Research Article

Electronically Controllable Sinusoidal Oscillator Employing CMOS VD-DIBAs

Dinesh Prasad,1 D. R. Bhaskar,1 and K. L. Pushkar2

1Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
2Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology, Rohini, New Delhi 110058, India

Correspondence should be addressed to Dinesh Prasad; dprasad@jmi.ac.in

Received 23 November 2012; Accepted 19 December 2012

Copyright © 2013 Dinesh Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new electronically controllable sinusoidal oscillator employing two voltage differencing-differential input buffered amplifiers (VD-DIBAs), two grounded capacitors, and one grounded resistor is presented. The proposed configuration offers (i) independent control of condition of oscillation (CO) and frequency of oscillation (FO) formerly by resistance and later through transconductance, (ii) low active and passive sensitivities, and (iii) a good frequency stability. The workability of the proposed configuration has been demonstrated by SPICE simulation.

1. Introduction

Sinusoidal oscillators find numerous applications in communication, control systems, signal processing, instrumentation, and measurement systems. In the recent past, a large number of single resistance controlled oscillators (SRCOs) have been proposed, see [1–11]; however, in all these SRCOs, the frequency of oscillation can be controlled by varying the values of resistances involved. Obviously, by replacing one of the grounded resistors by JFETs/MOSFETs, electronic tunability can be established, see [2, 4] and the references cited therein. Electronically controllable sinusoidal oscillators (ECSOs) based on different active building blocks are available in the literature, see [12–17] and the references cited therein. The advantages, applications, and usefulness of recently introduced new active building block named voltage differencing-differential input buffered amplifier (VD-DIBA) are now being recognized in the literature [18–20]. Recently, electronically controllable grounded and floating simulated inductance circuits using VD-DIBAs have been introduced in [20]. However, to the best knowledge and belief of the authors, no ECSO using VD-DIBAs has yet been presented in the open literature so far. The purpose of this paper is, therefore, to propose a new ECSO using VD-DIBAs along with a minimum possible number of grounded passive components, which offers (i) independent control of oscillation frequency and condition of oscillation, (ii) low active and passive sensitivities, and (iii) a good frequency stability factor.

2. The Proposed Configuration

The schematic symbol and behavioral model of the VD-DIBA are shown in Figures 1(a) and 1(b), respectively [18]. The model includes two controlled sources: the current source controlled by differential voltage \((V_+ – V_-) \), with the transconductance \(g_m \), and the voltage source controlled by differential voltage \((V_z – V_w) \), with the unity voltage gain. The VD-DIBA can be described by the following set of equations:

\[
\begin{align*}
I_+ & = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\
L_- & = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\
I_z & = \begin{pmatrix} g_m & -g_m & 0 & 0 & 0 \\
I_v & = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\
V_w & = \begin{pmatrix} 0 & 0 & 1 & -1 & 0 \\
V_+ & \\
V_- & \\
V_z & \\
V_v & \\
I_w & \\
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\end{align*}
\] (1)

The proposed new ECSO configuration is shown in Figure 2.
The CMOS implementation of VD-DIBA is shown in Figure 3. For this purpose, the TSMC CMOS 0.18 μm process parameters are used for all MOSFETs in the circuit of Figure 3.

Transistor aspect ratios are indicated in Table 1. The TSMC CMOS 0.18 μm process parameters are given in Table 2.

3. Nonideal Analysis

Let \(R_z \) and \(C_z \) denote the parasitic resistance and parasitic capacitance of the Z terminal. Taking into account the nonidealities of the VD-DIBA, namely \(V_w = (\beta^+ V_z - \beta^- V_v) \), where \(\beta^+ = 1 - \varepsilon_1 (\varepsilon_1 \ll 1) \) and \(\beta^- = 1 - \varepsilon_2 (\varepsilon_2 \ll 1) \) are voltage tracking errors of the VD-DIBA then the expressions for CO and FO are found to be

\[
\left\{ \left(C_2 + C_Z \right) \left(\frac{1}{R_1} - g_{m_1} \right) + \frac{1}{R_Z} \left(C_1 + C_2 + 2C_Z \right) \right\} \leq 0,
\]

\[
\omega_0 = \sqrt{\frac{1}{R_1 + \frac{1}{R_Z}} \left(\frac{1}{1 + \beta^+_1} - \frac{1}{1 - \beta^-_1} \right) g_{m_1} g_{m_2}}.
\]

(4)

Taking \(C_1 = C_2 = C \Rightarrow C_z \), and \(R_z \gg R_1 \), then (4) reduces to

\[
\left(\frac{1}{R_1} - g_{m_1} \right) \leq 0,
\]

\[
\omega_0 = \sqrt{\frac{1}{1 + \beta^+_1} - \frac{1}{1 - \beta^-_1}} \frac{g_{m_1} g_{m_2}}{(1 + \beta^+_1)(1 + \beta^-_1) C^2}.
\]

(5)

This nonideal analysis can also be determined using the analysis performance as given in [23].

The active and passive sensitivities are calculated as

\[
S^{\alpha}_{g_{m_1}} = -1, \quad S^{\alpha}_{g_{m_2}} = - \frac{\beta^+_1}{2(1 + \beta^+_1 - \beta^-_1)},
\]

\[
S^{\alpha}_{\beta^+_1} = \frac{\beta^+_1 (1 + \beta^-_1)}{2(1 + \beta^+_1 - \beta^-_1)(1 + \beta^-_1)}, \quad S^{\alpha}_{\beta^-_2} = \frac{1}{2}.
\]
4. Frequency Stability

Using the definition of the frequency stability factor S^F as given in [2–4] $S^F = \frac{\partial \phi(u)}{\partial u}_{u=\omega_0}$ where $u = \omega/\omega_0$ is the normalized frequency and $\phi(u)$ represents the phase of the open-loop transfer function of the oscillator circuit, with $C_1 = C_2 = C$, $g_{m_1} = 1/R_1 = g_m$ and $g_{m_2} = n g_m$, where n is a frequency-controlling transconductor ratio, the S^F of the proposed oscillator is found to be \sqrt{n}. Therefore, a good frequency stability is obtainable by selecting larger value of n.

5. Simulation Results

To verify the theoretical analysis, the proposed circuit has been simulated using the CMOS-based VD-DIBA (Figure 3). The component values used were $C_1 = C_2 = 0.05$ nF, and $R_1 = 1.65$ KΩ, the CMOS VD-DIBA was biased with ±1 V D.C. power supplies with $I_{B1} = I_{B2} = I_{B3} = I_{B4} = I_{B5} = I_{B6} = 150 \mu A$ and $I_{B7} = 30 \mu A$. The transconductances of VD-DIBA are controlled by bias currents. SPICE generated output waveforms indicating transient and steady state responses are shown in Figures 4(a) and 4(b), respectively.
Table 2

<table>
<thead>
<tr>
<th>MODEL n nmos</th>
<th>MODEL p nmos</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL = 7, VERSION = 3.1 TNOM = 27 TOX = 4.1E - 9 XI = 1E - 7 NCH = 2.3549E-17 VTHO = 0.369698 K1 = 0.6064385 K2 = 1.6387 E - 3 K3 = 3E - 3, K3B = 2.763267 W0 = 1E - 7 NLX = 1.7182E - 7 DVTOW = 0 DVT1W = 0 DVT2W = 0, DVT0 = 1.3330881 DVT1 = 0.3683736 DVT2 = 0.0540199 U0 = 258.9066683 UA = -1.504141E - 9 UB = 2.428666E - 18 UC = 5.105195E - 11 VSAT = 9.896282E4 A0 = 1.8904342 AGS = 0.4044483 BO = -4.706134E - 8 B1 = 1.294942E - 6 KETA = -2.730673E - 3 A1 = 5.916677E - 4 A2 = 0.9069159 RDSW = 105 PRWG = 0.5 PRWB = -0.2 WR = 1 WINT = 0 LINT = 1.69494E - 8, XL = 0 XW = -1E - 8 DWG = -3.773529E - 9 D WB = 5.239518E - 9 VO FF = -0.0883818 NFACTOR = 2.1821266 CIT = 0 CDSC = 2.4E - 4 CDSCD = 0, CDSCB = 0 ETA0 = 2.470369E - 3 ET A = 0.147744E - 5 DSUB = 0.0167866 PCLM = 0.7326932 PDBLBC1 = 0.1823102, PDBLBC2 = 3.38377E - 3 PDIBLCB = -0.1 DROUT = 0.7469045 PSCBE1 = 8E10 PSCBE2 = 1.254966E - 9 PVAG = 0, DELTA = 0.01 RSH = 6.5 MOBMOD = 1 PRT = 0 UTE = -1.5 KT1 = -0.11 KT1L = 0 KT2 = 0.022 UA1 = 4.3E - 9 U B1 = -7.61E - 18 UC1 = -5.6E - 11 AT = 3.3E4 WL = 0 WLN = 1 WW = 0 W WN = 1 W WL = 0 LL = 0 LLN = 1 LW = 0 LWN = 1 LWL = 0 CAPMOD = 2 XPART = 0.5 CGDO = 7.9E - 10 CGSO = 7.9E - 10 CB = 12 CGBO = 9.539798E - 4 PB = 0.8 MJ = 0.3807686 CJSW = 2.53972E - 10 PWSW = 0.8 MJ SW = 0.1061193 CJSW = 3.3E - 10 PWSW = 0.8 MJ SW = 0.1061193 CF = 0 PVTH0 = 7.505753E - 4 PRDSW = -2.7650517 PK2 = -4.42044E - 4 WKETA = 3.100384E - 3 LKETA = -0.0104103 PU0 = 10.8203648 PUA = 2.896652E - 11 PUB = 1.684125E - 23 PV SAT = 1.388017E3 PETAO = 8.758549E - 5 PKETA = 1.549791E - 3</td>
<td>LEVEL = 7 VERSION = 3.1 TNOM = 27 TOX = 4.1E - 9 XI = 1E - 7 NCH = 4.1589E17 VTH0 = -0.3835898 K1 = 0.59111 K2 = 0.0258663 K3 = 0 K3B = 7.9141308 W0 = 1E - 6 NLX = 1.20187E - 7 DVTOW = 0 DVT1W = 0 DVT2W = 0 DVT0 = 0.6117215 DVT1 = 0.2286816 DVT2 = 0.1 U0 = 106.5280265 UA = 1.125459E - 9 UB = 1E - 21 UC = -1E - 10 VSAT = 1.593712E5 A0 = 1.6904754 AGS = 0.3667554 BO = 5.263128E - 7 B1 = 1.496707E - 6 KETA = 0.0237092 A1 = 0.2276342 A2 = 0.6915706 RDSW = 304.9893888 PRWG = 0.5 PRWB = 0.2553725 WR = 1 WINT = 0 LINT = 3.217673E - 8 XL = 0 XW = -1E - 8 DWG = -2.44019E - 8 D WB = -9.06003E - 10 VOFF = -0.0878287 NFACTOR = 1.8560303 CIT = 0 CDSC = 2.4E - 4 CDSCD = 0, CDSCB = 0 ETA0 = 0.1672562 ET A = 0.1249603 DSUB = 1.0998181 PCLM = 2.2249148 PDBLBC1 = 8.275696E - 4 PDBLBC2 = 0.0420477 PDBLBCB = -1E - 3 DROUT = 0 PSCBE1 = 1.073111E10 PSCBE2 = 3.099395E - 9 PVAG = 15 DELTA = 0.01 RSH = 7.4 MOBMOD = 1 PRT = 0 UTE = -1.5 K T1 = -0.11 KT1L = 0 KT2 = 0.022 UA1 = 4.3E - 9 U B1 = -7.61E - 18 UC1 = -5.6E - 11 AT = 3.3E4 WL = 0 WLN = 1 WW = 0 W WN = 1 W WL = 0 LL = 0 LLN = 1 LW = 0 LWN = 1 LWL = 0 CAPMOD = 2 XPART = 0.5 CGDO = 6.41E - 10 CGSO = 6.41E - 10 CB = 12 CGBO = 6.41E - 10 PB = 0.8 MJ = 0.3807686 CJSW = 2.53972E - 10 PWSW = 0.8 MJ SW = 0.1061193 CJSW = 3.3E - 10 PWSW = 0.8 MJ SW = 0.1061193 CF = 0 PVTH0 = 7.505753E - 4 PRDSW = -2.7650517 PK2 = -4.42044E - 4 WK ETA = 3.100384E - 3 LK ETA = -0.0104103 PU0 = 10.8203648 PUA = 2.896652E - 11 PUB = 1.684125E - 23 PV SAT = 1.388017E3 PETAO = 8.758549E - 5 PK ETA = 1.549791E - 3</td>
</tr>
</tbody>
</table>
These results, thus, confirm the validity of the proposed configuration. Figure 5 shows the output spectrum, where the total harmonic distortion (THD) is found to be 1.26%. The oscillator circuit of Figure 2 has been checked for robustness using Monte-Carlo simulations, the sample result has been shown in Figure 6, which confirms that for ±10% variations in the value of R_1, the value of oscillation frequency remain close to its normal value of 1.005 MHz and hence almost unaffected by change in R_1. A comparison with other previously known ECSOs has been given in Table 3.

6. Concluding Remarks

A new circuit configuration employing two VD-DIBAs along with a minimum possible number of grounded passive elements (i.e., only one resistor and two capacitors) has been proposed. In oscillator mode, the circuit offers (i) independent control of condition of oscillation and frequency of oscillation former by resistance and later through transconductance, (ii) low active and passive sensitivities, and (iii) a good frequency stability for larger values of n. The validity of the proposed circuit has been established by SPICE simulations.

References

