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Abstract. 
The terminal Hosoya polynomial of a graph 
	
		
			

				𝐺
			

		
	
 is defined as 
	
		
			
				∑
				T
				H
				(
				𝐺
				,
				𝜆
				)
				=
			

			
				𝑘
				≥
				1
			

			

				𝑑
			

			

				𝑇
			

			
				(
				𝐺
				,
				𝑘
				)
				𝜆
			

			

				𝑘
			

		
	
, where 
	
		
			

				𝑑
			

			

				𝑇
			

			
				(
				𝐺
				,
				𝑘
				)
			

		
	
 is the number of pairs of pendant vertices of 
	
		
			

				𝐺
			

		
	
 that are at distance 
	
		
			

				𝑘
			

		
	
. In this paper we obtain terminal Hosoya polynomial of line graphs.


1. Introduction
Let 
	
		
			

				𝐺
			

		
	
 be a connected graph with vertex set 
	
		
			
				𝑉
				(
				𝐺
				)
				=
				{
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			

				𝑛
			

			

				}
			

		
	
 and edge set 
	
		
			
				𝐸
				(
				𝐺
				)
				=
				{
				𝑒
			

			

				1
			

			
				,
				𝑒
			

			

				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑚
			

			

				}
			

		
	
. The  degree of a vertex 
	
		
			

				𝑣
			

		
	
 in 
	
		
			

				𝐺
			

		
	
 is the number of edges incident to it and is denoted by 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
				)
			

		
	
. If 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
				)
				=
				1
			

		
	
, then 
	
		
			

				𝑣
			

		
	
 is called a  pendant vertex or  terminal vertex. An edge 
	
		
			
				𝑒
				=
				𝑢
				𝑣
			

		
	
 of a graph 
	
		
			

				𝐺
			

		
	
 is called a  pendant edge if 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑢
				)
				=
				1
			

		
	
 or 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
				)
				=
				1
			

		
	
. Two edges are said to be  independent if they are not adjacent to each other. The  distance between the vertices 
	
		
			

				𝑣
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑣
			

			

				𝑗
			

		
	
 in 
	
		
			

				𝐺
			

		
	
 is equal to the length of a shortest path joining them and is denoted by 
	
		
			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

		
	
.
The Hosoya polynomial of a graph is a distance based polynomial introduced by Hosoya [1] in 1988 under the name “Wiener polynomial.” However today it is called the Hosoya polynomial [2–6]. For a connected graph 
	
		
			

				𝐺
			

		
	
, the  Hosoya polynomial denoted by 
	
		
			
				𝐻
				(
				𝐺
				,
				𝜆
				)
			

		
	
 is defined as
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				𝐻
				(
				𝐺
				,
				𝜆
				)
				=
			

			
				𝑘
				≥
				1
			

			
				𝑑
				(
				𝐺
				,
				𝑘
				)
				𝜆
			

			

				𝑘
			

			
				=
				
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑛
			

			

				𝜆
			

			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			

				,
			

		
	

					where 
	
		
			
				𝑑
				(
				𝐺
				,
				𝑘
				)
			

		
	
 is the number of pairs of vertices of 
	
		
			

				𝐺
			

		
	
 that are at distance 
	
		
			

				𝑘
			

		
	
 and 
	
		
			

				𝜆
			

		
	
 is the parameter.
Estrada et al. [7] studied the chemical applications of Hosoya polynomial. The interesting property of 
	
		
			
				𝐻
				(
				𝐺
				,
				𝜆
				)
			

		
	
 is that its first derivative at 
	
		
			
				𝜆
				=
				1
			

		
	
 is equal to the well-known Wiener index 
	
		
			
				𝑊
				(
				𝐺
				)
			

		
	
 of 
	
		
			

				𝐺
			

		
	
, the sum of the distances between all pairs of vertices of 
	
		
			

				𝐺
			

		
	
 [8]. That is,
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑊
				(
				𝐺
				)
				=
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑛
			

			
				𝑑
				
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				
				=
				𝑑
				∣
				𝐺
			

			
				
			
			
				|
				|
				𝑑
				𝜆
				(
				𝐻
				(
				𝐺
				,
				𝜆
				)
				)
			

			
				𝜆
				=
				1
			

			

				.
			

		
	

Gutman et al. [9] put forward another topological index called  terminal Wiener index 
	
		
			
				T
				W
				(
				𝐺
				)
			

		
	
 defined as the sum of the distances between all pairs of pendant vertices of  
	
		
			

				𝐺
			

		
	
. Thus if 
	
		
			

				𝑉
			

			

				𝑇
			

			
				(
				𝐺
				)
				=
				{
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			

				𝑘
			

			

				}
			

		
	
 is the set of pendant vertices of 
	
		
			

				𝐺
			

		
	
, then
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				T
				W
				(
				𝐺
				)
				=
			

			
				{
				𝑢
				,
				𝑣
				}
				⊆
				𝑉
			

			

				𝑇
			

			
				(
				𝐺
				)
			

			
				
				𝑑
				(
				𝑢
				,
				𝑣
				∣
				𝐺
				)
				=
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑘
			

			
				𝑑
				
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				
				.
				∣
				𝐺
			

		
	

For recent work on the terminal Wiener index, see [10–14].
In analogy of (1), the  terminal Hosoya polynomial 
	
		
			
				T
				H
				(
				𝐺
				,
				𝜆
				)
			

		
	
 of a graph 
	
		
			

				𝐺
			

		
	
 was put forward by Narayankar et al. [15] and is defined as follows: if 
	
		
			

				𝑣
			

			

				1
			

		
	
, 
	
		
			

				𝑣
			

			

				2
			

		
	
, 
	
		
			

				…
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑘
			

		
	
 are the pendant vertices of 
	
		
			

				𝐺
			

		
	
, then
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				
				T
				H
				(
				𝐺
				,
				𝜆
				)
				=
			

			
				𝑘
				≥
				1
			

			

				𝑑
			

			

				𝑇
			

			
				(
				𝐺
				,
				𝑘
				)
				𝜆
			

			

				𝑘
			

			
				=
				
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑘
			

			

				𝜆
			

			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			

				,
			

		
	

					where 
	
		
			

				𝑑
			

			

				𝑇
			

			
				(
				𝐺
				,
				𝑘
				)
			

		
	
 is the number of pairs of pendant vertices of the graph 
	
		
			

				𝐺
			

		
	
 that are at distance 
	
		
			

				𝑘
			

		
	
.
It is easy to check that
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑑
				T
				W
				(
				𝐺
				)
				=
			

			
				
			
			
				|
				|
				𝑑
				𝜆
				(
				T
				H
				(
				𝐺
				,
				𝜆
				)
				)
			

			
				𝜆
				=
				1
			

			

				.
			

		
	

In [15], the terminal Hosoya polynomial of thorn graphs is obtained. In the present paper we obtain the terminal Hosoya polynomial of line graphs.
If the graph 
	
		
			

				𝐺
			

		
	
 has no pendant vertex or has only one pendant vertex, then we write 
	
		
			
				T
				H
				(
				𝐺
				,
				𝜆
				)
				=
				0
			

		
	
, for 
	
		
			
				𝑛
				≠
				2
			

		
	
.
If we write 
	
		
			
				T
				H
				(
				𝐺
				,
				𝜆
				)
				=
				𝑎
			

			

				1
			

			
				𝜆
				+
				𝑎
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				+
				⋯
				+
				𝑎
			

			
				d
				i
				a
				m
				(
				𝐺
				)
			

			

				𝜆
			

			
				d
				i
				a
				m
				(
				𝐺
				)
			

		
	
, where 
	
		
			
				d
				i
				a
				m
				(
				𝐺
				)
			

		
	
 is the diameter of 
	
		
			

				𝐺
			

		
	
, then 
	
		
			

				𝑎
			

			

				1
			

			
				=
				0
			

		
	
 for all graphs of order 
	
		
			
				𝑛
				≥
				3
			

		
	
 and 
	
		
			

				𝑎
			

			

				1
			

			
				=
				1
			

		
	
 for 
	
		
			
				𝐺
				=
				𝐾
			

			

				2
			

		
	
, a complete graph on two vertices.
2. Terminal Hosoya Polynomial of  Line Graphs
The  line graph of 
	
		
			

				𝐺
			

		
	
, denoted by 
	
		
			
				𝐿
				(
				𝐺
				)
			

		
	
, is the graph whose vertices are the edges of 
	
		
			

				𝐺
			

		
	
, and two vertices of 
	
		
			
				𝐿
				(
				𝐺
				)
			

		
	
 are adjacent if and only if the corresponding edges are adjacent in 
	
		
			

				𝐺
			

		
	
.
Theorem 1.  Let 
	
		
			

				𝐺
			

		
	
 be a connected graph with 
	
		
			
				𝑛
				≥
				4
			

		
	
 vertices, let 
	
		
			

				𝐷
			

			

				2
			

			
				(
				𝐺
				)
				=
				{
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			

				𝑞
			

			

				}
			

		
	
, where 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
			

			

				𝑖
			

			
				)
				=
				2
			

		
	
, and one neighbor of 
	
		
			

				𝑣
			

			

				𝑖
			

		
	
 is pendant, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				T
				H
				(
				𝐿
				(
				𝐺
				)
				,
				𝜆
				)
				=
				𝜆
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑞
			

			

				𝜆
			

			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			

				.
			

		
	

Proof.  Let 
	
		
			

				𝐸
			

			

				𝑘
			

			
				=
				{
				𝑒
			

			

				1
			

			
				,
				𝑒
			

			

				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑘
			

			

				}
			

		
	
 be the set of pendant edges of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝐸
			

			

				𝑞
			

			
				=
				{
				𝑒
			

			

				1
			

			
				,
				𝑒
			

			

				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑞
			

			

				}
			

		
	
 the subset of 
	
		
			

				𝐸
			

			

				𝑘
			

		
	
, where, for each 
	
		
			

				𝑒
			

			

				𝑖
			

			
				∈
				𝐸
			

			

				𝑞
			

		
	
, the edge 
	
		
			

				𝑒
			

			

				𝑖
			

		
	
 is incident to the vertex 
	
		
			

				𝑣
			

			

				𝑖
			

			
				∈
				𝐷
			

			

				2
			

			
				(
				𝐺
				)
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Thus, if 
	
		
			

				𝑒
			

			

				𝑖
			

			
				=
				𝑢
				𝑣
				∈
				𝐸
			

			

				𝑞
			

		
	
, then 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑢
				)
				=
				1
			

		
	
 and 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
				)
				=
				2
			

		
	
 (or vice versa), 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
.Consider two edges 
	
		
			

				𝑒
			

			

				𝑖
			

			
				=
				𝑢
				𝑣
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑒
			

			

				𝑗
			

			
				=
				𝑣
			

			

				𝑗
			

			

				𝑤
			

		
	
 of 
	
		
			

				𝐸
			

			

				𝑞
			

		
	
, where 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑢
				)
				=
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑤
				)
				=
				1
			

		
	
 and 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
			

			

				𝑖
			

			
				)
				=
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
			

			

				𝑗
			

			
				)
				=
				2
			

		
	
, 
	
		
			
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
.Therefore 
	
		
			
				d
				e
				g
			

			
				𝐿
				(
				𝐺
				)
			

			
				(
				𝑒
			

			

				𝑖
			

			
				)
				=
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑢
				)
				+
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
			

			

				𝑖
			

			
				)
				−
				2
				=
				1
			

		
	
. Similarly 
	
		
			
				d
				e
				g
			

			
				𝐿
				(
				𝐺
				)
			

			
				(
				𝑒
			

			

				𝑗
			

			
				)
				=
				1
			

		
	
. Therefore 
	
		
			

				𝑒
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑒
			

			

				𝑗
			

		
	
 are pendant vertices of 
	
		
			
				𝐿
				(
				𝐺
				)
			

		
	
. Thus all edges of 
	
		
			

				𝐸
			

			

				𝑞
			

		
	
 are the pendant vertices of 
	
		
			
				𝐿
				(
				𝐺
				)
			

		
	
, and 
	
		
			
				𝑑
				(
				𝑒
			

			

				𝑖
			

			
				,
				𝑒
			

			

				𝑗
			

			
				∣
				𝐿
				(
				𝐺
				)
				)
				=
				1
				+
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

		
	
, 
	
		
			
				𝑖
				≠
				𝑗
			

		
	
 and 
	
		
			
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Therefore 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				T
				H
				(
				𝐿
				(
				𝐺
				)
				,
				𝜆
				)
				=
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑞
			

			

				𝜆
			

			
				𝑑
				(
				𝑒
			

			

				𝑖
			

			
				,
				𝑒
			

			

				𝑗
			

			
				∣
				𝐿
				(
				𝐺
				)
				)
			

			
				=
				
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑞
			

			

				𝜆
			

			
				1
				+
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			
				
				=
				𝜆
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑞
			

			

				𝜆
			

			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			

				.
			

		
	

Theorem 2.  Let 
	
		
			

				𝐺
			

		
	
 be a connected graph with 
	
		
			
				𝑛
				≥
				4
			

		
	
 vertices and 
	
		
			

				𝐺
			

			

				
			

		
	
 the graph obtained by removing pendant vertices of 
	
		
			

				𝐺
			

		
	
. If (i) 
	
		
			
				𝐺
				=
				𝐾
			

			
				1
				,
				𝑛
				−
				1
			

		
	
 or (ii) 
	
		
			

				𝐺
			

		
	
 has no edge 
	
		
			

				𝑒
			

		
	
 such that one of the components of 
	
		
			
				𝐺
				−
				𝑒
			

		
	
 is 
	
		
			

				𝐾
			

			
				1
				,
				𝑠
			

		
	
, 
	
		
			
				𝑠
				≥
				2
			

		
	
 and 
	
		
			
				𝐺
				≠
				𝐾
			

			
				1
				,
				𝑛
				−
				1
			

		
	
, then
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				𝐺
				T
				H
				(
				𝐿
				(
				𝐺
				)
				,
				𝜆
				)
				=
				𝜆
				T
				H
			

			

				
			

			
				
				.
				,
				𝜆
			

		
	

Proof. Case 1. It is obvious that (8) holds for 
	
		
			
				𝐺
				=
				𝐾
			

			
				1
				,
				𝑛
				−
				1
			

		
	
.Case 2. Let 
	
		
			

				𝐷
			

			

				2
			

			
				(
				𝐺
				)
				=
				{
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			

				𝑞
			

			

				}
			

		
	
, where 
	
		
			
				d
				e
				g
			

			

				𝐺
			

			
				(
				𝑣
			

			

				𝑖
			

			
				)
				=
				2
			

		
	
, and one neighbor of 
	
		
			

				𝑣
			

			

				𝑖
			

		
	
 is pendant, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. If 
	
		
			
				𝐺
				≠
				𝐾
			

			
				1
				,
				𝑛
				−
				1
			

		
	
 and if there is no edge 
	
		
			

				𝑒
			

		
	
 in 
	
		
			

				𝐺
			

		
	
 such that one of the component of 
	
		
			
				𝐺
				−
				𝑒
			

		
	
 is 
	
		
			

				𝐾
			

			
				1
				,
				𝑠
			

		
	
, 
	
		
			
				𝑠
				≥
				2
			

		
	
, then the vertices of the set 
	
		
			

				𝐷
			

			

				2
			

			
				(
				𝐺
				)
			

		
	
 become pendant in 
	
		
			

				𝐺
			

			

				
			

		
	
. Therefore 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑑
				
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				
				
				𝑣
				∣
				𝐺
				=
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
			

			

				
			

			
				
				,
				w
				h
				e
				r
				e
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∈
				𝐷
			

			

				2
			

			
				(
				𝐺
				)
				.
			

		
	

						Substituting this in (6) we get 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				T
				H
				(
				𝐿
				(
				𝐺
				)
				,
				𝜆
				)
				=
				𝜆
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑞
			

			

				𝜆
			

			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
			

			

				′
			

			

				)
			

			
				
				𝐺
				=
				𝜆
				T
				H
			

			

				
			

			
				
				.
				,
				𝜆
			

		
	

Corollary 3.  Let 
	
		
			

				𝐺
			

		
	
 be a connected graph with 
	
		
			
				𝑛
				≥
				4
			

		
	
 vertices and 
	
		
			

				𝐺
			

			

				
			

		
	
 the graph obtained by removing pendant vertices of 
	
		
			

				𝐺
			

		
	
. If all pendant edges of 
	
		
			

				𝐺
			

		
	
 are mutually independent, then 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝐺
				T
				H
				(
				𝐿
				(
				𝐺
				)
				,
				𝜆
				)
				=
				𝜆
				T
				H
			

			

				
			

			
				
				.
				,
				𝜆
			

		
	

Proof.  It follows from Theorem 2(ii).  
Let 
	
		
			

				𝐺
			

		
	
 be the graph with vertices 
	
		
			

				𝑣
			

			

				1
			

		
	
, 
	
		
			

				𝑣
			

			

				2
			

		
	
, 
	
		
			

				…
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑛
			

		
	
 then 
	
		
			

				𝐺
			

			

				+
			

		
	
 is the graph obtained from 
	
		
			

				𝐺
			

		
	
 by adding 
	
		
			

				𝑛
			

		
	
 new vertices 
	
		
			

				𝑣
			

			
				
				1
			

		
	
, 
	
		
			

				𝑣
			

			
				
				2
			

		
	
, 
	
		
			

				…
			

		
	
, 
	
		
			

				𝑣
			

			
				
				𝑛
			

		
	
 and joining 
	
		
			

				𝑣
			

			
				
				𝑖
			

		
	
 to 
	
		
			

				𝑣
			

			

				𝑖
			

		
	
 by an edge, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
. The graph 
	
		
			

				𝐺
			

			

				+
			

		
	
 is called the  corona of 
	
		
			

				𝐺
			

		
	
 [16].
Theorem 4.   Let 
	
		
			

				𝐺
			

		
	
 be a connected graph, then 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				𝐿
				
				𝐺
				T
				H
			

			

				+
			

			
				
				
				,
				𝜆
				=
				𝜆
				T
				H
				(
				𝐺
				,
				𝜆
				)
				.
			

		
	

Proof. If the graph 
	
		
			

				𝐺
			

		
	
 has 
	
		
			

				𝑛
			

		
	
 number of vertices, then 
	
		
			

				𝐺
			

			

				+
			

		
	
 has 
	
		
			

				𝑛
			

		
	
 pendant edges, and all are mutually independent. Removing pendant vertices of 
	
		
			

				𝐺
			

			

				+
			

		
	
 we get the graph 
	
		
			

				𝐺
			

		
	
. Therefore from Corollary 3, 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				
				𝐿
				
				𝐺
				T
				H
			

			

				+
			

			
				
				
				,
				𝜆
				=
				𝜆
				T
				H
				(
				𝐺
				,
				𝜆
				)
				.
			

		
	

Theorem 5.  Let 
	
		
			

				𝐺
			

		
	
 be a connected graph and 
	
		
			

				𝐹
			

			

				𝑡
			

			
				=
				𝐿
				(
				𝐹
			

			
				+
				𝑡
				−
				1
			

			

				)
			

		
	
, 
	
		
			
				𝑡
				=
				1
				,
				2
				,
				…
			

		
	
, where 
	
		
			

				𝐹
			

			

				0
			

			
				=
				𝐺
			

		
	
 and 
	
		
			

				𝐹
			

			

				1
			

			
				=
				𝐿
				(
				𝐺
			

			

				+
			

			

				)
			

		
	
; then
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝐹
				T
				H
			

			

				𝑡
			

			
				
				,
				𝜆
				=
				𝜆
			

			

				𝑡
			

			
				T
				H
				(
				𝐺
				,
				𝜆
				)
				.
			

		
	

Proof. We prove this by induction on 
	
		
			

				𝑡
			

		
	
.From Theorem 4, 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				𝐹
				T
				H
			

			

				1
			

			
				
				
				𝐿
				
				𝐺
				,
				𝜆
				=
				T
				H
			

			

				+
			

			
				
				
				,
				𝜆
				=
				𝜆
				T
				H
				(
				𝐺
				,
				𝜆
				)
				.
			

		
	

						Let 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝐹
				T
				H
			

			
				𝑡
				−
				1
			

			
				
				,
				𝜆
				=
				𝜆
			

			
				𝑡
				−
				1
			

			
				T
				H
				(
				𝐺
				,
				𝜆
				)
				.
			

		
	

						Therefore 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝐹
				T
				H
			

			

				𝑡
			

			
				
				
				𝐿
				
				𝐹
				,
				𝜆
				=
				T
				H
			

			
				+
				𝑡
				−
				1
			

			
				
				
				
				𝐹
				,
				𝜆
				=
				𝜆
				T
				H
			

			
				𝑡
				−
				1
			

			
				
				,
				𝜆
				=
				𝜆
				𝜆
			

			
				𝑡
				−
				1
			

			
				T
				H
				(
				𝐺
				,
				𝜆
				)
				=
				𝜆
			

			

				𝑡
			

			
				T
				H
				(
				𝐺
				,
				𝜆
				)
				.
			

		
	

The  subdivision graph 
	
		
			
				𝑆
				(
				𝐺
				)
			

		
	
 is obtained from 
	
		
			

				𝐺
			

		
	
 by inserting a new vertex of degree 2 on each edge of 
	
		
			

				𝐺
			

		
	
. The graph 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
 is obtained from 
	
		
			

				𝐺
			

		
	
 by inserting 
	
		
			

				𝑙
			

		
	
 new vertices of degree 2 on each edge of 
	
		
			

				𝐺
			

		
	
. Thus 
	
		
			

				𝑆
			

			

				1
			

			
				(
				𝐺
				)
				=
				𝑆
				(
				𝐺
				)
			

		
	
.
Theorem 6.  Let 
	
		
			

				𝐺
			

		
	
 be a connected graph with 
	
		
			

				𝑘
			

		
	
 pendant vertices 
	
		
			

				𝑣
			

			

				1
			

		
	
, 
	
		
			

				𝑣
			

			

				2
			

		
	
, 
	
		
			

				…
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑘
			

		
	
. Then for 
	
		
			
				𝑙
				≥
				1
			

		
	
, 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				
				𝐿
				
				𝑆
				T
				H
			

			

				𝑙
			

			
				
				
				=
				1
				(
				𝐺
				)
				,
				𝜆
			

			
				
			
			
				𝜆
				
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑘
			

			

				𝜆
			

			
				(
				𝑙
				+
				1
				)
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			

				.
			

		
	

Proof. The pendant vertices of 
	
		
			

				𝐺
			

		
	
 and pendant vertices of 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
 are the same. Further all pendant edges of 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
 are mutually independent.Let 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 be the pendant vertices of 
	
		
			

				𝐺
			

		
	
; then 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 are pendant vertices of 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
. Let 
	
		
			

				𝑢
			

			

				
			

		
	
 and 
	
		
			

				𝑣
			

			

				
			

		
	
 be the subdivision vertices of 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
, where 
	
		
			

				𝑢
			

			

				
			

		
	
 is adjacent to 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

			

				
			

		
	
 is adjacent to 
	
		
			

				𝑣
			

		
	
 in 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
. Let 
	
		
			
				(
				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
				)
			

			

				
			

		
	
 be the graph obtained by removing all pendant vertices of 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
. Therefore 
	
		
			

				𝑢
			

			

				
			

		
	
 and 
	
		
			

				𝑣
			

			

				
			

		
	
 are pendant vertices of 
	
		
			
				(
				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
				)
			

			

				
			

		
	
 and 
	
		
			
				𝑑
				(
				𝑢
			

			

				
			

			
				,
				𝑣
			

			

				
			

			
				∣
				(
				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
				)
			

			

				
			

			
				)
				=
				(
				𝑙
				+
				1
				)
				𝑑
				(
				𝑢
				,
				𝑣
				∣
				𝐺
				)
				−
				2
			

		
	
. Now, since the pendant edges of 
	
		
			

				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
			

		
	
 are mutually independent, from Corollary 3, 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				𝐿
				
				𝑆
				T
				H
			

			

				𝑙
			

			
				
				
				
				
				𝑆
				(
				𝐺
				)
				,
				𝜆
				=
				𝜆
				T
				H
			

			

				𝑙
			

			
				
				(
				𝐺
				)
			

			

				
			

			
				
				
				,
				𝜆
				=
				𝜆
			

			
				
				𝑢
			

			

				′
			

			
				,
				𝑣
			

			

				′
			

			
				
				⊆
				𝑉
			

			

				𝑇
			

			
				
				
				𝑆
			

			

				𝑙
			

			
				
				(
				𝐺
				)
			

			

				′
			

			

				
			

			

				𝜆
			

			
				𝑑
				(
				𝑢
			

			

				′
			

			
				,
				𝑣
			

			

				′
			

			
				∣
				(
				𝑆
			

			

				𝑙
			

			
				(
				𝐺
				)
				)
			

			

				′
			

			

				)
			

			
				
				=
				𝜆
			

			
				{
				𝑢
				,
				𝑣
				}
				⊆
				𝑉
			

			

				𝑇
			

			
				(
				𝐺
				)
			

			

				𝜆
			

			
				(
				𝑙
				+
				1
				)
				𝑑
				(
				𝑢
				,
				𝑣
				∣
				𝐺
				)
				−
				2
			

			
				=
				1
			

			
				
			
			
				𝜆
				
			

			
				{
				𝑢
				,
				𝑣
				}
				⊆
				𝑉
			

			

				𝑇
			

			
				(
				𝐺
				)
			

			

				𝜆
			

			
				(
				𝑙
				+
				1
				)
				𝑑
				(
				𝑢
				,
				𝑣
				∣
				𝐺
				)
			

			
				=
				1
			

			
				
			
			
				𝜆
				
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑘
			

			

				𝜆
			

			
				(
				𝑙
				+
				1
				)
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
			

			

				.
			

		
	

Corollary 7.  Let 
	
		
			

				𝐺
			

		
	
 be a connected graph with 
	
		
			

				𝑘
			

		
	
 pendant vertices 
	
		
			

				𝑣
			

			

				1
			

		
	
, 
	
		
			

				𝑣
			

			

				2
			

		
	
, 
	
		
			

				…
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑘
			

		
	
. If 
	
		
			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∣
				𝐺
				)
				=
				𝑑
			

		
	
 for all 
	
		
			
				𝑖
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑘
			

		
	
, where 
	
		
			
				𝑖
				≠
				𝑗
			

		
	
, then, for 
	
		
			
				𝑙
				≥
				1
			

		
	
, 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝐿
				
				𝑆
				T
				H
			

			

				𝑙
			

			
				
				
				=
				(
				𝐺
				)
				,
				𝜆
				𝑘
				(
				𝑘
				−
				1
				)
			

			
				
			
			
				2
				𝜆
			

			
				(
				𝑙
				+
				1
				)
				𝑑
				−
				1
			

			

				.
			

		
	

Proof. It follows from Theorem 6.  
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