Research Article

The Use of a Flexible Calix[4]arene Template to Stabilize a Cyclooctatetraendiyl Samarium-Potassium Complex

Geoffroy Guillemot,1,2 Euro Solari,1 Carlo Floriani,1 and Thierry Prangé3

1 Institut de Chimie Moléculaire et Biologique, Ecole Polytechnique Fédérale de Lausanne, EPFL-BCH, CH-1015 Lausanne, Switzerland
2 Institut Parisien de Chimie Moléculaire (UMR 7201-CNRS), Université Pierre et Marie Curie, Case Courrier 42, 4 Place Jussieu, 75252 Paris Cedex 05, France
3 Laboratoire de Cristallographie et RMN Biologiques (UMR 8015-CNRS), Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de l’Observatoire, 75006 Paris, France

Correspondence should be addressed to Prangé Thierry; thierry.prange@parisdescartes.fr

Received 13 May 2013; Accepted 3 October 2013

A sandwich compound of cyclooctatetraendiyl (COT)\(^{2-}\) samarium-potassium was synthesized and analyzed using a flexible calix[4]arene dianion. This compound, \([\text{p-tBu-calix[4]-(OMe)}_2(O)]_2\text{arenediyl-samarium(η8-cyclooctatetraendiyl)-potassium \(\mu(\text{tetrahydrofuran})_3\)]\), is constructed as a linear sequence L-Sm-L'\(\mu\)(L''-K-L'), where L, L', and L'' are specific ligands with L = O,O-dimethyl-calix[4]arene\(^{2-}\), L' = cyclo-octatetraendiyl, and L'' = tetrahydrofuran templates.

1. Introduction

For a long time, the organometallic chemistry of lanthanides (Ln) [1] has been dominated by the use of polycyclic hydrocarbons including the cyclopentadienyl anion or the cyclooctatetraendiyl dianion, as exemplified by the well-known lanthanocene \([\text{Cp}_2\text{Ln(III)}]^+\) [2] and [bis(cyclooctatetraenyl)Ln]\(^{-}\) complexes [3]. In the last two decades, the organometallic and redox chemistry of these hard metal ions has been extensively developed by the introduction of amido, thiolato, and aryloxo ligands as well as macrocyclic ligands, such as octa-alkyl-porphyrinogens and calix[4]arenes [4, 5], and a number of such complexes of COT\(^{2-}\) complexes have recently been published [6–10]. Calixarenes are useful building blocks in supramolecular chemistry for complexing metallic cations [11]; the use of calix[4]arene anions [12] brings significant peculiarities: (i) the electron-rich environment provided by the oxygen donor atoms forms an ideal platform for developing the organometallic and redox chemistry of lanthanides, (ii) the quasi-planar arrangement of the four oxygen atoms resulting from the cone conformation of the calix allows the formation of “half-sandwich”-type metallic complexes, and (iii) it can accommodate up to 12 electrons to the metal centre depending on the degree of \(\pi\)-donation. Therefore, it came out that an interesting analogy can be drawn between the quasi-planar calix[4]arene polyanion and its electronically similar cyclooctatetraendiyl dianion [13] in the attempt to develop new scaffoldings in organometallic chemistry of Lanthanides. In the present study we report on the synthesis and crystallographic analysis of the mixed cyclooctatetraendiyl samarium-potassium complex: \([\text{p-tBu-calix[4]-(OMe)}_2(O)_2]\text{arenediyl samarium(η8-cyclooctatetraendiyl) potassium \(\mu(\text{THF})_3\)]\), stabilized by a flexible calix[4]arene dianion template, a compound that widens the ability of unsymmetrical calix[4]arene as a useful and adaptable ligand in organometallic chemistry.

2. Experimental

A solution of cyclooctatetraendiide dipotassium in THF [14] (8.8 mL, 0.275 M, 2.42 mmol) was added dropwise to a suspension of 2 (4.6 g, 2.47 mmol) [15] in THF (150 mL)
at −30°C. The reaction mixture was stirred overnight while slowly warming to room temperature, leading to a suspension of a white solid in a red solution. The solid was filtered off, the solution was concentrated to ca. 30 mL, and subsequently kept at 3°C. The orange precipitate was collected and dried in vacuo. Yield: 2.1 g (34%) of 3.

Elemental analysis calc (%) for C_{99}H_{88}KO{\text{Sm}} (1257.04): C 66.88, H 7.86; found: C 66.49, H 7.60. Crystals suitable for X-ray crystallography were grown at 3°C from a THF solution.

Crystal data: Triclinic, with parameters \(a = 14.4610(2)\ \text{Å}; b = 15.4330(4)\ \text{Å}; c = 6.5550(4)\ \text{Å}; \alpha = 106.02(5)\; ^\circ; \beta = 98.62(5)\; ^\circ; \gamma = 102.08(5)\; ^\circ\); and \(V = 3387(1)\ \text{Å}^3\). Crystals were very sensitive to air and moisture. They were filtered out under neutral atmosphere or under oil using a nylon loop and immediately cryocooled in liquid nitrogen.

Diffraction data were collected at \(T = 143\ \text{K}\) on a Mar345 Image Plate detector (\(3^\circ < 2\theta < 52^\circ\)) using the Mo Ka wavelength in the rotation method (180 steps of one degree per frame). Diffraction data were processed with the HKL package [16] (22696 recorded reflections; redundancy = 2; \(R_{\text{sym}} = 0.028\); completeness 92%). No absorption correction was applied. The final data set was reformatted for structure determination and refinement using the SHELXS/L programs [17].

The structure was solved in centrosymmetric P-1 space group by direct methods. During refinements, a solvated THF molecule was located highly disordered in the packing with high temperature factors. Hydrogen atoms were kept at their theoretical places and refined as riding atoms to their bonded carbon. The four terbutyls of the calix[4]arene ligand known to still rotate at low temperature were refined as restrained groups. The final \(R\) was 0.0514 (10196 observed data with \(I > 2\sigma(I)\)) and \(wR2 = 0.1335\) (calculated with the 11873 unique squared reflections having \(I > 0\)). The coordinates were deposited with the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, ref. 880827.

3. Discussion

The starting materials we devised in our previous work on lanthanides chemistry are displayed in Scheme 1. The use of the bis-O-methylated calix[4]arene allows tuning of the macrocyclic charge [12] to a value appropriate for entering the chemistry of lanthanides. The reaction of LnCl$_2$(THF)$_2$ with the lithium or sodium salt of [p-tBu-calix[4]-(OMe)$_2$(OHi)$_2$] [18] led to the formation of dimeric complexes [p-tBu-calix[4]-(OMe)$_2$(OHi)$_2$]$_2$-Ln(THF)$_2$(\(\mu\)-Cl)$_2$, in which the metal ions are bridged by two chloride anions. Under dinitrogen, the reduction of these lanthanide complexes (Ln=Pr, Sm) by sodium naphthalenide has been reported to carry out the four-electron reduction of dinitrogen to a \(\eta^2-N_2\) moiety supported by a trinuclear complex and exhibiting a very high degree of \(d(N-N)\) bond elongation [15]. The analogy between C$_8$H$_8^{2-}$ and [p-tBu-calix[4]-(OMe)$_2$(OHi)$_2$]$_2$-L$_2$-Cl$_2$ dianions led us to investigate the exchange reaction between [p-tBu-calix[4]-(OMe)$_2$(OHi)$_2$]$_2$-L$_2$-Cl$_2$ and C$_8$H$_8$K$_2$. This gave the mixed sandwich compound 3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Da (Å)</th>
<th>Db (Å)</th>
<th>(\varepsilon)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring I</td>
<td>9.9375(5)</td>
<td>5.467(5)</td>
<td>0.835</td>
<td>—</td>
</tr>
<tr>
<td>Ring II</td>
<td>9.854(5)</td>
<td>5.396(5)</td>
<td>0.836</td>
<td>—</td>
</tr>
<tr>
<td>Ring I</td>
<td>9.689(3)</td>
<td>5.816(3)</td>
<td>0.799</td>
<td>[15]</td>
</tr>
<tr>
<td>Ring I</td>
<td>8.861(4)</td>
<td>7.752(4)</td>
<td>0.484</td>
<td>id</td>
</tr>
<tr>
<td>Ring II</td>
<td>9.668(4)</td>
<td>7.441(4)</td>
<td>0.638</td>
<td>id</td>
</tr>
<tr>
<td>Ring III</td>
<td>9.503(4)</td>
<td>5.694(4)</td>
<td>0.800</td>
<td>id</td>
</tr>
</tbody>
</table>

\(\Delta, Db, \) and \(\varepsilon\) are the long and short distances and eccentricity of the ellipse which encompasses the four para aromatic carbons of the ligand.

Ligand L. On one side, a dissymmetric calix[4]arene is used with alternate protected (methoxy) and free (oxygen anion) polar atoms. It interacts with the samarium cation at short distance with only two oxygens, forcing the skeleton to assume a very constrained elliptical conformation with the Sm1-O(2) and Sm1-O(4) distances, particularly long (\(d_2 = 2.694(3)\) Å and \(d_4 = 2.795(4)\) Å) compared to the two others, Sm1-O(1) and Sm1-O(3) (\(d_1 = 2.189(3)\) Å and \(d_3 = 2.186(3)\) Å). Table 1 reports the macrocycle ring eccentricity compared with two other nonsymmetric calix[4]arene compounds, the parent dimer ([L-SmCl]$_2$) 2, and the corresponding ([L$_2$Sm$_2$N$_2$]) complex 4 (Scheme 1), all using the same flexible ligand. The calix[4] ligand in the asymmetric unit of 3 has a much higher \(\varepsilon\) value than those observed in the structures of 2 and 4 [15]. It is interesting to note that, in the dinitrogen complex 4, the three calix[4]arene ligands adapt themselves to the central Sm$_2$N$_2$ cluster, through their high plasticity. This is evidenced by the different values of each \(\varepsilon\) parameter (Table 1).

L'-The Central Ligand. The cyclooctatetraenidyl dianion adopts a perfect planar configuration due to its aromaticity and supports a full coordination with both the potassium and samarium cations located on opposite sides. Within the dianion, the average bond distance is \(\langle d\rangle = 1.413\) Å with s.d. \(\sim 0.03\) Å, while the mean angle is around the ideal value of \(3\pi/4\) with s.d. \(\sim 1.0^\circ\). These values correspond to a nearly perfect, unconstrained octagon. The two samarium and potassium cations at 4.552(2) Å from each other are perpendicular to the center of the ring with individual distances = 2.09 and 2.46 Å from the COT plane, respectively. These distances are relevant to a similar partition of charges.
on both sides according to the respective ionic radii of Sm\(^{3+}\) and K\(^+\) (\(\sim 1.1\) and 1.33 Å).

L\(^\prime\)'-Potassium Template. The potassium ion completes on the other side its coordination sphere with three molecules of THF.

Solvation. In addition to the title molecule in the asymmetric unit, there is an additional solvated THF molecule (not shown in Figure 1) with very large thermal parameters. This molecule lies in the vicinity of the L\(^\prime\)' ligand.

4. Conclusion

The present structure of a mixed rare earth-potassium complex of cyclooctatetraenyl dianion, together with the two other crystal structures of 2 and 4, illustrates and generalizes how the plasticity of a calix[4]arene dianion with alternate MeO/O-polar groups can be used in the building of stable scaffolds in reactive organometallic systems of lanthanides.

References

[6] J. Xia, Z. Jin, and W. Chen, "Synthesis and crystal structure of a new lanthanide cyclooctatetraenyl complex (η\(^5\)-C\(_8\)H\(_8\))Er(μ-η\(^5\)-C\(_8\)H\(_8\))Et(μ-η\(^5\)-C\(_8\)H\(_8\)) Er(η\(^5\)-C\(_8\)H\(_8\)) K(THF)\(_4\)," *Journal of the Chemical Society, Chemical Communications*, no. 17, pp. 1214–1215, 1991.

Submit your manuscripts at
http://www.hindawi.com