Research Article
Sunlet Decomposition of Certain Equipartite Graphs

Abolape D. Akwu¹ and Deborah O. A. Ajayi²

¹ Department of Mathematics, University of Agriculture, Makurdi 970001, Nigeria
² Department of Mathematics, University of Ibadan, Ibadan 200001, Nigeria

Correspondence should be addressed to Deborah O. A. Ajayi; adelaideajayi@yahoo.com

Received 28 September 2012; Accepted 5 February 2013

Copyright © 2013 A. D. Akwu and D. O. A. Ajayi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let \(L_{2m} \) stand for the sunlet graph which is a graph that consists of a cycle and an edge terminating in a vertex of degree one attached to each vertex of cycle \(C_n \). The necessary condition for the equipartite graph \(K_n + I \ast \overline{K}_m \) to be decomposed into \(L_{2m} \) for \(n \geq 2 \) is that the order of \(L_{2m} \) must divide \(n^2m^2/2 \), the order of \(K_n + I \ast \overline{K}_m \). In this work, we show that this condition is sufficient for the decomposition. The proofs are constructive using graph theory techniques.

1. Introduction

Let \(C_r, K_n, \overline{K}_m \) denote cycle of length \(r \), complete graph on \(n \) vertices, and complement of complete graph on \(m \) vertices. For \(n \) even, \(K_n + I \) denotes the multigraph obtained by adding the edges of a 1-factor to \(K_n \), thus duplicating \(n/2 \) edges. The total number of edges in \(K_n + I \) is \(n^2/2 \). The lexicographic product, \(G \ast H \), of graphs \(G \) and \(H \), is the graph obtained by replacing every vertex of \(G \) by a copy of \(H \) and every edge of \(G \) by the complete bipartite graph \(K_{|H|,|H|} \).

For a graph \(H \), an \(H \)-decomposition of a graph \(G, H \mid G \), is a set of subgraphs of \(G \), each isomorphic to \(H \), whose edge set partitions the edge set of \(G \). Note that for any graph \(G \) and \(H \) and any positive integer \(m \), if \(H \mid G \) then \((H \ast \overline{K}_m) \mid (G \ast \overline{K}_m) \).

Let \(G \) be a graph of order \(n \) and \(H \) any graph. The corona (crown) of \(G \) with \(H \), denoted by \(G \circ H \), is the graph obtained by taking one copy of \(G \) and \(n \) copies of \(H \) and joining the \(i \)th vertex of \(G \) with every vertex in the \(i \)th copy of \(H \). A special corona graph is \(C_2 \circ K_2 \), that is, a cycle with pendant points which has \(2n \) vertices. This is called sunlet graph and denoted by \(L_n, q = 2n \).

Obvious necessary condition for the existence of a \(k \)-cycle decomposition of a simple connected graph \(G \) is that \(G \) has at least \(k \) vertices (or trivially, just one vertex), the degree of every vertex in \(G \) is even, and the total number of edges in \(G \) is a multiple of the cycle length \(k \). These conditions have been shown to be sufficient in the case that \(G \) is the complete graph \(K_n \), the complete graph minus a 1-factor \(K_n - I \) [1, 2], and the complete graph plus a 1-factor \(K_n + I \) [3].

The study of cycle decomposition of \(K_n \ast \overline{K}_m \) was initiated by Hoffman et al. [4]. The necessary and sufficient conditions for the existence of a \(C_p \)-decomposition of \(K_n \ast \overline{K}_m \), where \(p \geq 5 \) (\(p \) is prime) that (i) \(m(n - 1) \) is even and (ii) \(p \) divides \(m(n - 1)m^2 \), were obtained by Manikandan and Paulraj [5, 6]. Similarly, when \(p \geq 3 \) is a prime, the necessary and sufficient conditions for the existence of a \(C_{2p} \)-decomposition of \(K_n \ast \overline{K}_m \) were given by Smith [7]. For a prime number \(p \geq 3 \), Smith [8] showed that \(C_{3p} \)-decomposition of \(K_n \ast \overline{K}_m \) exists if the obvious necessary conditions are satisfied. In [9], Anitha and Lekshmi proved that the complete graph \(K_n \) and the complete bipartite graph \(K_{nn} \) for \(n \) even have decompositions into sunlet graph \(L_n \). Similarly, in [10], it was shown that the complete equipartite graph \(K_n \ast \overline{K}_m \) has a decomposition into sunlet graph of length \(2p \), for a prime \(p \).

We extend these results by considering the decomposition of \(K_n + I \ast \overline{K}_m \) into sunlet graphs and prove the following result.

Let \(m \geq 2, n > 2 \), and \(q \geq 6 \) be even integers. The graph \(K_n + I \ast \overline{K}_m \) can be decomposed into sunlet graph of length \(q \) if and only if \(q \) divides \(n^2m^2/2 \), the number of edges in \(K_n + I \ast \overline{K}_m \).
2. Proof of the Result

To prove the result, we need the following.

Lemma 1 (see [10]). For \(r \geq 3 \), \(L_{2r} \) decomposes \(C_r \ast K_2 \).

Lemma 2. For any integer \(r > 2 \) and a positive even integer \(m \), the graph \(C_r \ast K_m \) has a decomposition into sunlet graph \(L_\eta \), for \(\eta = rm \).

Proof

Case 1 \((r \text{ is even})\). First observe that \(C_r \ast K_2 \) can be decomposed into 2 sunlet graphs with \(2r \) vertices. Now, set \(m = 2r \) and decompose \(C_r \ast K_2 \) into cycles \(C_n \). To decompose \(C_r \ast K_2 \) into \(t \)-cycles \(C_{\eta} \), denote vertices in ith part of \(C_r \ast K_2 \) by \(x_{i,j} \) for \(j = 1, \ldots, t \) and create \(t \) base cycles \(x_1, x_2, \ldots, x_{t-1}, x_t \). Next, combine these base cycles into one cycle \(C_n \) by replacing each edge \(x_{i,j}x_{i,j+1} \) with \(x_{i,j}x_{i,j+1} \). To create the remaining cycles \(C_{\eta} \), we apply mappings \(\phi_i \) for \(s = 0, 1, \ldots, t - 1 \) defined on the vertices as follows.

Subcase 1.1 \((i \text{ odd})\). Consider

\[\phi_i(x_{i,j}) = x_{i,j}. \]

This is the desired decomposition into cycles \(C_{\eta} \).

Subcase 1.2 \((i \text{ even})\). Consider

\[\phi_i(x_{i,j}) = x_{i,j+1}. \]

This is the desired decomposition into cycles \(C_{\eta} \).

Now take each cycle \(C_{\eta} \), and make it back into \(C_r \ast K_2 \). Each \(C_{\eta} \ast K_2 \) decomposes into 2 sunlet graphs \(L_{2r} \) (by Lemma 1), and we have \(C_r \ast K_m \) decomposing into sunlet graphs with length \(rm \) for \(r \) even. Note that

\[C_r \ast K_2 = \left(C_r \ast K_1 \right) \ast K_2. \]

Case 2 \((r \text{ odd})\)

Subcase 2.1 \((m \equiv 2 \pmod{4})\). Set \(m = 2r \). First create cycles \(C_{1,1} \), \(C_{r-1,1} \) in \(C_r \ast K_2 \) as in Case 1. Then, take complete tripartite graph \(K_{1,1} \) with partite sets \(X_i = \{ x_{i,j} \} \) for \(i = 0, r, 1 \), \(j = 1, \ldots, t \) and decompose it into triangles using well-known construction via Latin square, that is, construct \(t \times t \) Latin square and consider each element in the form \((a, b, c)\) where \(a \) denotes the row, \(b \) denotes the column, and \(c \) denotes the entry with \(1 \leq a, n, c \leq t \). Each cycle is of the form \(x_{1,a_r}x_{r-1,b}x_{r,c} \). Then, for every triangle \(x_{1,a}x_{r-1,b}x_{r,c} \), replace the edge \(x_{1,a}x_{r-1,b} \) in each \(C_{1,1} \), by the edges \(x_{1,a}x_{r-1,b}x_{r,c} \). This is the desired decomposition into cycles \(C_{\eta} \). Therefore, \(C_r \ast K_2 \) now take each cycle \(C_{\eta} \), make it into \(C_r \ast K_2 \), and by Lemma 1, \(C_r \ast K_2 \) has a decomposition into sunlet graphs \(L_{2r} \) for \(\eta = rm \).

Subcase 2.2 \((m \equiv 0 \pmod{4})\). Set \(m = 2t \). The graph \(C_r \ast K_2 \) decomposes into Hamilton cycle \(C_{2t} \), by [3]. Next, make each cycle \(C_r \) into \(C_r \ast K_2 \). Each graph \(C_r \ast K_2 \) decomposes into sunlet graph \(L_{2r} \) by Lemma 1.

Theorem 3. Let \(r, m \) be positive integers satisfying \(r, m \equiv 0 \pmod{4} \), then \(L_r \) decomposes \(C_r \ast K_m \).

Proof. Let the partite sets (layers) of the \(r \)-partite graph \(C_r \ast K_m \) be \(U_1, U_2, \ldots, U_r \). Set \(m = 2t \). Obtain a new graph from \(C_r \ast K_m \) as follows.

Identify the subsets of vertices \(\{ x_{i,j} \} \) for \(1 \leq i \leq r \) and \(1 \leq j \leq m/2 \) into new vertices \(x_{i,j}^1 \), and identify the subset of vertices \(\{ x_{i,j} \} \) for \(1 \leq i \leq r \) and \(m/2 + 1 \leq j \leq m \) into new vertices \(x_{i,j}^2 \) and two of these vertices \(x_{i,j}^1 \), where \(k = 1, 2 \), are adjacent if and only if the corresponding subsets of vertices in \(C_r \ast K_m \) induce \(K_{t/2} \). The resulting graph is isomorphic to \(C_r \ast K_2 \). Next, decompose \(C_r \ast K_2 \) into cycles \(C_{\eta} \) as follows:

\[x_{k,1}, x_{k,1}, \ldots, x_{k,1}, \ldots, x_{k,2}, x_{k,2}, \ldots, x_{k,2}, \ldots, x_{k,2}, x_{k,2} \]

where \(k, d \) are calculated modulo 4.

To construct the remaining cycles, apply mapping \(\phi \) defined on the vertices.

Subcase 1.1 \((i \text{ odd in each cycle})\). Consider

\[\phi(x_{i,j}) = x_{i,j+1}. \]

This is the desired decomposition of \(C_r \ast K_2 \) into cycles \(C_{\eta} \).

Subcase 1.2 \((i \text{ even in each cycle})\). Consider

\[\phi(x_{i,j}) = x_{i,j}. \]

This is the desired decomposition of \(C_r \ast K_2 \) into cycles \(C_{\eta} \).

By lifting back these cycles \(C_{\eta} \) of \(C_r \ast K_2 \) to \(C_r \ast K_2 \), we get edge-disjoint subgraphs isomorphic to \(C_r \ast K_2 \). Obtain a new graph again from \(C_{\eta} \ast K_2 \).

For each \(j, 1 \leq j \leq t/2 \), identify the subsets of vertices \(\{ x_{2,2j-1}, x_{2,2j} \} \), where \(1 \leq i \leq r/2 \) into new vertices \(x_{i,j}^1 \), and two of these vertices \(x_{i,j}^1 \) are adjacent if and only if the corresponding subsets of vertices in \(C_{\eta} \ast K_2 \) induce \(K_{t/2} \). The resulting graph is isomorphic to \(C_{\eta} \ast K_{t/2} \). Then, decompose \(C_{\eta} \ast K_{t/2} \) into cycles \(C_{\eta} \). Each \(C_{\eta} \ast K_{t/2} \) decomposes into cycles \(C_{\eta} \) by [12]. By lifting back these cycles \(C_{\eta} \ast K_{t/2} \) to \(C_{\eta} \ast K_m \), we get edge-disjoint subgraph isomorphic to \(C_{\eta} \ast K_2 \). Finally, each \(C_{\eta} \ast K_2 \) decomposes into two sunlet graphs \(L_r \) (by Lemma 1), and we have \(C_r \ast K_m \) decomposing into sunlet graphs \(L_r \), as required.

Theorem 4 (see [12]). The cycle \(C_m \) decomposes \(C_k \ast K_m \) for every even \(m > 3 \).

Theorem 5 (see [12]). If \(m \) and \(k \geq 3 \) are odd integers, then \(C_m \) decomposes \(C_k \ast K_m \).
Theorem 6. The sunlet graph \(L_m \) decomposes \(C_r \ast K_m \) if and only if either one of the following conditions is satisfied.

(1) \(r \) is a positive odd integer, and \(m \) is a positive even integer.

(2) \(r, m \) are positive even integers with \(m \equiv 0 \pmod{4} \).

Proof. (1) Set \(m = 2t \), where \(t \) is a positive integer. Let the partite sets (layers) of the \(r \)-partite graph \(C_r \ast K_m \) be \(U_1, U_2, \ldots, U_r \). For each \(j \), where \(1 \leq j \leq t \), identify the subsets of vertices \(\{x_i, 1-j, x_{i,j}\} \), for \(1 \leq i \leq r \) into new vertices \(x_i^j \), and two of these vertices \(x_i^j \) are adjacent if and only if the corresponding subsets of vertices in \(C_r \ast K_m \) induce \(K_{2,2} \). The resulting graph is isomorphic to \(C_r \ast K_t \). Then, decompose \(C_r \ast K_t \) into cycles \(C_t \), where \(t \) is a positive integer.

Now, \(C_t \ast C_r \ast K_t \) by Theorems 4 and 5.

By lifting back these \(t \)-cycles of \(C_r \ast K_t \), to \(C_r \ast K_{2t} \), we get edge-disjoint subgraphs isomorphic to \(C_t \ast K_{2t} \). Each copy of \(C_t \ast K_{2t} \) decomposes into sunlet graphs of length \(2t \) (by Lemma 1), and we have \(C_t \ast K_t \) decomposing into sunlet graphs of length \(m \) as required.

(2) \(m = 2t \), where \(t \) is an even integer since \(m \equiv 0 \pmod{4} \).

Obtain a new graph \(C_t \ast K_{2t} \) from the graph \(C_r \ast K_m \) as in Case 1. By Theorem 4, \(C_t \ast C_r \ast K_t \). By lifting back these \(t \)-cycles of \(C_r \ast K_t \), to \(C_r \ast K_{2t} \), we get edge-disjoint subgraphs isomorphic to \(C_t \ast K_{2t} \). Each copy of \(C_t \ast K_{2t} \) decomposes into sunlet graph of length \(2t \) (by Lemma 1). Therefore, \(L_m \) decomposes into \(C_t \ast K_t \) as required. \(\Box \)

Remark 7. In [10], it was shown that

\[
L_{2t} \ast K_1 \text{ can be decomposed into } 2 \text{ copies of } L_{2t}.
\] (7)

This, coupled with Lemma 1, gives the following.

Theorem 8 (see [10]). The graph \(C_r \ast K_{2t} \) decomposes into sunlet graphs \(L_{2t} \) for any positive integer \(l \).

Lemma 9 (see [3]). Let \(n \geq 4 \) be an even integer. Then, \(K_n + I \) is \(C_n \)-decomposable.

Lemma 10 (see [3]). Let \(m \) and \(n \) be integers with \(m \) odd, \(n \equiv 2 \pmod{4} \), \(3 \leq m \leq n < 2m \), and \(n^2 \equiv 0 \pmod{2m} \). Then, \(K_n + I \) is \(C_m \)-decomposable.

Lemma 11 (see [3]). Let \(m \) and \(n \) be integers with \(m \) odd, \(n \equiv 0 \pmod{4} \), \(3 \leq m \leq n < 2m \), and \(n^2 \equiv 0 \pmod{2m} \). Then, \(K_n + I \) is \(C_m \)-decomposable.

We can now prove the major result.

Theorem 12. For any even integers \(m \geq 2 \), \(n > 2 \), and \(q \geq 6 \), the sunlet graph \(L_q \) decomposes \(K_n + I \ast K_m \) if and only if \(n^2 / 2 \equiv 0 \pmod{m} \).

Proof. The necessity of the condition is obvious, and so we need only to prove its sufficiency. We split the problem into the following two cases.

Case 1 \((q \mid n)\)

Subcase 1.1 \((n > q)\). Cycle \(C_n \) decomposes \(K_n + I \) by Lemma 9, and we have

\[
C_n \ast K_m \mid K_n + I \ast K_m.
\] (8)

Each graph \(C_n \ast K_m \) decomposes into sunlet graph \(L_q \), where \(q = mn \) by Lemma 2, and we have \(K_n + I \ast K_m \) decomposing into sunlet graph \(L_q \), where \(q > n \).

Subcase 1.2 \((q = n)\). First, consider \(n \equiv 0 \pmod{4} \).

Cycle \(C_q \) decomposes \(K_q + I \) by Lemma 9, and we have

\[
C_q \ast K_m \mid K_q + I \ast K_m.
\] (9)

Now, sunlet graph \(L_q \mid (C_q \ast K_m) \) by Theorem 3, and hence sunlet graph \(L_q \) decomposes \(K_q + I \ast K_m \).

Also, consider \(n \equiv 2 \pmod{4} \).

Suppose \(m = 2t \). Cycle \(C_{q/2} \) decomposes \(K_q + I \) by Lemma 10, and we have

\[
C_{q/2} \ast K_{2t} \mid K_q + I \ast K_{2t}.
\] (10)

Now, sunlet graph \(L_q \mid (C_{q/2} \ast K_{2t}) \) by Theorem 8, and we have \(K_n + I \ast K_m \) decomposing into sunlet graph of length \(q \).

Case 2 \((q \mid m)\)

Subcase 2.1 \((m \equiv 0 \pmod{4})\). Suppose \(m = q \), and by Lemma 9, cycle \(C_n \) decomposes \(K_n + I \), and we have

\[
C_n \ast K_q \mid K_n + I \ast K_q.
\] (11)

Also, sunlet graph \(L_q \) decomposes each \(C_n \ast K_q \) by Theorem 6, and we have sunlet graph \(L_q \) decomposing \(K_n + I \ast K_m \).

Subcase 2.2 \((m \equiv 2 \pmod{4})\). Let \(m = q \) and \(r \leq n \) an odd integer. Cycle \(C_r \) decomposes \(K_n + I \), by Lemmas 9, 10, and 11, and we have

\[
C_r \ast K_q \mid K_n + I \ast K_q.
\] (12)

Now, each \(C_r \ast K_q \) decomposes into sunlet graph \(L_q \) by Theorem 6, and we have \(K_n + I \ast K_m \) decomposing into sunlet graph \(L_q \) as required.

Subcase 2.3 \((m > q)\). Set \(m = wq \), where \(w \) is any positive integer, then by Subcases 2.1 and 2.2, we have

\[
L_q \ast K_w \mid (K_n + I \ast K_q) \ast K_w.
\] (13)

Each graph \(L_q \ast K_w \) decomposes into sunlet graph \(L_q \) by Remark 7, and we have \(K_n + I \ast K_m \) decomposing into sunlet graph \(L_q \). \(\square \)
References

