Research Article

On the Mazur-Ulam Theorem in Non-Archimedean Fuzzy \(n \)-Normed Spaces

Tian Zhou Xu

School of Mathematics, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Tian Zhou Xu; xutianzhou@bit.edu.cn

Received 11 June 2013; Accepted 4 August 2013

Copyright © 2013 Tian Zhou Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The motivation of this paper is to present a new notion of non-Archimedean fuzzy \(n \)-normed space over a field with valuation. We obtain a Mazur-Ulam theorem for fuzzy \(n \)-isometric mappings in the strictly convex non-Archimedean fuzzy \(n \)-normed spaces. We also prove that the interior preserving mapping carries the barycenter of a triangle to the barycenter point of the corresponding triangle. And then, using this result, we get a Mazur-Ulam theorem for the interior preserving fuzzy \(n \)-isometry mappings in non-Archimedean fuzzy \(n \)-normed spaces over a linear ordered non-Archimedean field.

1. Introduction

Let \(\mathbb{K} \) be a field. A valuation mapping on \(\mathbb{K} \) is a function \(| \cdot | : \mathbb{K} \to \mathbb{R} \) such that for any \(r, s \in \mathbb{K} \) the following conditions are satisfied: (i) \(|r| \geq 0 \) and equality holds if and only if \(r = 0 \); (ii) \(|rs| = |r| \cdot |s| \); (iii) \(|r + s| \leq |r| + |s| \).

A field endowed with a valuation mapping will be called a valued field. The usual absolute values of \(\mathbb{R} \) and \(\mathbb{C} \) are examples of valuations. A trivial example of a non-Archimedean valuation is the function \(| \cdot | \) taking everything except for 0 into 1 and \(|0| = 0 \). In the following, we will assume that \(| \cdot | \) is nontrivial; that is, there is an \(r_0 \in \mathbb{K} \) such that \(|r_0| \neq 0, 1 \).

Throughout this paper, we assume that \(\mathbb{K} \) is a valued field and \(n \geq 2 \) is a positive integer. We denote the set of all elements of \(\mathbb{K} \) whose norms are 1 by \(\mathbb{C} \); that is, \(\mathbb{C} = \{ r \in \mathbb{K} \mid |r| = 1 \} \). Moreover, \(\mathbb{N} \) stands for the set of all positive integers and \(\mathbb{R} \) (resp., \(\mathbb{C} \)) denotes the set of all real numbers (resp., complex numbers).

If condition (iii) in the definition of a valuation mapping is replaced with a strong triangle inequality (ultrametric), \(|r + s| \leq \max\{|r|, |s|\} \), then the valuation \(| \cdot | \) is said to be non-Archimedean. In any non-Archimedean field, we have \(|1| = |−1| = 1 \) and \(|k| \leq 1 \) for all \(k \in \mathbb{N} \).

Let \(\mathcal{X} \) and \(\mathcal{Y} \) be metric spaces. A map \(f : \mathcal{X} \to \mathcal{Y} \) is called a distance preserving mapping (isometry) if \(d(f(x), f(y)) = d(x, y) \) for any \(x, y \in \mathcal{X} \). Automatically, an isometry is injective. Two metric spaces \(\mathcal{X} \) and \(\mathcal{Y} \) are called isometric if there is an isometry from \(\mathcal{X} \) to \(\mathcal{Y} \).

The classical result of Mazur and Ulam states that if \(\mathcal{X}, \mathcal{Y} \) are real normed linear spaces and \(f : \mathcal{X} \to \mathcal{Y} \) is a surjective isometry, then \(f \) is affine; that is, \(f \) is a linear mapping up to translation. Numerous generalizations of this fact were presented by many authors (see, e.g., [1–13] and references therein). Unfortunately, the Mazur-Ulam theorem is not true for normed complex vector space. It was a natural step to ask if the theorem holds without the onto assumption. In fact, the onto assumption is essential. Without this assumption, Baker [14] proved that every isometry, not necessary surjective, \(f : \mathcal{X} \to \mathcal{Y} \), between real normed linear spaces is affine if \(\mathcal{Y} \) is strictly convex. Moslehian and Sadeghi presented a non-Archimedean version of this result [11]; they also noted that a Mazur-Ulam theorem generally fails in a non-Archimedean case. Choi et al. [3] proved the Mazur-Ulam theorem for the interior preserving mappings in linear 2-normed spaces; they also proved the theorem on non-Archimedean 2-normed spaces over a linear ordered non-Archimedean field without the strict convexity assumption. Chu et al. [4] studied the Mazur-Ulam theorem in linear \(n \)-normed spaces. Alaca [1] introduced the concepts of 2-isometry, collinearity, and 2-Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, he gave a new generalization of the Mazur-Ulam theorem when \(\mathcal{X} \) is a 2-fuzzy 2-normed linear space or \(\mathcal{X}(X) \) is a fuzzy 2-normed linear space. Kubzdela [10] gave some new results...
for isometries, Mazur-Ulam theorem, and Aleksandrov problem in the framework of non-Archimedean normed spaces. Kang et al. [9] proved that the Mazur-Ulam theorem holds under some conditions in non-Archimedean fuzzy normed space.

The motivation of this paper is to introduce the notion of non-Archimedean fuzzy n-normed space over a field with valuation as a generalization of n-normed space [2, 15, 16], non-Archimedean 2-normed space [3], fuzzy n-normed space [17], and non-Archimedean fuzzy normed space [9, 18]. We will prove that the Mazur-Ulam theorem holds in the strictly convex non-Archimedean fuzzy n-normed spaces.

2. Preliminaries

In 1897, Hensel discovered the p-adic numbers as a number-theoretical analogue of power series in complex analysis. Let p be a prime number. For any nonzero rational number a, there exists a unique integer r such that a = \(p^r m/k \), where m and k are integers not divisible by p. Then \(|a|_p := p^{-r} \) defines a non-Archimedean norm on \(\mathbb{Q} \). The completion of \(\mathbb{Q} \) with respect to the metric \(d(a, b) = |a-b|_p \), denoted by \(\mathbb{Q}_p \), is called the p-adic number field. Note that if \(p > 2 \), then \(|2^k|_p = 1 \) for each integer \(k \) but \(|2|_2 < 1 \).

During the last three decades, p-adic numbers have gained the interest of physicists for their research, in particular, in problems derived from quantum physics, p-adic strings, and superstrings (see, e.g., [19]).

Definition 1. Let \(\mathcal{X} \) be a linear space over a field \(\mathbb{K} \) with a non-Archimedean valuation \(|\cdot| \). A function \(\|\cdot\|: \mathcal{X} \rightarrow [0, \infty) \) is said to be a non-Archimedean norm if it satisfies the following conditions:

(i) \(\|x\| = 0 \) if and only if \(x = 0 \),

(ii) \(\|rx\| = |r|\|x\|, r \in \mathbb{K}, x \in \mathcal{X} \),

(iii) the strong triangle inequality: \(\|x + y\| \leq \max\{|\|x\||, |\|y\||\} (x, y \in \mathcal{X}) \).

Then \((\mathcal{X}, \|\cdot\|) \) is called a non-Archimedean normed space. By a complete non-Archimedean normed space, we mean one in which every Cauchy sequence is convergent.

Definition 2. Let \(\mathcal{X} \) be a linear space over a valued field \(\mathbb{K} \). A function \(N: \mathcal{X}^n \times \mathbb{R} \rightarrow [0, 1] \) is called a non-Archimedean fuzzy n-norm on \(\mathcal{X} \) if the following conditions hold for all \(x, y, x_1, \ldots, x_n \in \mathcal{X} \) and all \(s, t \in \mathbb{R} \):

(\(nN_1 \)) \(N(x_1, \ldots, x_n, t) = 0 \) if \(t \leq 0 \),

(\(nN_2 \)) for all \(t > 0 \), \(N(x_1, \ldots, x_n, t) = 1 \) if and only if \(x_1, \ldots, x_n \) are linearly dependent,

(\(nN_3 \)) \(N(x_1, \ldots, x_n, t) \) is invariant under any permutation of \(x_1, \ldots, x_n \),

(\(nN_4 \)) \(N(cx_1, \ldots, cx_n, t) = N(x_1, \ldots, x_n, ct) \) for all \(t > 0 \) if \(c \in \mathbb{K}, c \neq 0 \),

(\(nN_5 \)) \(N(x + y, x_2, \ldots, x_n, \max\{s, t\}) \geq \min\{N(x, x_2, \ldots, x_n, s), N(y, x_2, \ldots, x_n, t)\} \) for all \(s, t > 0 \),

(\(nN_6 \)) \(\lim_{t \to \infty} N(x_1, \ldots, x_n, t) = 1 \).

If \(N \) is a non-Archimedean fuzzy n-norm on \(\mathcal{X} \), then \((\mathcal{X}, N) \) is called a non-Archimedean fuzzy n-normed space. It should be noticed that from the condition \((nN_5)\) it follows that

\[
N(x_1, \ldots, x_n, t) \geq \min\{N(0, \ldots, 0, 0), N(x_1, \ldots, x_n, s)\} = N(x_1, \ldots, x_n, s)
\]

for every \(t > s > 0 \) and \(x_1, \ldots, x_n \in \mathcal{X} \); that is, \(N(x_1, \ldots, x_n, t) \) is nondecreasing for every \(x_1, \ldots, x_n \in \mathcal{X} \). This implies that

\[
N(x_1, \ldots, x_n, s + t) \geq N(x_1, \ldots, x_n, \max\{s, t\}) , \quad s, t > 0.
\]

If \((nN_5)\) holds, then so is

(\(nN_7 \)) \(N(x, y, x_2, \ldots, x_n, s + t) \geq \min\{N(x, x_2, \ldots, x_n, s), N(y, x_2, \ldots, x_n, t)\}\).

Example 3. Let \((\mathcal{X}, [1, \ldots, n])\) be an n-normed space (see [2]). For each \(k \in \mathbb{N} \), consider

\[
N_k(x_1, \ldots, x_n, t) = \begin{cases} \frac{t}{t + k\|x_1, \ldots, x_n\|}, & t > 0, \\ 0, & t \leq 0. \end{cases}
\]

Then \((\mathcal{X}, N_k)\) is a non-Archimedean fuzzy n-normed space.

Definition 4. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be non-Archimedean fuzzy n-normed spaces, and let \(f: \mathcal{X} \rightarrow \mathcal{Y} \) be a mapping. We call \(f \) a fuzzy n-isometry if

\[
N_k(x_1 - x_0, \ldots, x_n - x_0, t) = N(f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0), t)
\]

for all \(x_0, x_1, \ldots, x_n \in \mathcal{X} \) and all \(t > 0 \).

For given points \(x, y, \) and \(z \) in \(\mathcal{X} \), \(\Delta xyz \) denotes the triangle determined by \(x, y, \) and \(z \). A point \((x + y + z)/3\) is called a barycenter of \(\Delta xyz \). If \(p \) is a point of a set \(\{t_1x + t_2y + t_3z \mid t_1 + t_2 + t_3 = 1, t_i \in \mathbb{K}, t_i > 0, i = 1, 2, 3\} \), then \(p \) is called an interior point of \(\Delta xyz \). Define a mapping \(f \) between linear n-normed spaces to be an interior preserving mapping of the triangle if \(f \) carries an interior point in a triangle to an interior point in the corresponding triangle.

Remark 5. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be non-Archimedean fuzzy n-normed spaces and \(f: \mathcal{X} \rightarrow \mathcal{Y} \) be a mapping. Then \(f \) is a fuzzy n-isometry if and only if \(f \) satisfies the following property:

\[
\left| N(x_1 - x_0, \ldots, x_n - x_0, t) - N(x'_1 - x'_0, \ldots, x'_n - x'_0, t) \right| = \left| N(f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0), t) - N(f(x'_1) - f(x'_0), \ldots, f(x'_n) - f(x'_0), t) \right|
\]

for all \(x_0, x_1, \ldots, x_n, x'_0, x'_1, \ldots, x'_n \in \mathcal{X} \) and all \(t > 0 \).
Definition 6. Let X and Y be non-Archimedean fuzzy n-normed spaces and $f : X \to Y$ be a mapping. Then f is called a weak fuzzy n-isometry if for every $e > 0$, there exists positive real number δ such that

$$|N(x_1 - x_0, \ldots, x_n - x_0, t) - N(x'_1 - x'_0, \ldots, x'_n - x'_0, t)| < \delta$$

implies

$$|N(f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0), t)| < e$$

for all $x_0, x_1, \ldots, x_n, x'_0, x'_1, \ldots, x'_n \in X$ and all $t > 0$.

Definition 7. Let X be a non-Archimedean fuzzy n-normed space. The points x_0, x_1, \ldots, x_n are said to be n-collinear if for every $i \in \{0, 1, \ldots, n\}$, $|x_j - x_i| \leq e$ implies that $x_j = x_i$ for all $i \neq j$. Then x_0, x_1, \ldots, x_n are said to be 2-collinear if and only if $x_2 - x_0 = t(x_1 - x_0)$ for some $t \in \mathbb{R}^n$.

Now we define the concept of n-Lipschitz mapping.

Definition 8. Let X and Y be non-Archimedean fuzzy n-normed spaces, and let $f : X \to Y$ be a mapping. Then f is called a fuzzy n-Lipschitz mapping if there is a $L \geq 0$ such that

$$N(f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0), Lt) \geq N(x_1 - x_0, \ldots, x_n - x_0, t)$$

for all $x_0, x_1, \ldots, x_n \in X$ and all $t > 0$. The smallest such L is called the n-Lipschitz constant.

Definition 9. A non-Archimedean fuzzy n-normed space X over a valued field \mathbb{K} is called strictly convex, if for each $x_1, \ldots, x_m, w_2, \ldots, w_n \in X$ and $s_1, \ldots, s_m > 0$,

$$N\left(\sum_{j=1}^{m} s_j w_2, \ldots, w_n \max\{s_1, \ldots, s_m\}\right) = \min\{N(x_1, w_2, \ldots, w_n, s_1), \ldots, N(x_m, w_2, \ldots, w_n, s_m)\}$$

implies that $x_1 = \cdots = x_m$ and $s_1 = \cdots = s_m$.

3. On the Mazur-Ulam Problem

Lemma II. Let X be a non-Archimedean fuzzy n-normed space over a valued field \mathbb{K}, $x_1, \ldots, x_n \in X$ and all $t > 0$. Then

$$N(x_1, \ldots, x_n, t) = N(x_1, \ldots, x_j + \alpha x_j, x_{j+1}, \ldots, x_n, t)$$

for all $\alpha \in \mathbb{K}$.

Proof. Let $x_1, \ldots, x_n \in X$, $t > 0$, and $\alpha \in \mathbb{K}$, then

$$N(x_1, \ldots, x_j + \alpha x_j, x_{j+1}, \ldots, x_n, t) \geq \min\{N(x_1, \ldots, x_j, x_{j+1}, \ldots, x_n, t), N\left(\frac{x_1 + y}{2}, \ldots, \frac{x_j + y}{2}, \ldots, \frac{x_n - y}{2}, t\right)\}$$

implies $x_1 = \cdots = x_n$ and $s_1 = \cdots = s_m$.
Hence, the existence holds. For the uniqueness of \(u \), we may assume that there is another \(v \in \mathcal{X} \), collinear with \(x, y \) such that

\[
N \left(x - v, x_2 - v, \ldots, x_n - v, t \right) = N \left(y - v, x_2 - v, \ldots, x_n - v, t \right) = N \left(x - y, x_2 - x, \ldots, x_n - x, t \right).
\] (13)

Since \(x, y \), and \(v \) are collinear, \(v = sx + (1-s)y \) for some \(s \in \mathbb{R} \).

We may assume \(s \neq 0 \) and \(s \neq 1 \). Then

\[
N \left(x - y, x_2 - x, \ldots, x_n - x, t \right) = N \left(x - v, x_2 - v, \ldots, x_n - v, t \right) = N \left(y - v, x_2 - v, \ldots, x_n - v, t \right).
\]

(14)

Then

\[
N \left(x - y + x - y, x_2 - x - y, \ldots, x_n - x, \max \left\{ \frac{t}{|s|}, \frac{t}{1 - |s|} \right\} \right) = N \left(x - y, x_2 - x, \ldots, x_n - x, \frac{1}{2} \max \left\{ \frac{t}{|s|}, \frac{t}{1 - |s|} \right\} \right) = N \left(x - y, x_2 - x, \ldots, x_n - x, \frac{t}{|s|} \right) = N \left(x - y, x_2 - x, \ldots, x_n - x, \frac{t}{|s|} \right).
\]

(15)

By the strict convexity of \(\mathcal{X} \), we have \(|1 - s| = |s| = 1 \). Then there exist two integers \(k_1, k_2 \) such that \(1 - s = 2^k_1 \) and \(s = 2^k_2 \). Since \(2^k_1 + 2^k_2 = 1 \), we know that \(k_1 < 0, k_2 < 0 \). Without loss of generality, we let \(1 - s = 2^{-n_1} \) and \(s = 2^{-n_2} \) with \(n_1 \geq n_2 \). If \(n_1 > n_2 \), then \(1 = 2^{-n_1} + 2^{-n_2} = 2^{-n_1} \left(1 + 2^{n_1-n_2} \right) \); that is, \(2^{-n_1} = 2^{n_2-n_2} \). This is a contradiction. Thus, \(n_1 = n_2 \); that is, \(s = 1/2 \). This completes the proof.

\[\square \]

Lemma 13. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be non-Archimedean fuzzy \(n \)-normed spaces over a valued field \(\mathbb{K} \). If \(f : \mathcal{X} \to \mathcal{Y} \) is a fuzzy \(n \)-isometry and \(x_0, x_1, \) and \(x_2 \) are 2-collinear, then \(f(x_0), f(x_1), \) and \(f(x_2) \) are 2-collinear.

Proof. Since \(\dim \mathcal{X} \geq n \), for any \(x_0 \in \mathcal{X} \), there exist \(y_1, \ldots, y_n \in \mathcal{X} \) such that \(y_1 - x_0, \ldots, y_n - x_0 \) are linearly independent. Then

\[
N \left(y_1 - x_0, \ldots, y_n - x_0, t \right) = N \left(f(y_1) - f(x_0), \ldots, f(y_n) - f(x_0), t \right) \neq 1,
\]

(16)

and hence, the set \(\{ f(x) - f(x_0) : x \in \mathcal{X} \} \) contains \(n \) linearly independent vectors. Assume that \(x_0, x_1, \) and \(x_2 \) are 2-collinear. Then, for any \(x_3, \ldots, x_n \in \mathcal{X} \),

\[
N \left(x_1 - x_0, \ldots, x_n - x_0, t \right) = N \left(f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0), t \right) = 1.
\]

(17)

By \((nN_2) \), it follows that \(f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0) \) are linearly dependent. If there exist \(x_3, \ldots, x_{n-1} \) such that \(f(x_1) - f(x_0), \ldots, f(x_n-1) - f(x_0) \) are linearly independent, then

\[
\{ f(x) - f(x_0) : x \in \mathcal{X} \} \subset \operatorname{span} \{ f(x_1) - f(x_0), \ldots, f(x_{n-1}) - f(x_0) \}
\]

which contradicts the fact that \(\{ f(x) - f(x_0) : x \in \mathcal{X} \} \) contains \(n \) linearly independent vectors. Hence, for any \(x_3, \ldots, x_{n-1} \in \mathcal{X} \), \(f(x_1) - f(x_0), \ldots, f(x_{n-1}) - f(x_0) \) are linearly dependent. If there exist \(x_3, \ldots, x_{n-2} \) such that \(f(x_1) - f(x_0), \ldots, f(x_{n-2}) - f(x_0) \) are linearly dependent, then

\[
\{ f(x) - f(x_0) : x \in \mathcal{X} \} \subset \operatorname{span} \{ f(x_1) - f(x_0), \ldots, f(x_{n-2}) - f(x_0) \}
\]

which contradicts the fact that \(\{ f(x) - f(x_0) : x \in \mathcal{X} \} \) contains \(n \) linearly independent vectors. And thus, \(f(x_1) - f(x_0), f(x_2) - f(x_0) \) are linearly dependent. Therefore, \(f(x_0), f(x_1), \) and \(f(x_2) \) are 2-collinear. \(\square \)
Theorem 14. Let \mathcal{X} and \mathcal{Y} be non-Archimedean fuzzy n-normed spaces over a linear ordered non-Archimedean field K with \(\mathcal{C} = \{3^n \mid n \in \mathbb{Z}\} \) such that \mathcal{Y} is strictly convex. If $f: \mathcal{X} \to \mathcal{Y}$ is a fuzzy isometry, then $f(x) - f(0)$ is additive.

Proof. Let $g(x) = f(x) - f(0)$ for $x \in \mathcal{X}$. Then g is a fuzzy n-isometry and $g(0) = 0$. For each $x, y, x_2, \ldots, x_n \in \mathcal{X}$. Since g is a fuzzy n-isometry, we have

\[
N\left(g(x) - g\left(\frac{x + y}{2}\right), g(x_2) - g\left(\frac{x + y}{2}\right)\right) = N\left(\frac{x + y}{2}, y - x, x_2 - x, \ldots, x_n - x, t\right)
\]

\[
= N\left(\frac{x + y}{2}, y - x, x_2 - x, \ldots, x_n - x, t\right)
\]

\[
= N\left(\frac{x + y}{2}, y - x, x_2 - x, \ldots, x_n - x, t\right)
\]

\[
= N\left(\frac{x + y}{2}, y - x, x_2 - x, \ldots, x_n - x, t\right)
\]

Since $(x + y)/2, x,$ and y are collinear, by Lemma 13, $g((x + y)/2), g(x),$ and $g(y)$ are also collinear. It follows from Lemma 12 that

\[
g\left(\frac{x + y}{2}\right) = \frac{g(x) + g(y)}{2},
\]

for all $x, y \in \mathcal{X}$. Hence, $g(x) = f(x) - f(0)$ is additive since $g(0) = 0$.

In the following, we prove that the interior preserving mapping carries the barycenter of a triangle to the barycenter point of the corresponding triangle. And then, using this result, we get a Mazur-Ulam theorem on non-Archimedean fuzzy n-normed spaces over a linear ordered non-Archimedean field K with $\mathcal{C} = \{3^n \mid n \in \mathbb{Z}\}$.

Lemma 15. Let \mathcal{X} be a strictly convex non-Archimedean fuzzy n-normed space over a linear ordered non-Archimedean field K.

Hence, the existence holds. For the uniqueness of u, we may assume that there is another $v \in \mathcal{X}$ satisfying (22). Since $v \in \{t_1 x + t_2 y + t_3 z \mid t_1 + t_2 + t_3 = 1, t_i \in [0, 1], i = 1, 2, 3\}$, $v = s_1 x + s_2 y + s_3 z$, $s_1 + s_2 + s_3 = 1$ for some $s_i \in [0, 1], i = 1, 2, 3$. Then

\[
N(x - u, y - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(y - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

for all $x_1, \ldots, x_n \in \mathcal{X}$ and $u \not\in \{t_1 x + t_2 y + t_3 z \mid t_1 + t_2 + t_3 = 1, t_i \in [0, 1], i = 1, 2, 3\}$.

Proof. Let $u := (x + y + z)/3$ is the unique element of \mathcal{X} and $t > 0$. By Lemma II, we have

\[
N(x - u, y - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(y - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

Similarly, we have

\[
N(y - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

Hence, the existence holds. For the uniqueness of u, we may assume that there is another $v \in \mathcal{X}$ satisfying (22). Since $v \in \{t_1 x + t_2 y + t_3 z \mid t_1 + t_2 + t_3 = 1, t_i \in [0, 1], i = 1, 2, 3\}$, $v = s_1 x + s_2 y + s_3 z$, $s_1 + s_2 + s_3 = 1$ for some $s_i \in [0, 1], i = 1, 2, 3$. Then

\[
N(x - u, y - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(y - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - u, z - u, x_3 - u, \ldots, x_n - u, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]

\[
= N(x - y, x - z, x_3 - x, \ldots, x_n - x, t)
\]
By the strict convexity, we have $|s_1| = |s_2| = |s_3| = 1$. Then there exist integers k_1, k_2, and k_3 such that $s_1 = 3^k_1$, $s_2 = 3^k_2$, and $s_3 = 3^{k_3}$. Since $3^2 + 3^2 + 3^2 = 1$, we know that $k_1 < 0$, $k_2 < 0$, $k_3 < 0$. Without loss of generality, we let $s_1 = 3^{-n_1}$, $s_2 = 3^{-n_2}$, and $s_3 = 3^{-n_3}$ with $n_1 \geq n_2 \geq n_3$. Assume that the above one of the inequalities holds. Then $1 = s_1 + s_2 + s_3 = 3^{n_1}(1 + 3^{n_2-n_1} + 3^{n_3-n_1})$. So $3^{n_1} = 1 + 3^{n_2-n_1} + 3^{n_3-n_1}$. This is a contradiction. Thus, $s_1 = s_2 = s_3 = 1/3$ which means $u = v$. This completes the proof.

Theorem 16. Let \mathcal{X} and \mathcal{Y} be non-Archimedean fuzzy n-normed spaces over a linear ordered non-Archimedean field \mathbb{K} with $\mathbb{C} = \{3^n \mid n \in \mathbb{Z}\}$ such that \mathcal{Y} is strictly convex. If $f : \mathcal{X} \to \mathcal{Y}$ is an interior preserving fuzzy n-isometry, then $f(x) - f(0)$ is additive.

Proof. Let $g(x) = f(x) - f(0)$ for $x \in \mathcal{X}$. Then g is a fuzzy n-isometry and $g(0) = 0$. For $a, b, c \in \mathcal{X}$, let Δabc be a triangle determined by the points $a, b, c,$ and x, an interior point of Δabc. Since f is an interior preserving map, there exist $s_i \in K, s_i > 0$ $(i = 1, 2, 3)$ with $s_1 + s_2 + s_3 = 1$ such that $f(x) = s_1 f(a) + s_2 f(b) + s_3 f(c)$. Then

$$g(x) = s_1 f(a) + s_2 f(b) + s_3 f(c) - f(0)$$

$$= s_1 (f(a) - f(0)) + s_2 (f(b) - f(0)) + s_3 (f(c) - f(0))$$

$$= s_1 g(a) + s_2 g(b) + s_3 g(c),$$

and hence, $g(x)$ is an interior point of $\Delta g(a)g(b)g(c)$. Therefore, g, is also an interior preserving mapping.
Now let $x, y, z, x_3, \ldots, x_n \in X$. Since g is a fuzzy n-isometry, we have

\[N\left(g(x) - g\left(\frac{x + y + z}{3} \right) \right), g(y) - g\left(\frac{x + y + z}{3} \right), g(x_3) - g\left(\frac{x + y + z}{3} \right), \ldots, g(x_n) - g\left(\frac{x + y + z}{3} \right), \]
\[-g\left(\frac{x + y + z}{3} \right), t \]
\[= N\left(x - x + y + z \right) , y - \frac{x + y + z}{3}, x_3 - \frac{x + y + z}{3} , \ldots, x_n - \frac{x + y + z}{3}, t \right) \]
\[= N\left(x - y, x - \frac{x + y + z}{3}, x_3 - x, \ldots, x_n - x, t \right) \]
\[= N\left(x - y, 2x - y - z, x_3 - x, \ldots, x_n - x, t \right) \]
\[= N\left(g(x) - g(y), g(x) - g(z), g(x_3) - g(x) \right), \]
\[g(x_3) - g(x_3), \ldots, g(x_n) - g(x), t \right), \]

and similarly, we can obtain

\[N\left(g(y) - g\left(\frac{x + y + z}{3} \right) \right), g(z) - g\left(\frac{x + y + z}{3} \right), g(x_3) - g\left(\frac{x + y + z}{3} \right), \ldots, g(x_n) - g\left(\frac{x + y + z}{3} \right), t \right) \]
\[= N\left(g(x) - g(y), g(x) - g(z), g(x_3) - g(x) \right), \]
\[g(x_3) - g(x), \ldots, g(x_n) - g(x), t \right), \]
\[= N\left(g(x) - g(y), g(x) - g(z), g(x_3) - g(x_3), \ldots, g(x_n) - g(x), t \right), \]
\[= N\left(g(x) - g(y), g(x) - g(z), g(x_3) - g(x), \ldots, g(x_n) - g(x), t \right), \]

Since $(x + y + z)/3$ is an interior point of the triangle $\triangle xyz$ and g is an interior preserving mapping, $g((x + y + z)/3) \in \{ t_1 g(x) + t_2 g(y) + t_3 g(z) \ | \ t_1 + t_2 + t_3 = 1, t_i \in [0, 1], t_i > 0, i = 1, 2, 3 \}$. By Lemma 15,

\[g\left(\frac{x + y + z}{3} \right) = \frac{g(x) + g(y) + g(z)}{3}. \]

Hence, $g(x) = f(x) - f(0)$ is additive since $g(0) = 0$. This completes the proof.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NNSFC) (Grant no. 11171022).

References

