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Abstract. 
We introduce the sequence space 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				|
				|
				⋅
				,
				…
				,
				⋅
				|
				|
				)
			

		
	
 defined by a Musielak-Orlicz function 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
. We also study some topological properties and prove some inclusion relations involving this space.


1. Introduction and Preliminaries
The concept of 2-normed spaces was initially developed by Gähler [1] in the mid-1960s, while one can see that of 
	
		
			

				𝑛
			

		
	
-normed spaces in Misiak [2]. Since then, many others have studied this concept and obtained various results; see Gunawan [3, 4] and Gunawan and Mashadi [5]. Let 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
 and 
	
		
			

				𝑋
			

		
	
 be a linear space over the field 
	
		
			

				𝕂
			

		
	
, where 
	
		
			

				𝕂
			

		
	
 is the field of real or complex numbers of dimension 
	
		
			

				𝑑
			

		
	
, where 
	
		
			
				𝑑
				≥
				𝑛
				≥
				2
			

		
	
. A real valued function 
	
		
			
				‖
				⋅
				,
				…
				,
				⋅
				‖
			

		
	
 on 
	
		
			

				𝑋
			

			

				𝑛
			

		
	
 satisfying the following four conditions:  (1)
	
		
			
				‖
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
 if and only if 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

		
	
 are linearly dependent in 
	
		
			

				𝑋
			

		
	
; (2)
	
		
			
				‖
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				‖
			

		
	
 is invariant under permutation; (3)
	
		
			
				‖
				𝛼
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				‖
				=
				|
				𝛼
				|
				‖
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				‖
			

		
	
 for any 
	
		
			
				𝛼
				∈
				𝕂
			

		
	
; and (4)
	
		
			
				‖
				𝑥
				+
				𝑥
			

			

				
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				‖
				≤
				‖
				𝑥
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				‖
				+
				‖
				𝑥
			

			

				
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				‖
			

		
	
is called an 
	
		
			

				𝑛
			

		
	
-norm on 
	
		
			

				𝑋
			

		
	
, and the pair 
	
		
			
				(
				𝑋
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 is called an 
	
		
			

				𝑛
			

		
	
-normed space over the field 
	
		
			

				𝕂
			

		
	
.
For example, we may take 
	
		
			
				𝑋
				=
				ℝ
			

			

				𝑛
			

		
	
 being equipped with the 
	
		
			

				𝑛
			

		
	
-norm 
	
		
			
				‖
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				‖
			

			

				𝐸
			

		
	
 = the volume of the 
	
		
			

				𝑛
			

		
	
-dimensional parallelopiped spanned by the vectors 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

		
	
 which may be given explicitly by the formula
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			

				𝐸
			

			
				=
				|
				|
				
				𝑥
				d
				e
				t
			

			
				𝑖
				𝑗
			

			
				
				|
				|
				,
			

		
	

					where 
	
		
			

				𝑥
			

			

				𝑖
			

			
				=
				(
				𝑥
			

			
				𝑖
				1
			

			
				,
				𝑥
			

			
				𝑖
				2
			

			
				,
				…
				,
				𝑥
			

			
				𝑖
				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 for each 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
. Let 
	
		
			
				(
				𝑋
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 be an 
	
		
			

				𝑛
			

		
	
-normed space of dimension 
	
		
			
				𝑑
				≥
				𝑛
				≥
				2
			

		
	
 and 
	
		
			
				{
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
 be linearly independent set in 
	
		
			

				𝑋
			

		
	
. Then the following function 
	
		
			
				‖
				⋅
				,
				…
				,
				⋅
				‖
			

			

				∞
			

		
	
 on 
	
		
			

				𝑋
			

			
				𝑛
				−
				1
			

		
	
 defined by
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				
				‖
				‖
				𝑥
				=
				m
				a
				x
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				𝑎
			

			

				𝑖
			

			
				‖
				‖
				
				∶
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	

					defines an 
	
		
			
				(
				𝑛
				−
				1
				)
			

		
	
-norm on 
	
		
			

				𝑋
			

		
	
 with respect to 
	
		
			
				{
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
.
A sequence 
	
		
			
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 in an 
	
		
			

				𝑛
			

		
	
-normed space 
	
		
			
				(
				𝑋
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 is said to converge to some 
	
		
			
				𝐿
				∈
				𝑋
			

		
	
 if
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑘
			

			
				−
				𝐿
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				0
			

			
				f
				o
				r
				e
				v
				e
				r
				y
			

			

				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				∈
				𝑋
				.
			

		
	

A sequence 
	
		
			
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 in an 
	
		
			

				𝑛
			

		
	
-normed space 
	
		
			
				(
				𝑋
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 is said to be Cauchy if
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
				𝑝
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑘
			

			
				−
				𝑥
			

			

				𝑝
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				0
			

			
				f
				o
				r
				e
				v
				e
				r
				y
			

			

				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				∈
				𝑋
				.
			

		
	

					If every Cauchy sequence in 
	
		
			

				𝑋
			

		
	
 converges to some 
	
		
			
				𝐿
				∈
				𝑋
			

		
	
, then 
	
		
			

				𝑋
			

		
	
 is said to be complete with respect to the 
	
		
			

				𝑛
			

		
	
-norm. Any complete 
	
		
			

				𝑛
			

		
	
-normed space is said to be 
	
		
			

				𝑛
			

		
	
-Banach space.
An Orlicz function 
	
		
			

				𝑀
			

		
	
 is a function which is continuous, nondecreasing, and convex with 
	
		
			
				𝑀
				(
				0
				)
				=
				0
			

		
	
, 
	
		
			
				𝑀
				(
				𝑥
				)
				>
				0
			

		
	
 for 
	
		
			
				𝑥
				>
				0
			

		
	
 and 
	
		
			
				𝑀
				(
				𝑥
				)
				→
				∞
			

		
	
 as 
	
		
			
				𝑥
				→
				∞
			

		
	
. 
Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to define the following sequence space. Let 
	
		
			

				𝑤
			

		
	
 be the space of all real or complex sequences 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
; then
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				ℓ
			

			

				𝑀
			

			
				=
				
				𝑥
				∈
				𝑤
				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			
				𝑀
				
				|
				|
				𝑥
			

			

				𝑘
			

			
				|
				|
			

			
				
			
			
				𝜌
				
				
				,
				<
				∞
			

		
	

					which is called an Orlicz sequence space. The space 
	
		
			

				ℓ
			

			

				𝑀
			

		
	
 is a Banach space with the norm
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				‖
				𝑥
				‖
				=
				i
				n
				f
				𝜌
				>
				0
				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			
				𝑀
				
				|
				|
				𝑥
			

			

				𝑘
			

			
				|
				|
			

			
				
			
			
				𝜌
				
				
				.
				≤
				1
			

		
	

It is shown in [6] that every Orlicz sequence space 
	
		
			

				ℓ
			

			

				𝑀
			

		
	
 contains a subspace isomorphic to 
	
		
			

				ℓ
			

			

				𝑝
			

			
				(
				𝑝
				≥
				1
				)
			

		
	
. The 
	
		
			

				Δ
			

			

				2
			

		
	
-condition is equivalent to 
	
		
			
				𝑀
				(
				𝐿
				𝑥
				)
				≤
				𝑘
				𝐿
				𝑀
				(
				𝑥
				)
			

		
	
 for all values of 
	
		
			
				𝑥
				≥
				0
			

		
	
 and for 
	
		
			
				𝐿
				>
				1
			

		
	
. A sequence 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 of Orlicz function is called a Musielak-Orlicz function; see [7, 8]. A sequence 
	
		
			
				𝒩
				=
				(
				𝑁
			

			

				𝑘
			

			

				)
			

		
	
 defined by
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝑘
			

			
				
				
				𝑀
				(
				𝑣
				)
				=
				s
				u
				p
				|
				𝑣
				|
				𝑢
				−
			

			

				𝑘
			

			
				
				
				∶
				𝑢
				≥
				0
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
			

		
	

					is called the complementary function of a Musielak-Orlicz function 
	
		
			

				ℳ
			

		
	
. For a given Musielak-Orlicz function 
	
		
			

				ℳ
			

		
	
, the Musielak-Orlicz sequence space 
	
		
			

				𝑡
			

			

				ℳ
			

		
	
 and its subspace 
	
		
			

				ℎ
			

			

				ℳ
			

		
	
 are defined as follows:
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑡
			

			

				ℳ
			

			
				=
				
				𝑥
				∈
				𝑤
				∶
				𝐼
			

			

				ℳ
			

			
				(
				𝑐
				𝑥
				)
				<
				∞
			

			
				f
				o
				r
				s
				o
				m
				e
			

			
				
				,
				ℎ
				𝑐
				>
				0
			

			

				ℳ
			

			
				=
				
				𝑥
				∈
				𝑤
				∶
				𝐼
			

			

				ℳ
			

			
				
				,
				(
				𝑐
				𝑥
				)
				<
				∞
				∀
				𝑐
				>
				0
			

		
	

					where 
	
		
			

				𝐼
			

			

				ℳ
			

		
	
 is a convex modular defined by
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝐼
			

			

				ℳ
			

			
				(
				𝑥
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑀
			

			

				𝑘
			

			
				
				𝑥
			

			

				𝑘
			

			
				
				
				𝑥
				,
				𝑥
				=
			

			

				𝑘
			

			
				
				∈
				𝑡
			

			

				ℳ
			

			

				.
			

		
	

We consider 
	
		
			

				𝑡
			

			

				ℳ
			

		
	
 equipped with the Luxemburg norm
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				‖
				𝑥
				‖
				=
				i
				n
				f
				𝑘
				>
				0
				∶
				𝐼
			

			

				ℳ
			

			
				
				𝑥
			

			
				
			
			
				𝑘
				
				
				≤
				1
			

		
	

					or equipped with the Orlicz norm
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
			

			

				0
			

			
				
				1
				=
				i
				n
				f
			

			
				
			
			
				𝑘
				
				1
				+
				𝐼
			

			

				ℳ
			

			
				
				
				.
				(
				𝑘
				𝑥
				)
				∶
				𝑘
				>
				0
			

		
	

Let 
	
		
			

				𝑋
			

		
	
 be a linear metric space. A function 
	
		
			

				𝑝
			

		
	
: 
	
		
			
				𝑋
				→
			

		
	
 
	
		
			

				ℝ
			

		
	
 is called paranorm if  (1)
	
		
			
				𝑝
				(
				𝑥
				)
				≥
				0
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, (2)
	
		
			
				𝑝
				(
				−
				𝑥
				)
				=
				𝑝
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, (3)
	
		
			
				𝑝
				(
				𝑥
				+
				𝑦
				)
				≤
				𝑝
				(
				𝑥
				)
				+
				𝑝
				(
				𝑦
				)
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
, (4)if 
	
		
			
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 is a sequence of scalars with 
	
		
			

				𝜆
			

			

				𝑛
			

			
				→
				𝜆
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
, and 
	
		
			
				(
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
 is a sequence of vectors with 
	
		
			
				𝑝
				(
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
				)
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
; then 
	
		
			
				𝑝
				(
				𝜆
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝑥
				)
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. 
A paranorm 
	
		
			

				𝑝
			

		
	
 for which 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				0
			

		
	
 implies 
	
		
			
				𝑥
				=
				0
			

		
	
 is called total paranorm, and the pair 
	
		
			
				(
				𝑋
				,
				𝑝
				)
			

		
	
 is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [9, Theorem 
	
		
			
				1
				0
				.
				4
				.
				2
			

		
	
, p. 183]). For more details about sequence spaces, see [10–23] and the references therein.
Let 
	
		
			

				∑
			

			
				∞
				𝑘
				=
				0
			

			

				𝑎
			

			

				𝑘
			

		
	
 be an infinite series with sequence of partial sums 
	
		
			
				(
				𝑠
			

			

				𝑘
			

			

				)
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 be any positive real number. The Euler transform 
	
		
			
				(
				𝐸
				,
				𝑞
				)
				𝑠
			

		
	
 of the sequence 
	
		
			
				𝑠
				=
				(
				𝑠
			

			

				𝑛
			

			

				)
			

		
	
 is defined by 
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				1
				(
				𝑠
				)
				=
			

			
				
			
			
				(
				1
				+
				𝑞
				)
			

			
				𝑛
				𝑛
			

			

				
			

			
				𝑣
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑛
				𝑣
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑞
			

			
				𝑛
				−
				𝑣
			

			

				𝑠
			

			

				𝑣
			

			

				.
			

		
	

The series 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝑎
			

			

				𝑛
			

		
	
 is said to be summable 
	
		
			
				(
				𝐸
				,
				𝑞
				)
			

		
	
 to the number 
	
		
			

				𝑠
			

		
	
 if 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				1
				(
				𝑠
				)
				=
			

			
				
			
			
				(
				1
				+
				𝑞
				)
			

			
				𝑛
				𝑛
			

			

				
			

			
				𝑣
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑛
				𝑣
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑞
			

			
				𝑛
				−
				𝑣
			

			

				𝑠
			

			

				𝑣
			

			
				⟶
				𝑠
			

			
				a
				s
			

			
				𝑛
				⟶
				∞
			

		
	

					and is said to be absolutely summable 
	
		
			
				(
				𝐸
				,
				𝑞
				)
			

		
	
 or summable 
	
		
			
				|
				𝐸
				,
				𝑞
				|
			

		
	
 if 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				
			

			

				𝑘
			

			
				|
				|
				𝐸
			

			
				𝑞
				𝑘
			

			
				(
				𝑠
				)
				−
				𝐸
			

			
				𝑞
				𝑘
				−
				1
			

			
				|
				|
				(
				𝑠
				)
				<
				∞
				.
			

		
	

Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
 be a sequence of scalars; we denote 
	
		
			

				𝑁
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				𝑥
				)
				−
				𝐸
			

			
				𝑞
				𝑛
				−
				1
			

			
				(
				𝑥
				)
			

		
	
, where 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				𝑥
				)
			

		
	
 is defined by (12). After applications of Abel's transform, we have 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝑛
			

			
				1
				(
				𝑥
				)
				=
				−
			

			
				
			
			
				(
				1
				+
				𝑞
				)
			

			
				𝑛
				−
				1
				𝑛
				−
				2
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑥
			

			
				𝑘
				+
				1
			

			

				𝐴
			

			

				𝑘
			

			
				+
				𝑠
			

			
				𝑛
				−
				1
			

			

				𝐴
			

			
				𝑛
				−
				1
			

			
				
			
			
				(
				1
				+
				𝑞
				)
			

			
				𝑛
				−
				1
			

			
				+
				𝑠
			

			

				𝑛
			

			
				
			
			
				(
				1
				+
				𝑞
				)
			

			

				𝑛
			

			
				−
				𝑞
			

			
				𝑛
				−
				1
			

			
				
			
			
				(
				1
				+
				𝑞
				)
			

			

				𝑛
			

			

				𝑠
			

			

				0
			

			

				,
			

		
	

					where 
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑘
			

			

				=
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑞
			

			
				
			
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑛
				𝑖
				⎞
				⎟
				⎟
				⎟
				⎠
				−
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑖
				⎞
				⎟
				⎟
				⎟
				⎠
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑞
				1
				+
				𝑞
				𝑛
				−
				1
			

			
				𝑛
				−
				𝑖
				−
				1
			

			

				.
			

		
	

Note that, for any sequences 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			
				𝑦
				=
				(
				𝑦
			

			

				𝑛
			

			

				)
			

		
	
 and scalar 
	
		
			

				𝜆
			

		
	
, we have
	
		
			

				𝑁
			

			

				𝑛
			

			
				(
				𝑥
				+
				𝑦
				)
				=
				𝑁
			

			

				𝑛
			

			
				(
				𝑥
				)
				+
				𝑁
			

			

				𝑛
			

			
				(
				𝑦
				)
			

		
	
 and 
	
		
			

				𝑁
			

			

				𝑛
			

			
				(
				𝜆
				𝑥
				)
				=
				𝜆
				𝑁
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
.
Let 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 be a Musielak-Orlicz function and 
	
		
			
				𝑝
				=
				(
				𝑝
			

			

				𝑘
			

			

				)
			

		
	
 be a bounded sequence of positive real numbers. We define the following sequence space in the present paper:
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				=
				
				
				𝑥
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				𝑥
				=
			

			

				𝑘
			

			
				
				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				∞
				,
				𝑠
				≥
				0
				,
			

			
				f
				o
				r
				s
				o
				m
				e
			

			
				
				.
				𝜌
				>
				0
			

		
	

					If we take 
	
		
			
				𝑝
				=
				(
				𝑝
			

			

				𝑘
			

			
				)
				=
				1
			

		
	
 for all 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
, we have 
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				=
				
				
				𝑥
				ℳ
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				𝑥
				=
			

			

				𝑘
			

			
				
				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
				<
				∞
				,
				𝑠
				≥
				0
				,
			

			
				f
				o
				r
				s
				o
				m
				e
			

			
				
				.
				𝜌
				>
				0
			

		
	

					If we take 
	
		
			
				𝑠
				=
				0
			

		
	
, we get 
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				=
				
				
				𝑥
				ℳ
				,
				𝑝
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				𝑥
				=
			

			

				𝑘
			

			
				
				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				∞
				,
				𝑠
				≥
				0
				,
			

			
				f
				o
				r
				s
				o
				m
				e
			

			
				
				.
				𝜌
				>
				0
			

		
	

The following inequality will be used throughout the paper. If 
	
		
			
				0
				≤
				𝑝
			

			

				𝑘
			

			
				≤
				s
				u
				p
				𝑝
			

			

				𝑘
			

			
				=
				𝐻
			

		
	
, 
	
		
			
				𝐾
				=
				m
				a
				x
				(
				1
				,
				2
			

			
				𝐻
				−
				1
			

			

				)
			

		
	
, then 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑎
			

			

				𝑘
			

			
				+
				𝑏
			

			

				𝑘
			

			
				|
				|
			

			

				𝑝
			

			

				𝑘
			

			
				
				|
				|
				𝑎
				≤
				𝐾
			

			

				𝑘
			

			
				|
				|
			

			

				𝑝
			

			

				𝑘
			

			
				+
				|
				|
				𝑏
			

			

				𝑘
			

			
				|
				|
			

			

				𝑝
			

			

				𝑘
			

			

				
			

		
	

					for all 
	
		
			

				𝑘
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑘
			

			
				,
				𝑏
			

			

				𝑘
			

			
				∈
				ℂ
			

		
	
. Also, 
	
		
			
				|
				𝑎
				|
			

			

				𝑝
			

			

				𝑘
			

			
				≤
				m
				a
				x
				(
				1
				,
				|
				𝑎
				|
			

			

				𝐻
			

			

				)
			

		
	
 for all 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
.
In this paper, we study some topological properties and inclusion relations between the previously defined sequence spaces.
2. Main Results 
Theorem 1.  Let 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 be a Musielak-Orlicz function and 
	
		
			
				𝑝
				=
				(
				𝑝
			

			

				𝑘
			

			

				)
			

		
	
 be a bounded sequence of positive real numbers; the space 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 is linear over the complex field 
	
		
			

				ℂ
			

		
	
.
Proof. Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			
				)
				,
				𝑦
				=
				𝑦
			

			

				𝑘
			

			
				∈
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
, and 
	
		
			
				𝛼
				,
				𝛽
				∈
				ℂ
			

		
	
. Then, there exist positive integers 
	
		
			

				𝜌
			

			

				1
			

		
	
 and 
	
		
			

				𝜌
			

			

				2
			

		
	
 such that 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝜌
			

			

				1
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				∞
				,
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑦
				)
			

			
				
			
			

				𝜌
			

			

				2
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				∞
				.
			

		
	

						Let 
	
		
			

				𝜌
			

			

				3
			

			
				=
				m
				a
				x
				(
				2
				|
				𝛼
				|
				𝜌
			

			

				1
			

			
				,
				2
				|
				𝛽
				|
				𝜌
			

			

				2
			

			

				)
			

		
	
. Since 
	
		
			
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 is nondecreasing, convex function and by using inequality (20), we have
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝛼
				𝑥
				+
				𝛽
				𝑦
				)
			

			
				
			
			

				𝜌
			

			

				3
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				≤
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝛼
				𝑥
				)
			

			
				
			
			

				𝜌
			

			

				3
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				+
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝛽
				𝑦
				)
			

			
				
			
			

				𝜌
			

			

				3
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				≤
				𝐾
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝜌
			

			

				1
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				+
				𝐾
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑦
				)
			

			
				
			
			

				𝜌
			

			

				2
			

			
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				∞
				.
			

		
	

						Therefore, 
	
		
			
				𝛼
				𝑥
				+
				𝛽
				𝑦
				∈
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
. Hence, 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 is a linear space.
Theorem 2.  Let 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 be a Musielak-Orlicz function and 
	
		
			
				𝑝
				=
				(
				𝑝
			

			

				𝑘
			

			

				)
			

		
	
 be a bounded sequence of positive real numbers. Then, the space 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
 is a paranormed space with
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑔
				⎧
				⎪
				⎨
				⎪
				⎩
				𝜌
				(
				𝑥
				)
				=
				i
				n
				f
			

			

				𝑝
			

			

				𝑛
			

			
				/
				𝐻
			

			
				∶
				
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				
			

			
				1
				/
				𝐻
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				,
				≤
				1
				,
				𝑛
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	

						where 
	
		
			
				𝐻
				=
				m
				a
				x
				(
				1
				,
				s
				u
				p
			

			

				𝑘
			

			

				𝑝
			

			

				𝑘
			

			

				)
			

		
	
.
Proof. Clearly, 
	
		
			
				𝑔
				(
				𝑥
				)
				=
				𝑔
				(
				−
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑥
				+
				𝑦
				)
				≤
				𝑔
				(
				𝑥
				)
				+
				𝑔
				(
				𝑦
				)
			

		
	
. Since 
	
		
			

				𝑀
			

			

				𝑘
			

			
				(
				0
				)
				=
				0
			

		
	
, we get 
	
		
			
				i
				n
				f
				{
				𝜌
			

			

				𝑝
			

			

				𝑛
			

			
				/
				𝐻
			

			
				}
				=
				0
			

		
	
 for 
	
		
			
				𝑥
				=
				0
			

		
	
. Finally, we prove that multiplication is continuous. Let 
	
		
			

				𝜆
			

		
	
 be any number such that
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑔
				
				𝜌
				(
				𝜆
				𝑥
				)
				=
				i
				n
				f
			

			

				𝑝
			

			

				𝑛
			

			
				/
				𝐻
			

			

				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝜆
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				
				.
				≤
				1
				,
				𝑛
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	

						Thus, we have 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				
				𝑔
				(
				𝜆
				𝑥
				)
				=
				i
				n
				f
				(
				𝜆
				𝑠
				)
			

			

				𝑝
			

			

				𝑛
			

			
				/
				𝐻
			

			

				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝑠
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				
				,
				≤
				1
				,
				𝑛
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	

						where 
	
		
			
				𝑠
				=
				𝜌
				/
				|
				𝜆
				|
			

		
	
. Since 
	
		
			
				|
				𝜆
				|
			

			

				𝑝
			

			

				𝑘
			

			
				≤
				m
				a
				x
				(
				1
				,
				|
				𝜆
				|
			

			

				𝐻
			

			

				)
			

		
	
, then 
	
		
			
				|
				𝜆
				|
			

			

				𝑝
			

			

				𝑘
			

			
				/
				𝐻
			

			
				≤
				(
				m
				a
				x
				(
				1
				,
				|
				𝜆
				|
			

			

				𝐻
			

			
				)
				)
			

			
				1
				/
				𝐻
			

		
	
. Hence, 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑔
				≤
				
				
				|
				|
				𝜆
				|
				|
				(
				𝜆
				𝑥
				)
				m
				a
				x
				1
				,
			

			

				𝐻
			

			
				
				
			

			
				1
				/
				𝐻
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				i
				n
				f
				(
				𝑠
				)
			

			

				𝑝
			

			

				𝑛
			

			
				/
				𝐻
			

			
				∶
				
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				
			

			
				1
				/
				𝐻
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				,
				≤
				1
				,
				𝑛
				=
				1
				,
				2
				,
				…
			

		
	

						and therefore 
	
		
			
				𝑔
				(
				𝜆
				𝑥
				)
			

		
	
 converges to zero when 
	
		
			
				𝑔
				(
				𝑥
				)
			

		
	
 converges to zero in 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
. Now, suppose that 
	
		
			

				𝜆
			

			

				𝑛
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 in 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
. For arbitrary 
	
		
			
				𝜖
				>
				0
			

		
	
, let 
	
		
			

				𝑛
			

			

				0
			

		
	
 be a positive integer such that 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				𝑛
			

			

				0
			

			
				+
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				𝜖
			

			
				
			
			

				2
			

		
	

						for some 
	
		
			
				𝜌
				>
				0
			

		
	
. This implies that 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎝
			

			

				∞
			

			

				
			

			
				𝑘
				=
				𝑛
			

			

				0
			

			
				+
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				⎞
				⎟
				⎟
				⎠
			

			
				1
				/
				𝐻
			

			
				≤
				𝜖
			

			
				
			
			
				2
				.
			

		
	
Let 
	
		
			
				0
				<
				|
				𝜆
				|
				<
				1
			

		
	
; then, using convexity of 
	
		
			
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
, we get
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				𝑛
			

			

				0
			

			
				+
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝜆
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				|
				|
				𝜆
				|
				|
			

			

				∞
			

			

				
			

			
				𝑘
				=
				𝑛
			

			

				0
			

			
				+
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				<
				
				𝜖
			

			
				
			
			
				2
				
			

			

				𝐻
			

			

				.
			

		
	
Since 
	
		
			
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 is continuous everywhere in 
	
		
			
				[
				0
				,
				∞
				)
			

		
	
, then 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑡
				)
				=
			

			

				𝑛
			

			

				0
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑡
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

		
	

						is continuous at 
	
		
			

				0
			

		
	
. So there is 
	
		
			
				0
				<
				𝛿
				<
				1
			

		
	
 such that 
	
		
			
				|
				ℎ
				(
				𝑡
				)
				|
				<
				𝜖
				/
				2
			

		
	
 for 
	
		
			
				0
				<
				𝑡
				<
				𝛿
			

		
	
. Let 
	
		
			

				𝐾
			

		
	
 be such that 
	
		
			
				|
				𝜆
			

			

				𝑛
			

			
				|
				<
				𝛿
			

		
	
 for 
	
		
			
				𝑛
				>
				𝐾
			

		
	
; we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				
			

			

				𝑛
			

			

				0
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝜆
			

			

				𝑛
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				
			

			
				1
				/
				𝐻
			

			
				<
				𝜖
			

			
				
			
			
				2
				.
			

		
	
Thus, 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝜆
			

			

				𝑛
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				
			

			
				1
				/
				𝐻
			

			
				<
				𝜖
				,
			

			
				f
				o
				r
			

			
				𝑛
				>
				𝐾
				.
			

		
	
Hence, 
	
		
			
				𝑔
				(
				𝜆
				𝑥
				)
				→
				0
			

		
	
 as 
	
		
			
				𝜆
				→
				0
			

		
	
. This completes the proof of the theorem.
Theorem 3.  If 
	
		
			

				ℳ
			

			

				
			

			
				=
				(
				𝑀
			

			
				
				𝑘
			

			

				)
			

		
	
 and 
	
		
			

				ℳ
			

			
				
				
			

			
				=
				(
				𝑀
			

			
				𝑘
				
				
			

			

				)
			

		
	
 are two Musielak-Orlicz functions and 
	
		
			
				𝑠
				,
				𝑠
			

			

				1
			

			

				,
			

			
				a
				n
				d
			

			

				𝑠
			

			

				2
			

		
	
 are nonnegative real numbers, then one has (i)
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			

				
			

			
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				∩
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			
				
				
			

			
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				⊆
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			

				
			

			
				+
				ℳ
			

			
				
				
			

			
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
,
								(ii)If 
	
		
			

				𝑠
			

			

				1
			

			
				≤
				𝑠
			

			

				2
			

		
	
, then 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			

				
			

			
				,
				𝑝
				,
				𝑠
			

			

				1
			

			
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				⊆
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			

				
			

			
				,
				𝑝
				,
				𝑠
			

			

				2
			

			
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
,(iii)If 
	
		
			

				ℳ
			

			

				
			

		
	
 and 
	
		
			

				ℳ
			

			
				
				
			

		
	
 are equivalent, then  
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			

				
			

			
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				=
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
			

			
				
				
			

			
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
.
Proof. It is obvious, so we omit the details.
Theorem 4.  Suppose that 
	
		
			
				0
				<
				𝑟
			

			

				𝑘
			

			
				≤
				𝑝
			

			

				𝑘
			

			
				<
				∞
			

		
	
 for each 
	
		
			

				𝑘
			

		
	
. Then 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑟
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				⊆
			

			

				E
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
.
Proof. Let 
	
		
			
				𝑥
				∈
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑟
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
. Then there exists some 
	
		
			
				𝜌
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑟
			

			

				𝑘
			

			
				<
				∞
				.
			

		
	
This implies that 
	
		
			

				𝑀
			

			

				𝑘
			

			
				(
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				)
				≤
				1
			

		
	
 for sufficiently large value of 
	
		
			

				𝑘
			

		
	
, say 
	
		
			
				𝑘
				≥
				𝑘
			

			

				0
			

		
	
, for some fixed 
	
		
			

				𝑘
			

			

				0
			

			
				∈
				ℕ
			

		
	
. Since 
	
		
			
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 is nondecreasing, we get 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				≥
				𝑘
			

			

				0
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				≤
			

			

				∞
			

			

				
			

			
				𝑘
				≥
				𝑘
			

			

				0
			

			

				1
			

			
				
			
			

				𝑘
			

			

				𝑠
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑟
			

			

				𝑘
			

			
				<
				∞
				.
			

		
	
Hence, 
	
		
			
				𝑥
				∈
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
.
Theorem 5.  (i) If  
	
		
			
				0
				<
				𝑝
			

			

				𝑘
			

			
				≤
				1
			

		
	
 for each 
	
		
			

				𝑘
			

		
	
, then 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				⊆
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
. (ii) If 
	
		
			

				𝑝
			

			

				𝑘
			

			
				≥
				1
			

		
	
 for all 
	
		
			

				𝑘
			

		
	
, then 
	
		
			

				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
				⊆
				𝐸
			

			
				𝑞
				𝑛
			

			
				(
				ℳ
				,
				𝑝
				,
				𝑠
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				)
			

		
	
.
Proof. It is easy to prove by using Theorem 4; so we omit the details. 
3. Statistical Convergence
The notion of statistical convergence was introduced by Fast [24] and Schoenberg [25] independently. Over the years and under different names, statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory, and number theory. Later on, it was further investigated from the sequence space point of view and linked with summability theory by Fridy [26], Connor [27], Šalát [28], Mursaleen [29], Işik [30], Savaş [31], Malkowsky and Savas [32], Kolk [33], Maddox [34], Mohiuddine and Aiyub [35], and many others. In the recent years, generalizations of statistical convergence have appeared in the study of strong integral summability and the structure of ideals of bounded continuous functions on locally compact spaces. Statistical convergence and its generalizations are also connected with subsets of the Stone-Cech compactification of natural numbers. Moreover, statistical convergence is closely related to the concept of convergence in probability. 
Let 
	
		
			
				𝜃
				=
				(
				𝑘
			

			

				𝑟
			

			

				)
			

		
	
 be the sequence of positive integers such that 
	
		
			

				𝑘
			

			

				0
			

			
				=
				0
			

		
	
, 
	
		
			
				0
				<
				𝑘
			

			

				𝑟
			

			
				<
				𝑘
			

			
				𝑟
				+
				1
			

		
	
 and 
	
		
			

				ℎ
			

			

				𝑟
			

			
				=
				𝑘
			

			

				𝑟
			

			
				−
				𝑘
			

			
				𝑟
				−
				1
			

			
				→
				∞
			

		
	
 as 
	
		
			
				𝑟
				→
				∞
			

		
	
. Then 
	
		
			

				𝜃
			

		
	
 is called a lacunary sequence. The intervals determined by 
	
		
			

				𝜃
			

		
	
 will be denoted by 
	
		
			

				𝐼
			

			

				𝑟
			

			
				=
				(
				𝑘
			

			
				𝑟
				−
				1
			

			
				,
				𝑘
			

			

				𝑟
			

			

				]
			

		
	
, and the ratio 
	
		
			

				𝑘
			

			

				𝑟
			

			
				/
				(
				𝑘
			

			

				𝑟
			

			
				−
				1
				)
			

		
	
 will be denoted by 
	
		
			

				𝑞
			

			

				𝑟
			

		
	
 (see [36]).
Let 
	
		
			
				𝜃
				=
				(
				𝑘
			

			

				𝑟
			

			

				)
			

		
	
 be a lacunary sequence; then the sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 is said to be 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary statistically convergent to the number 
	
		
			

				𝑙
			

		
	
 provided that, for every 
	
		
			
				𝜖
				>
				0
			

		
	
, 
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			

				𝑟
			

			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				≥
				𝜖
				=
				0
				.
			

		
	

					In this case, we write 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
				,
				𝑆
				]
			

			

				𝜃
			

			
				−
				l
				i
				m
				𝑥
				=
				𝑙
			

		
	
 or 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
				,
				𝑆
				]
			

			

				𝜃
			

			

				)
			

		
	
.
Let 
	
		
			
				𝜃
				=
				(
				𝑘
			

			

				𝑟
			

			

				)
			

		
	
 be a lacunary sequence, 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 be a Musielak-Orlicz function, 
	
		
			
				𝑢
				=
				(
				𝑢
			

			

				𝑘
			

			

				)
			

		
	
 be a sequence of strictly positive real numbers, and 
	
		
			
				𝑝
				=
				(
				𝑝
			

			

				𝑘
			

			

				)
			

		
	
 be a bounded sequence of positive real numbers. A sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 is said to be strongly 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary convergent to the number 
	
		
			

				𝑙
			

		
	
 with respect to the Musielak-Orlicz function 
	
		
			

				ℳ
			

		
	
 provided that 
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			

				𝑟
			

			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				=
				0
				.
			

		
	

The set of all strongly 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary convergent sequences to the number 
	
		
			

				𝑙
			

		
	
 with respect to the Musielak-Orlicz function 
	
		
			

				ℳ
			

		
	
 is denoted by 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				𝑝
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
. In this case, we write 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				𝑝
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

			

				)
			

		
	
. In the special case 
	
		
			
				ℳ
				(
				𝑥
				)
				=
				𝑥
			

		
	
, 
	
		
			

				𝑝
			

			

				𝑘
			

			
				=
				𝑝
			

			

				0
			

		
	
 for all 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
, we shall write 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
 instead of 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				𝑝
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
.
In this section, we give some results about 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary statistical convergence and give some relations between the set of 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary statistical convergence sequences and other spaces which are defined with respect to Musielak-Orlicz function 
	
		
			

				ℳ
			

		
	
.
Theorem 6.  Let 
	
		
			
				𝜃
				=
				(
				𝑘
			

			

				𝑟
			

			

				)
			

		
	
 be a lacunary sequence. (i)If a sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 is strongly 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary convergent to 
	
		
			

				𝑙
			

		
	
, then it is 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary statistically convergent to 
	
		
			

				𝑙
			

		
	
.(ii)If a bounded sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 is 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary statistically convergent to 
	
		
			

				𝑙
			

		
	
, then it is strongly 
	
		
			

				𝑁
			

			

				𝑘
			

			
				(
				𝑢
				)
			

		
	
-lacunary convergent to 
	
		
			

				𝑙
			

		
	
.
Proof. (i) Let 
	
		
			
				𝜖
				>
				0
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

			

				)
			

		
	
. Then, we can write 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
			

			

				𝑝
			

			

				0
			

			
				≥
				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≥
				𝜖
			

			
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
			

			

				𝑝
			

			

				0
			

			
				≥
				𝜖
			

			

				𝑝
			

			

				0
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				.
				≥
				𝜖
			

		
	

						Hence, 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

			

				)
			

		
	
.(ii) Suppose that 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

			

				)
			

		
	
, and let 
	
		
			
				𝑥
				∈
				𝑙
			

			

				∞
			

		
	
. Let 
	
		
			
				𝜖
				>
				0
			

		
	
 be given and take 
	
		
			

				𝑁
			

			

				𝜖
			

		
	
 such that 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				≥
				
				𝜖
			

			
				
			
			
				2
				
			

			
				(
				1
				/
				𝑝
			

			

				0
			

			

				)
			

			
				
				|
				|
				|
				|
				≤
				𝜖
			

			
				
			
			
				2
				𝐾
			

			

				𝑝
			

			

				0
			

		
	

						for all 
	
		
			
				𝑟
				>
				𝑁
			

			

				𝜖
			

		
	
 and set 
	
		
			

				𝑇
			

			

				𝑟
			

			
				=
				{
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				≥
				(
				𝜖
				/
				2
				)
			

			
				1
				/
				𝑝
			

			

				0
			

			

				}
			

		
	
, where 
	
		
			
				𝐾
				=
				s
				u
				p
			

			

				𝑘
			

			
				|
				𝑥
			

			

				𝑘
			

			
				|
				<
				∞
			

		
	
. Now, for all 
	
		
			
				𝑟
				>
				𝑁
			

			

				𝜖
			

		
	
, we have 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
			

			

				𝑝
			

			

				0
			

			
				=
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				𝑘
				∈
				𝑇
			

			

				𝑟
			

			
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
			

			

				𝑝
			

			

				0
			

			
				+
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				𝑘
				∉
				𝑇
			

			

				𝑟
			

			
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
			

			

				𝑝
			

			

				0
			

			
				≤
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			
				
				ℎ
			

			

				𝑟
			

			

				𝜖
			

			
				
			
			
				2
				𝐾
			

			

				𝑝
			

			

				0
			

			
				
				𝐾
			

			

				𝑝
			

			

				0
			

			
				+
				𝜖
			

			
				
			
			
				2
				ℎ
			

			

				𝑟
			

			

				ℎ
			

			

				𝑟
			

			
				=
				𝜖
				.
			

		
	
Thus, 
	
		
			
				(
				𝑥
			

			

				𝑘
			

			
				)
				∈
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
. This completes the proof of the theorem.
Theorem 7.  For any lacunary sequence 
	
		
			

				𝜃
			

		
	
, if 
	
		
			
				l
				i
				m
			

			
				𝑟
				→
				∞
			

			
				i
				n
				f
				𝑞
			

			

				𝑟
			

			
				>
				1
			

		
	
, then 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
				⊂
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

		
	
.
Proof. If 
	
		
			
				l
				i
				m
			

			
				𝑟
				→
				∞
			

			
				i
				n
				f
				𝑞
			

			

				𝑟
			

			
				>
				1
			

		
	
, then there exists a 
	
		
			
				𝛿
				>
				0
			

		
	
 such that 
	
		
			
				1
				+
				𝛿
				≤
				𝑞
			

			

				𝑟
			

		
	
 for sufficiently large 
	
		
			

				𝑟
			

		
	
. Since 
	
		
			

				ℎ
			

			

				𝑟
			

			
				=
				𝑘
			

			

				𝑟
			

			
				−
				𝑘
			

			
				𝑟
				−
				1
			

		
	
, we have 
	
		
			

				𝑘
			

			

				𝑟
			

			
				/
				ℎ
			

			

				𝑟
			

			
				≤
				(
				1
				+
				𝛿
				)
				/
				𝛿
			

		
	
. Let 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
				)
			

		
	
. Then, for every 
	
		
			
				𝜖
				>
				0
			

		
	
, we have
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑘
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				≤
				𝑘
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				≥
				1
				≥
				𝜖
			

			
				
			
			

				𝑘
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				≥
				𝛿
				≥
				𝜖
			

			
				
			
			
				1
				1
				+
				𝛿
			

			
				
			
			

				𝑘
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				.
				≥
				𝜖
			

		
	
Hence, 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
				⊂
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

		
	
.
Theorem 8.  Let 
	
		
			
				𝜃
				=
				(
				𝑘
			

			

				𝑟
			

			

				)
			

		
	
 be a lacunary sequence, 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 be a Musielak-Orlicz function, and 
	
		
			
				0
				<
				ℎ
				=
				i
				n
				f
			

			

				𝑘
			

			

				𝑝
			

			

				𝑘
			

			
				≤
				𝑝
			

			

				𝑘
			

			
				≤
				s
				u
				p
			

			

				𝑘
			

			

				𝑝
			

			

				𝑘
			

			
				=
				𝐻
			

		
	
. Then, 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

			
				⊂
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

		
	
.
Proof. Let 
	
		
			
				𝑥
				∈
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
. Then there exists a number 
	
		
			
				𝜌
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				⟶
				0
				,
			

			
				a
				s
			

			
				𝑟
				→
				∞
				.
			

		
	
Then, given 
	
		
			
				𝜖
				>
				0
			

		
	
, we have
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				≥
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑟
				𝑘
				∈
				𝐼
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≥
				𝜖
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				≥
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑟
				𝑘
				∈
				𝐼
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≥
				𝜖
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				𝑝
			

			

				𝑘
			

			

				,
			

			
				w
				h
				e
				r
				e
			

			
				𝜖
				/
				𝜌
				=
				𝜖
			

			

				1
			

			
				≥
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			
				
				
				
				𝑀
				m
				i
				n
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				ℎ
			

			
				,
				
				𝑀
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				𝐻
			

			
				
				≥
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				
				
				𝑀
				≥
				𝜖
				⋅
				m
				i
				n
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				ℎ
			

			
				,
				
				𝑀
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				𝐻
			

			
				
				.
			

		
	
Hence, 
	
		
			
				𝑥
				∈
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

		
	
. This completes the proof of the theorem.
Theorem 9.  Let 
	
		
			
				𝜃
				=
				(
				𝑘
			

			

				𝑟
			

			

				)
			

		
	
 be a lacunary sequence, 
	
		
			
				ℳ
				=
				(
				𝑀
			

			

				𝑘
			

			

				)
			

		
	
 be a Musielak-Orlicz function, and 
	
		
			
				𝑝
				=
				(
				𝑝
			

			

				𝑘
			

			

				)
			

		
	
 be a bounded sequence; then 
	
		
			
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

			
				⊂
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
.
Proof. Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			
				)
				∈
				𝑙
			

			

				∞
			

		
	
 with 
	
		
			

				𝑥
			

			

				𝑘
			

			
				→
				𝑙
				(
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				𝑆
				]
			

			

				𝜃
			

			

				)
			

		
	
. Since 
	
		
			
				𝑥
				∈
				𝑙
			

			

				∞
			

		
	
, there is a constant 
	
		
			
				𝑇
				>
				0
			

		
	
 such that 
	
		
			
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				≤
				𝑇
			

		
	
, and given 
	
		
			
				𝜖
				>
				0
			

		
	
, we have
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				=
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑟
				𝑘
				∈
				𝐼
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				⋯
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≥
				𝜖
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				+
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑟
				𝑘
				∈
				𝐼
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				<
				𝜖
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				≤
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑟
				𝑘
				∈
				𝐼
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				)
				/
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≥
				𝜖
			

			
				
				
				𝑀
				m
				a
				x
			

			

				𝑘
			

			
				
				𝑇
			

			
				
			
			
				𝜌
				
				
			

			

				ℎ
			

			
				,
				
				𝑀
			

			

				𝑘
			

			
				
				𝑇
			

			
				
			
			
				𝜌
				
				
			

			

				𝐻
			

			
				
				+
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			

				
			

			
				𝑟
				𝑘
				∈
				𝐼
			

			
				‖
				‖
				(
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
				/
				𝜌
				)
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				<
				𝜖
			

			
				
				𝑀
			

			

				𝑘
			

			
				
				𝜖
			

			
				
			
			
				𝜌
				
				
			

			

				𝑝
			

			

				𝑘
			

			
				
				
				𝑀
				≤
				m
				a
				x
			

			

				𝑘
			

			
				
				(
				𝐾
				)
			

			

				ℎ
			

			
				,
				
				𝑀
			

			

				𝑘
			

			
				
				(
				𝐾
				)
			

			

				𝐻
			

			
				
				×
				1
			

			
				
			
			

				ℎ
			

			

				𝑟
			

			
				|
				|
				|
				|
				
				𝑘
				∈
				𝐼
			

			

				𝑟
			

			
				∶
				‖
				‖
				‖
				𝑢
			

			

				𝑘
			

			

				𝑁
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑙
			

			
				
			
			
				𝜌
				,
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				
				|
				|
				|
				|
				
				
				𝑀
				≥
				𝜖
				+
				m
				a
				x
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				ℎ
			

			
				,
				
				𝑀
			

			

				𝑘
			

			
				
				𝜖
			

			

				1
			

			
				
				
			

			

				𝐻
			

			
				
				,
				𝑇
			

			
				
			
			
				𝜌
				𝜖
				=
				𝐾
				,
			

			
				
			
			
				𝜌
				=
				𝜖
			

			

				1
			

			

				.
			

		
	
Hence, 
	
		
			
				𝑥
				∈
				[
				𝑁
			

			

				𝑘
			

			
				,
				𝑢
				,
				ℳ
				,
				‖
				⋅
				,
				…
				,
				⋅
				‖
				]
			

			

				𝜃
			

		
	
.
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