3
			

			
				+
				𝑐
			

			

				4
			

			
				
				𝑦
				−
				𝑥
			

			

				∗
			

			

				
			

			

				4
			

			
				
				.
				+
				⋯
			

		
	

						Using (14), (18), and (17), we have
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑡
			

			

				1
			

			
				=
				𝑓
				
				𝜓
			

			

				2
			

			
				n
				d
				N
				R
			

			
				
				(
				𝑥
				)
			

			
				
			
			
				𝑓
				(
				𝑥
				)
				=
				𝑐
			

			

				2
			

			

				𝑒
			

			

				𝑛
			

			
				+
				
				2
				𝑐
			

			

				3
			

			
				−
				3
				𝑐
			

			
				2
				2
			

			
				
				𝑒
			

			
				2
				𝑛
			

			
				+
				
				3
				𝑐
			

			

				4
			

			
				−
				1
				0
				𝑐
			

			

				2
			

			

				𝑐
			

			

				3
			

			
				+
				8
				𝑐
			

			
				2
				3
			

			
				
				𝑒
			

			
				3
				𝑛
			

			
				+
				
				−
				1
				4
				𝑐
			

			

				2
			

			

				𝑐
			

			

				4
			

			
				+
				3
				7
				𝑐
			

			

				3
			

			

				𝑐
			

			
				2
				2
			

			
				−
				2
				0
				𝑐
			

			
				2
				4
			

			
				−
				8
				𝑐
			

			
				3
				2
			

			
				+
				4
				𝑐
			

			

				5
			

			
				
				𝑒
			

			
				4
				𝑛
			

			
				+
				⋯
				,
			

		
	

						so that by using computer algebra software such as Maple we get
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝜓
			

			

				3
			

			
				t
				h
				N
				S
			

			
				(
				𝑥
				)
				−
				𝑥
			

			

				∗
			

			
				=
				𝑐
			

			
				2
				2
			

			

				𝑒
			

			
				3
				𝑛
			

			
				𝜓
				+
				⋯
				,
			

			

				4
			

			
				t
				h
				N
				S
			

			
				(
				𝑥
				)
				−
				𝑥
			

			

				∗
			

			
				=
				𝑐
			

			

				2
			

			
				
				−
				𝑐
			

			

				3
			

			
				+
				3
				𝑐
			

			
				2
				2
			

			
				
				𝑒
			

			
				4
				𝑛
			

			
				+
				⋯
				.
			

		
	

						Similarly, we have
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑡
			

			

				2
			

			
				=
				𝑐
			

			

				2
			

			
				
				−
				𝑐
			

			

				3
			

			
				+
				3
				𝑐
			

			
				2
				2
			

			
				
				𝑒
			

			
				3
				𝑛
			

			
				+
				
				−
				2
				𝑐
			

			

				2
			

			

				𝑐
			

			

				4
			

			
				−
				2
				𝑐
			

			
				3
				2
			

			
				+
				2
				1
				𝑐
			

			

				3
			

			

				𝑐
			

			
				2
				2
			

			
				−
				2
				1
				𝑐
			

			
				2
				4
			

			
				
				𝑒
			

			
				4
				𝑛
			

			
				𝑡
				+
				⋯
				,
			

			

				3
			

			
				=
				
				−
				𝑐
			

			

				3
			

			
				+
				3
				𝑐
			

			
				2
				2
			

			
				
				𝑒
			

			
				2
				𝑛
			

			
				+
				
				−
				2
				𝑐
			

			

				4
			

			
				+
				1
				2
				𝑐
			

			

				2
			

			

				𝑐
			

			

				3
			

			
				−
				1
				2
				𝑐
			

			
				2
				3
			

			
				
				𝑒
			

			
				3
				𝑛
			

			
				+
				⋯
				,
			

		
	

						so that finally we get
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝜓
			

			

				8
			

			
				t
				h
				N
				S
			

			
				(
				𝑥
				)
				−
				𝑥
			

			

				∗
			

			
				=
				
				1
			

			
				
			
			
				2
				𝑐
			

			

				2
			

			
				
				−
				𝑐
			

			

				3
			

			
				+
				3
				𝑐
			

			
				2
				2
			

			
				
				
				6
				5
				𝑐
			

			
				2
				4
			

			
				−
				3
				4
				𝑐
			

			

				3
			

			

				𝑐
			

			
				2
				2
			

			
				+
				2
				𝑐
			

			

				2
			

			

				𝑐
			

			

				4
			

			
				+
				2
				𝑐
			

			
				3
				2
			

			
				
				
				𝑒
			

			
				8
				𝑛
			

			
				+
				⋯
				.
			

		
	

4. Ocean Acidification
4.1. Introduction [2]
 The accumulation of greenhouse gases (GHGs) in the Earth's atmosphere is now a major topic of discussion to anticipate changes in the Earth's climate. The GHGs cause a reduction in the reradiation of energy from the Sun back into the outer space. Since less energy leaves the Earth's atmosphere, heating of the atmosphere results as a manifest in a temperature rise [12]. This temperature rise, the so-called global warming, is in turn a driving force for climate change. 
	
		
			
				C
				O
			

			

				2
			

		
	
 is the major GHG, with increasing levels primarily from the burning of fossil fuels. Thus, changes in the 
	
		
			
				C
				O
			

			

				2
			

		
	
 level or concentration in the Earth's atmosphere are of paramount importance in understanding anticipated warming and climate change. A second aspect of 
	
		
			
				C
				O
			

			

				2
			

		
	
 accumulation in the atmosphere that is not as generally recognized and appreciated as temperature rise is the accumulation of carbon (from 
	
		
			
				C
				O
			

			

				2
			

		
	
) in the oceans that leads to ocean acidification. 
	
		
			
				C
				O
			

			

				2
			

		
	
 dissolves in ocean water and undergoes a series of chemical changes that ultimately leads to increased hydrogen ion concentration, denoted subsequently as 
	
		
			

				[
			

			

				H
			

			

				+
			

			

				]
			

		
	
, and thus acidification (see [12, 13]). This increase in 
	
		
			

				[
			

			

				H
			

			

				+
			

			

				]
			

		
	
 is manifest as a decrease in pH; note that 
	
		
			

				[
			

			

				H
			

			

				+
			

			

				]
			

		
	
 and pH move in opposite directions due to the following basic relation:
								
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				p
				H
			

			
				=
				−
				l
				o
				g
			

			
				1
				0
			

			

				
			

			

				H
			

			

				+
			

			
				
				.
			

		
	

							Ocean acidification is the name given to the ongoing decrease in the pH of the Earth's oceans, caused by their uptake of anthropogenic carbon dioxide from the atmosphere [14]. Between 1751 and 1994, surface ocean pH is estimated to have decreased from approximately 8.179 to 8.104 (a change of −0.075) [15]. A decrease in ocean pH of 0.1 units corresponds to a 30%  increase in the concentration of 
	
		
			

				H
			

			

				+
			

		
	
 in seawater, assuming that alkalinity and temperature remain constant [16, p. 406]. There is about fifty times as much carbon dissolved in the oceans in the form of 
	
		
			
				C
				O
			

			

				2
			

		
	
 and carbonic acid, bicarbonate, and carbonate ions as that in the atmosphere. The oceans act as an enormous carbon sink and have taken up about a third of 
	
		
			
				C
				O
			

			

				2
			

		
	
 emitted by human activity [17]. Most of the 
	
		
			
				C
				O
			

			

				2
			

		
	
 taken up by the ocean forms carbonic acid in equilibrium with bicarbonate and carbonate ions. Some is consumed in photosynthesis by organisms in the water, and a small proportion of that sinks and leaves the carbon cycle. Increased 
	
		
			
				C
				O
			

			

				2
			

		
	
 in the atmosphere has led to decreasing alkalinity of seawater and there is concern that this may adversely affect organisms living in the water. In particular, with decreasing alkalinity, the availability of carbonates for forming shells decreases [18, p. 125], although there is evidence of increased shell production by certain species under increased 
	
		
			
				C
				O
			

			

				2
			

		
	
 content [19]. 
4.2. Ocean Chemistry [2]
 We begin with 
	
		
			
				C
				O
			

			

				2
			

		
	
 dissolving in 
	
		
			

				H
			

			

				2
			

			

				O
			

		
	
 to form carbonic acid, 
	
		
			

				H
			

			

				2
			

			
				C
				O
			

			

				3
			

		
	
 as
								
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				C
				O
			

			

				2
			

			

				+
			

			

				H
			

			

				2
			

			

				O
			

			

				⇌
			

			

				H
			

			

				2
			

			
				C
				O
			

			

				3
			

			

				.
			

		
	

							The double arrow 
	
		
			

				⇌
			

		
	
 denotes a reversible chemical reaction (a reaction that can proceed either forward to produce 
	
		
			

				H
			

			

				2
			

			
				C
				O
			

			

				3
			

		
	
 or backward to produce 
	
		
			
				C
				O
			

			

				2
			

		
	
 and 
	
		
			

				H
			

			

				2
			

			

				O
			

		
	
).
A common convention is to take 
	
		
			

				[
			

			
				C
				O
			

			

				2
			

			

				]
			

		
	
 as the dissolved 
	
		
			
				C
				O
			

			

				2
			

		
	
, denoted as 
	
		
			

				[
			

			
				C
				O
			

			

				2
			

			

				]
			

			
				a
				q
			

		
	
, plus the carbonic acid 
	
		
			

				[
			

			

				H
			

			

				2
			

			
				C
				O
			

			

				3
			

			

				]
			

			
				a
				q
			

		
	
.
Carbonic acid is a weak acid which in turn dissociate into bicarbonate ions, 
	
		
			
				H
				C
				O
			

			
				−
				3
			

		
	
, as
								
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				H
			

			

				2
			

			
				C
				O
			

			

				3
			

			

				⇌
			

			

				H
			

			

				+
			

			

				+
			

			
				H
				C
				O
			

			
				−
				3
			

			

				.
			

		
	

							Bicarbonate ions in turn dissociates into carbonate ions, 
	
		
			
				C
				O
			

			
				3
				2
				−
			

		
	

	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				H
				C
				O
			

			
				−
				3
			

			

				⇌
			

			

				H
			

			

				+
			

			

				+
			

			
				C
				O
			

			
				3
				2
				−
			

			

				.
			

		
	

							The reactions (25) and (26) produce hydrogen ions and therefore contribute to acidification.

	
		
			

				H
			

			

				2
			

			

				O
			

		
	
 also dissociates to produce hydrogen ions as
								
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				H
			

			

				2
			

			

				O
			

			

				⇌
			

			

				H
			

			

				+
			

			

				+
			

			
				O
				H
			

			

				−
			

			

				.
			

		
	

							Additionally, boron hydroxide in seawater dissociates to produce hydrogen ions as
								
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			

				3
			

			

				+
			

			

				H
			

			

				2
			

			

				O
			

			

				⇌
			

			

				H
			

			

				+
			

			

				+
			

			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			
				−
				4
			

			

				.
			

		
	

							In this work, we do not consider other compounds in the oceans that also dissociate to produce hydrogen ions. We explain how to compute 
	
		
			

				[
			

			

				H
			

			

				+
			

			

				]
			

		
	
 and pH from the reactions (24) to (28). For the following analysis, we use the equilibrium constants of Bacastow and Keeling [20] expressed in the units of moles/litre. The relation between gaseous and liquid 
	
		
			
				C
				O
			

			

				2
			

		
	
 is
								
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝐾
			

			

				0
			

			
				=
				
			

			
				C
				O
			

			

				2
			

			

				
			

			
				
			
			

				𝑃
			

			

				𝑡
			

			
				=
				3
				.
				3
				4
				7
				(
				−
				5
				)
				,
			

		
	

							where 
	
		
			

				[
			

			
				C
				O
			

			

				2
			

			

				]
			

		
	
 is the sum of the dissolved 
	
		
			
				C
				O
			

			

				2
			

		
	
 and carbonic acid and 
	
		
			

				𝑃
			

			

				𝑡
			

		
	
 is the gas phase 
	
		
			
				C
				O
			

			

				2
			

		
	
 partial pressure in ppm measured by the National Oceanic and Atmospheric Administration (NOAA) at the Mauna Loa Observatory, Hawaii [21], and 
	
		
			
				𝑎
				(
				−
				𝑏
				)
			

		
	
 denotes 
	
		
			
				𝑎
				×
				1
				0
			

			
				−
				𝑏
			

		
	
.
For reaction (25),
								
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝐾
			

			

				1
			

			
				=
				
			

			

				H
			

			

				+
			

			
				
				
			

			
				H
				C
				O
			

			
				−
				3
			

			

				
			

			
				
			
			

				
			

			
				C
				O
			

			

				2
			

			
				
				=
				9
				.
				7
				4
				7
				(
				−
				7
				)
				.
			

		
	

For reaction (26),
								
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝐾
			

			

				2
			

			
				=
				
			

			

				H
			

			

				+
			

			
				
				
			

			
				C
				O
			

			
				3
				2
				−
			

			

				
			

			
				
			
			

				
			

			
				H
				C
				O
			

			
				−
				3
			

			
				
				=
				8
				.
				5
				0
				1
				(
				−
				1
				0
				)
				.
			

		
	

For reaction (27),
								
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝐾
			

			

				W
			

			
				=
				
			

			

				H
			

			

				+
			

			
				
				[
			

			
				O
				H
			

			

				−
			

			
				]
				=
				6
				.
				4
				6
				(
				−
				1
				5
				)
				.
			

		
	

For reaction (28),
								
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝐾
			

			

				B
			

			
				=
				
			

			

				H
			

			

				+
			

			
				
				
			

			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			
				−
				4
			

			

				
			

			
				
			
			

				
			

			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			

				3
			

			
				
				=
				1
				.
				8
				8
				1
				(
				−
				9
				)
				.
			

		
	

							The alkalinity, 
	
		
			

				𝐴
			

		
	
, which expresses the electrical neutrality of ocean water is defined as
								
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				𝐴
				=
			

			
				H
				C
				O
			

			
				−
				3
			

			
				
				
				+
				2
			

			
				C
				O
			

			
				3
				2
				−
			

			
				
				+
				
			

			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			
				−
				4
			

			
				
				+
				[
			

			
				O
				H
			

			

				−
			

			
				]
				−
				
			

			

				H
			

			

				+
			

			
				
				.
			

		
	

							We can assume that the values of 
	
		
			

				𝐴
			

		
	
 do not change with time [20]. From (29), we have
								
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				
			

			
				C
				O
			

			

				2
			

			
				
				=
				𝐾
			

			

				0
			

			

				𝑃
			

			

				𝑡
			

			

				.
			

		
	

							From (30) and (35), we have
								
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				
			

			
				H
				C
				O
			

			
				−
				3
			

			
				
				=
				𝐾
			

			

				1
			

			

				
			

			
				C
				O
			

			

				2
			

			

				
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			
				
				=
				𝐾
			

			

				0
			

			

				𝐾
			

			

				1
			

			

				𝑃
			

			

				𝑡
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			
				
				.
			

		
	

							Similarly, we obtain
								
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				
			

			
				C
				O
			

			
				3
				2
				−
			

			
				
				=
				𝐾
			

			

				2
			

			

				
			

			
				H
				C
				O
			

			
				−
				3
			

			

				
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			
				
				=
				𝐾
			

			

				0
			

			

				𝐾
			

			

				1
			

			

				𝐾
			

			

				2
			

			

				𝑃
			

			

				𝑡
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			

				
			

			

				2
			

		
	

							from (31) and (36).
Using
								
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				𝐵
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				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			

				3
			

			
				
				+
				
			

			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			
				−
				4
			

			

				
			

		
	

							in (33), we have
								
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				
			

			

				B
			

			

				(
			

			
				O
				H
			

			

				)
			

			
				−
				4
			

			
				
				=
				𝐵
				𝐾
			

			

				B
			

			
				
			
			

				𝐾
			

			

				B
			

			
				+
				
			

			

				H
			

			

				+
			

			
				
				.
			

		
	

							Substituting (32) and (35)–(39) into (34), we have
								
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝐾
				𝐴
				=
			

			

				0
			

			

				𝐾
			

			

				1
			

			

				𝑃
			

			

				𝑡
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			
				
				+
				2
				𝐾
			

			

				0
			

			

				𝐾
			

			

				1
			

			

				𝐾
			

			

				2
			

			

				𝑃
			

			

				𝑡
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			

				
			

			

				2
			

			
				+
				𝐵
				𝐾
			

			

				B
			

			
				
			
			

				𝐾
			

			

				B
			

			
				+
				
			

			

				H
			

			

				+
			

			
				
				+
				𝐾
			

			

				W
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			
				
				−
				
			

			

				H
			

			

				+
			

			

				
			

		
	

							which simplifies to the solution of a fourth-order polynomial given by
								
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝑝
				
				
			

			

				H
			

			

				+
			

			
				=
				
				
			

			

				4
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐷
			

			

				𝑛
			

			

				
			

			

				H
			

			

				+
			

			

				
			

			

				𝑛
			

			

				,
			

		
	

							where 
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				4
				2
				)
			
 		
	

	
		
			

				𝐷
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				=
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				𝐾
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				𝐾
			

			

				1
			

			

				𝐾
			

			

				2
			

			

				𝑃
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				𝐾
			

			

				B
			

			
				,
				𝐷
			

			

				1
			

			
				=
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				1
			

			

				𝑃
			

			

				𝑡
			

			

				𝐾
			

			

				B
			

			
				+
				2
				𝐾
			

			

				0
			

			

				𝐾
			

			

				1
			

			

				𝐾
			

			

				2
			

			

				𝑃
			

			

				𝑡
			

			
				+
				𝐾
			

			

				W
			

			

				𝐾
			

			

				B
			

			
				,
				𝐷
			

			

				2
			

			
				=
				𝐾
			

			

				0
			

			

				𝐾
			

			

				1
			

			

				𝑃
			

			

				𝑡
			

			
				+
				𝐵
				𝐾
			

			

				B
			

			
				+
				𝐾
			

			

				W
			

			
				−
				𝐴
				𝐾
			

			

				B
			

			
				,
				𝐷
			

			

				3
			

			
				=
				−
				𝐾
			

			

				B
			

			
				𝐷
				−
				𝐴
				,
			

			

				4
			

			
				=
				−
				1
				.
			

		
	

							We use 
	
		
			
				𝐴
				=
				2
				.
				0
				5
				0
			

		
	
 [22, p. 334] and 
	
		
			
				𝐵
				=
				0
				.
				4
				0
				9
			

		
	
 [20, p. 131]. 
4.3. Dynamic Behaviour
 We next study the dynamic behaviour of the methods in the complex plane 
	
		
			

				ℤ
			

		
	
 to find the best starting points. For a given value of 
	
		
			

				𝑃
			

			

				𝑡
			

		
	
, polynomial 
	
		
			
				𝑝
				(
				[
			

			

				H
			

			

				+
			

			
				]
				)
			

		
	
 in (41) has one positive real root (the one we are seeking), one negative real root, and two complex roots. Since these solutions have very small values except the negative one, it is difficult to study their polynomiography [23]. Instead, we consider the change of variable
								
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				1
				𝑧
				=
			

			
				
			
			

				
			

			

				H
			

			

				+
			

			
				
				,
				𝑧
				∈
				ℤ
				,
			

		
	

							and then the 
	
		
			
				p
				H
			

			
				=
				l
				o
				g
			

			
				1
				0
			

			

				𝑧
			

		
	
. We require to find the positive real solution of another fourth-order polynomial:
								
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
			

			

				4
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐷
			

			
				4
				−
				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				.
			

		
	

We draw the polynomiographs of 
	
		
			
				𝑝
				(
				[
			

			

				H
			

			

				+
			

			
				]
				)
			

		
	
. Let 
	
		
			

				𝑧
			

			

				0
			

			
				=
				𝑥
				+
				𝑖
				𝑦
			

		
	
, and let 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℝ
			

		
	
 be the initial point. A square grid of 65536 points, composed of 256 columns and 256 rows corresponding to the pixels of a computer display, would represent a region of the complex plane [24]. We consider the square 
	
		
			
				ℝ
				×
				ℝ
				=
				[
				−
				1
				(
				9
				)
				,
				1
				(
				9
				)
				]
				×
				[
				−
				1
				(
				9
				)
				,
				1
				(
				9
				)
				]
			

		
	
. Each grid point is used as a starting value 
	
		
			

				𝑧
			

			

				0
			

		
	
 of the sequence 
	
		
			

				𝑧
			

			
				𝑘
				+
				1
			

			
				=
				𝜓
			

			
				I
				F
			

			
				(
				𝑧
			

			

				𝑘
			

			

				)
			

		
	
 and the number of iterations until convergence is counted for each grid point. We assign different colours to each root 
	
		
			

				𝑧
			

			
				∗
				𝑗
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				4
			

		
	
 of 
	
		
			
				𝑝
				(
				[
			

			

				H
			

			

				+
			

			
				]
				)
			

		
	
 if 
	
		
			
				|
				𝑧
			

			
				∗
				𝑗
			

			
				−
				𝑧
			

			

				𝑘
			

			
				|
				<
				1
				(
				−
				4
				)
			

		
	
, in at most 
	
		
			
				2
				5
			

		
	
 iterations In this way, the basin of attraction for each root would be assigned a characteristic colour. The common boundaries of these basins of attraction constitute the Julia set of the IF If the iterates do not satisfy the above criterion for convergence, we assign the dark blue colour. 
Figures 1 and 2 show the polynomiographs of the 2nd NR, 3rd NS, 4th NS and 8th NS methods, respectively. In this case, the positive root of the polynomial, 
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				.
				2
				6
				2
				8
				0
				1
				2
				1
				2
				0
				7
				3
				3
				8
				4
				(
				8
				)
			

		
	
 (coloured brownish yellow), corresponds to the solution 
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				H
			

			

				+
			

			

				]
			

			

				∗
			

			
				=
				7
				.
				9
				1
				8
				9
				0
				2
				7
				5
				7
				1
				3
				3
				9
				4
				2
				(
				−
				9
				)
			

		
	
. It can be shown that there are diverging points for the higher-order Newton-secant methods and that the 2nd NR method has the largest basins of attraction for the positive root among the 4 methods. But we are using the dynamics of the methods to find a suitable starting point for the higher-order Newton-secant methods so that we can make use of their higher-order convergence. Figures 3 and 4 show the basins of attractions on the real line of the 2nd NR, 3rd NS, 4th NS, and 8th NS methods, respectively, for the positive root of 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
. They reveal that the 2nd NR will converge for a starting point 
	
		
			

				𝑧
			

			

				0
			

			
				>
				0
				.
				7
				(
				8
				)
			

		
	
. As the order of the method increase, the basins of attraction decrease and higher-order Newton-secant methods have difficulty to converge for some starting points. We also find that all methods will converge for the starting point 
	
		
			

				𝑧
			

			

				0
			

			
				=
				1
				.
				2
				5
				(
				8
				)
			

		
	
 or 
	
		
			

				[
			

			

				H
			

			

				+
			

			

				]
			

			

				0
			

			
				=
				8
				(
				−
				9
				)
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(a) 2nd NR


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	

(b) 3rd NS
Figure 1: Polynomiographs of the 2nd NR and 3rd NS methods for the polynomial 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 with 
	
		
			

				𝑃
			

			

				𝑡
			

			
				=
				3
				9
				3
				.
				8
				1
			

		
	
.




	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	


	
		
	


	
		
	


	
		
	

(a) 4th NS


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	


	
		
	


	
		
	


	
		
	

(b) 8th NS
Figure 2: Polynomiographs of the 4th NS and 8th NS methods for the polynomial 
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				)
			

		
	
 with 
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				𝑡
			

			
				=
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				8
				1
			

		
	
.




	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	

(a)  2nd NR


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	

(b) 3rd NS
Figure 3: Basins of attractions on the real line of the 2nd NR and 3rd NS methods for the positive root  of 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
.




	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
		
	

(a) 4th NS


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
	
	
		
	
	
		
	


	
		
	
	
		
		
	
	
		
	


	
	
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	

(b) 8th NS
Figure 4: Basins of attractions on the real line of the 4th NS and 8th NS methods for the positive root of 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
.


4.4. Numerical Experiments and Results
 We use the data available from NOOA to calculate the pH of the ocean from 1959 to 2012. We use a common starting point 
	
		
			

				[
			

			

				H
			

			

				]
			

			
				+
				0
			

			
				=
				8
				(
				−
				9
				)
			

		
	
 for each 
	
		
			

				𝑃
			

			

				𝑡
			

		
	
 and stop the methods whenever 
	
		
			
				|
				[
			

			

				H
			

			

				]
			

			
				+
				𝑘
				+
				1
			

			
				−
				[
			

			

				H
			

			

				]
			

			
				+
				𝑘
			

			
				|
				<
				1
				(
				−
				1
				2
				)
			

		
	
 in at most 25 iterations. The approximate solutions are calculated correctly to 16 digits in MATLAB. We denote by 
	
		
			

				𝑁
			

			

				𝑠
			

		
	
 the number of successful points and by 
	
		
			

				𝜇
			

		
	
 as the mean iteration number for the converging points. Table 2 gives a comparison in which we observe that the 3 methods successfully converge to the required root but the 8th NS method has a few diverging points. The 4th NS method is the most effective with the lowest mean iteration number and all converging points. Table 1 shows the calculated pH from 1959 to 2012. Figure 5 shows the variation of 
	
		
			
				C
				O
			

			

				2
			

		
	
 and pH with time. We observe that as the 
	
		
			
				C
				O
			

			

				2
			

		
	
 increases, the pH decreases. 
Table 1: pH of oceans using the 
	
		
			

				𝑃
			

			

				𝑡
			

		
	
 from NOAA from 1959 to 2012.
	

	  Time 	
	
		
			

				𝑃
			

			

				𝑡
			

		
	
	 pH	 Time 	
	
		
			

				𝑃
			

			

				𝑡
			

		
	
	 pH
	

	 1959 	 315.98 	 8.1794 	 1986	347.19 	 8.1463 
	 1960 	 316.91 	 8.1784 	 1987 	 348.98	 8.1444 
	 1961 	 317.64 	 8.1776 	 1988	351.45	 8.1419
	 1962 	 318.45 	 8.1767 	 1989	352.90	8.1405 
	 1963 	 318.99 	 8.1761 	1990 	354.16	8.1392
	 1964 	 319.62 	 8.1754 	 1991	 355.48	 8.1379
	 1965 	 320.04 	 8.1749 	 1992	356.27 	8.1371
	 1966 	 321.38 	 8.1735 	 1993	356.95	 8.1364
	 1967 	 322.16 	 8.1726 	1994 	358.64	8.1347 
	 1968 	 323.04 	 8.1717 	 1995	360.62	8.1328
	 1969 	 324.62 	 8.1699 	 1996	362.36 	 8.1311
	 1970 	 325.68 	 8.1688 	 1997	363.47	 8.1300
	 1971 	 326.32 	 8.1681 	 1998	 366.50	8.1270 
	 1972 	 327.45 	 8.1669 	 1999	368.14	8.1254
	 1973 	 329.68 	 8.1645 	 2000	 369.40	8.1242
	 1974 	 330.17 	 8.1640 	 2001	371.07	8.1226 
	 1975 	 331.08 	 8.1630 	2002 	373.17 	8.1206
	 1976 	 332.05 	 8.1620 	2003 	375.78	8.1181
	 1977 	 333.78 	 8.1602 	 2004	377.52	8.1165
	 1978 	 335.41 	 8.1584 	 2005	379.76	8.1144 
	 1979 	 336.78 	 8.1570 	 2006	381.85	 8.1124
	 1980 	 338.68 	 8.1550	 2007	383.71 	8.1107
	 1981 	 341.11	 8.1525 	 2008	 385.57	 8.1089 
	 1982 	 341.22 	8.1524 	 2009	387.35	8.1073
	 1983 	 342.84 	 8.1507 	 2010	389.85	8.1050
	 1984 	 344.41 	 8.1491 	 2011	391.62	8.1033
	 1985 	 345.87 	 8.1476 	 2012	 393.81	8.1013
	



Table 2: Comparison of successful starting point and mean iteration number for each method.
	

	  Method 	
	
		
			

				𝑁
			

			

				𝑠
			

		
	
	
	
		
			

				𝜇
			

		
	

	

	
	
		
			

				2
			

		
	
nd NR 	 54 	 3.7037 
	 3th NS 	54 	 2.8704 
	 4th NS 	 54	2.7778 
	 8th NS 	 47	2.1852 
	






	
	
	
	



	
	
	
	



	
	
	
	


	
	
	



	
	
	



	
	
	



	
	
	



	
	
	



	
	
	



	
	
	



	
	
	



	
	
	


	
	
	





	
	
	
	



	
	
	
	



	
	
	
	


	
	
	



	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	


	
	
	
	




	
	


	
		
			
		
		
			
			
			
			
			
			
			
		
	


	
		
			
		
		
			
			
			
			
			
			
			
		
	


	
		
			
			
		
		
			
		
		
			
			
			
			
			
		
	

Figure 5: Variation of CO2 and pH with time.


4.5. Empirical Analysis of Impact of CO2 on Alkalinity of Seawater
 To empirically test the impact of 
	
		
			
				C
				O
			

			

				2
			

		
	
 in the atmosphere on the alkalinity of seawater, we set up the following generalized equation:
								
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				p
				H
			

			
				
				=
				𝑓
			

			
				C
				O
			

			

				2
			

			
				
				,
				,
				𝜖
			

		
	

							where 
	
		
			

				𝜖
			

		
	
 is the error term. The concept of cointegration as per Engle and Granger [25] is used to investigate any long-run relationship between nonstationary variables. Time-series data such as pH and 
	
		
			
				C
				O
			

			

				2
			

		
	
 tend to be nonstationary in levels. If a series is stationary, then the probability laws controlling its process are stable over time, that is, in statistical equilibrium [26]. In contrast, series having a unit root are nonstationary. Shocks have a unit root and can, in part, change the long-run level of the time series permanently. Per se, a series is said to be integrated of order 
	
		
			

				𝜐
			

		
	
 or 
	
		
			
				𝐼
				(
				𝜐
				)
			

		
	
 if it were to be different by 
	
		
			

				𝜐
			

		
	
 times to become stationary. A stationary process is a series which follows an 
	
		
			
				𝐼
				(
				0
				)
			

		
	
 process. To run the model, the logarithm of base 10 of the variables is taken. As a prerequisite of the cointegration test, the unit root properties of the two series are investigated. The augmented Dickey-Fuller (ADF) test as proposed by Dickey and Fuller [27] and the DF-GLS test as per Elliott et al. [28] for the null of a unit root are considered. The DF-GLS test is a modified ADF test and tends to be a more asymptotically powerful test. These tests apply regressions which include a constant term only, while the other contain both a constant term and a time trend. Time series data tend to exhibit a trend over time and hence it is more appropriate to consider a regression with both a constant term and a trend. In contrast, first differencing is likely to remove any deterministic trends. Hence, the regression should include a constant only. In general, time-series data tends to be nonstationary and 
	
		
			
				𝐼
				(
				1
				)
			

		
	
. Both series must be integrated of the same order to validate a cointegrating relationship. The Johansen cointegration test [29] is conducted within a vector autoregression (VAR) structure and it involves two log-likelihood ratio (LR) test statistics, namely, the maximum eigenvalue (
	
		
			

				𝜆
			

		
	
-max) and trace (Tr) statistics. Once a cointegrating relationship is established, long-run estimates can be computed via the fully modified ordinary least squares (FMOLS) and dynamic OLS (DOLS) of Phillips and Hansen [30] and Stock and Watson [31], respectively. Table 3 shows the results of the unit root tests. Both series are found to be nonstationary. The ADF test statistics illustrate an 
	
		
			
				𝐼
				(
				1
				)
			

		
	
 process for both series only when a trend is considered in the testing framework. However, when testing for a unit root using first-differenced data, the trend should be excluded. The DF-GLS confirms our a priori expectation. Both series are found to be 
	
		
			
				𝐼
				(
				1
				)
			

		
	
 for both deterministics. Table 4 reports the cointegration test statistics. According to the null hypothesis for the 
	
		
			

				𝜆
			

		
	
-max and Tr tests, there are at most 
	
		
			

				𝑟
			

		
	
 cointegrating vectors, whereas the alternative hypotheses are 
	
		
			
				𝑟
				+
				1
			

		
	
 and at least 
	
		
			
				𝑟
				+
				1
			

		
	
 for the 
	
		
			

				𝜆
			

		
	
-max and Tr statistics, respectively. As per the 
	
		
			

				𝜆
			

		
	
-max statistics, the null hypothesis of 
	
		
			
				𝑟
				=
				0
			

		
	
 is rejected in favour of 
	
		
			
				𝑟
				=
				1
			

		
	
. A similar result is found when referring to the Tr statistics as the null hypothesis of 
	
		
			
				𝑟
				=
				0
			

		
	
 is rejected in favour of 
	
		
			
				𝑟
				≥
				1
			

		
	
. The computed test statistics are 
	
		
			
				2
				3
				.
				7
				5
			

		
	
 and 
	
		
			
				2
				8
				.
				5
				3
			

		
	
 for the 
	
		
			

				𝜆
			

		
	
-max and Tr tests, respectively. The null hypothesis of no cointegration is rejected at 
	
		
			
				5
				%
			

		
	
 level. Furthermore, the null hypothesis of at most one cointegrating vector (
	
		
			
				𝑟
				≤
				1
			

		
	
) is in no case rejected in both cases. In sum, these findings provide evidence of a long-run equilibrium relationship between pH and 
	
		
			
				C
				O
			

			

				2
			

		
	
. Given the presence of a cointegrating vector, the long-run elasticity can now be computed and is reported in Table 5. The FMOLS and DOLS methods are robust single equation approaches which can correct for endogeneity bias and serial correlation (The computed test statistic for serial correlation according to Durbin and Watson [32] is 
	
		
			

				𝑑
			

		
	
-statistic 
	
		
			
				(
				2
				,
				5
				4
				)
				=
				0
				.
				0
				2
				1
			

		
	
. This reveals positive serial correlation) in a semiparametric and parametric way, respectively. 
	
		
			
				C
				O
			

			

				2
			

		
	
 in the atmosphere has a statistically significant negative impact on the alkalinity of seawater and the long-run elasticities from both methods tend to coincide. For instance, a one-percent increase in 
	
		
			
				C
				O
			

			

				2
			

		
	
 emissions will generate to a reduction in seawater alkalinity of 
	
		
			
				0
				.
				8
				5
			

		
	
 percent in the long run.
Table 3: Unit root tests.
	

	Series	 ADF 	 DF-GLS 
	 With constant and  without trend 	 With constant and  with trend 	 With constant and  without trend 	 With constant and  with trend 
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Note: to select the order of lag, we start with a maximum lag length of 4 and pare it down as per the Akaike information criterion (AIC). There is no general rule on how to choose the maximum lag to start with. The bandwidth and maximum lag length are chosen according to the Bartlett kernel which is equal to 
	
		
			
				4
				(
				𝑇
				/
				1
				0
				0
				)
			

			
				2
				/
				9
			

			
				≈
				4
			

		
	
, where 
	
		
			
				𝑇
				=
				5
				4
			

		
	
. The optimal lag length is given in square brackets. The MacKinnon critical values [10] for the ADF unit root tests with a constant and without a time are 
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, and 
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 at 1
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, and 10
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 significance level,respectively, while those with a constant and a time trend are 
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				1
				7
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, and 
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				1
				9
			

		
	
, respectively. DF-GLS critical values without trend at 1
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, and 10
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 levels are 
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				6
				2
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, and 
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				.
				9
				5
			

		
	
 and with a trend are 
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				.
				7
				6
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				.
				1
				7
			

		
	
, and 
	
		
			
				−
				2
				.
				8
				7
			

		
	
, respectively. The optimal lag is chosen according to the Akaike information criterion (AIC) and Schwarz Bayesian criterion for the ADF and DF-GLS tests, respectively. 					* and ** denote 1
	
		
			

				%
			

		
	
 and 5
	
		
			

				%
			

		
	
 significance level correspondingly.   


Table 4: Johansen cointegration test.
	

	  LR test 	 Hypothesis 	 Statistics 	
	
		
			
				9
				5
				%
			

		
	
 critical values 	
	
		
			
				9
				0
				%
			

		
	
 critical values 
	 Null 	 Alternative 
	

	λ-max  	
	
		
			
				𝑟
				=
				0
			

		
	
	
	
		
			
				𝑟
				=
				1
			

		
	
	
	
		
			
				2
				3
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				7
				5
				2
			

			
				∗
				∗
			

		
	
	 18.330 	16.280
	
	
		
			
				𝑟
				≤
				1
			

		
	
	
	
		
			
				𝑟
				=
				2
			

		
	
	 4.773	 11.540 	9.750
	

	 Tr 	
	
		
			
				𝑟
				=
				0
			

		
	
	
	
		
			
				𝑟
				≥
				1
			

		
	
	
	
		
			
				2
				8
				.
				5
				2
				5
			

			
				∗
				∗
			

		
	
	23.830 	21.230
	 	
	
		
			
				𝑟
				≤
				1
			

		
	
	
	
		
			
				𝑟
				=
				2
			

		
	
	4.773 	 11.540 	9.750
	


Note: the test is conducted with unrestricted constants and trends in the VAR model. 
	
		
			

				𝑟
			

		
	
 is the number of cointegrating vectors. The optimal lag length is set to  4 according to the AIC.   


Table 5: Long-run estimators.
	

	  Series 	 Dependent 
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				o
				g
			

			
				1
				0
			

			
				p
				H
			

		
	

	 FMOLS	 DOLS
	 Coefficient 	 Standard deviation 	Coefficient 	 Standard deviation 
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				C
				O
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				.
				8
				4
				5
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	 0.003 	
	
		
			
				−
				0
				.
				8
				4
				9
			

			

				∗
			

		
	
	0.009 
	


Note: a constant and time trend are  included in each model. The critical values of the two-tailed 
	
		
			

				𝑡
			

		
	
-statistics test at 1
	
		
			

				%
			

		
	
, 5
	
		
			

				%
			

		
	
, and 10
	
		
			

				%
			

		
	
 significance levels are 2.326, 1.645, and 1.282, respectively. The maximum lag/lead is set to 2 [11].    


5. Conclusion
We develop an optimal fourth- and eighth-order Newton-secant methods. We study their dynamics in a fourth-order polynomial arising in ocean acidification. We also perform an investigation on the long-run implications of 
	
		
			
				C
				O
			

			

				2
			

		
	
 emissions on alkalinity of seawater using fully modified ordinary least squares (FMOLS) and dynamic OLS (DOLS). We find that a one-percent increase in 
	
		
			
				C
				O
			

			

				2
			

		
	
 emissions will lead to a reduction in seawater alkalinity of 0.85 percent in the long run. Put differently, a fall in 
	
		
			
				C
				O
			

			

				2
			

		
	
 emissions will lead to an improvement of the quality of seawater and therefore to the sustainability of the marine ecosystem. 
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