Research Article

On Entire and Meromorphic Functions That Share One Small Function with Their Differential Polynomial

Subhas S. Bhoosnurmath and Smita R. Kabbur

Department of Mathematics, Karnatak University, Dharwad 580003, India

Correspondence should be addressed to Subhas S. Bhoosnurmath; ssbmath@gmail.com

Received 24 September 2012; Accepted 22 December 2012

Academic Editor: Mats Ehrnström

We study the uniqueness of meromorphic functions that share one small function with more general differential polynomial $P[f]$. As corollaries, we obtain results which answer open questions posed by Yu (2003).

1. Introduction and Main Results

In this paper, a meromorphic functions mean meromorphic in the whole complex plane. We use the standard notations of Nevanlinna theory (see [1]). A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ if $T(r,a) = S(r,f)$, that is, $T(r,a) = o(T(r,f))$ as $r \to \infty$ possibly outside a set of finite linear measure. If $f(z) - a(z)$ and $g(z) - a(z)$ have the same zeros with same multiplicities (ignoring multiplicities), then we say that $f(z)$ and $g(z)$ share $a(z)$ CM(IM).

For any constant a, we denote by $N_{k}(r,1/(f - a))$ the counting function for zeros of $f(z) - a$ with multiplicity no more than k and $N_{k}(r,1/(f - a))$ the corresponding for which multiplicity is not counted. Let $N_{k}(r,1/(f - a))$ be the counting function for zeros of $f(z) - a$ with multiplicity at least k and $N_{k}(r,1/(f - a))$ the corresponding for which the multiplicity is not counted.

Let f and g be two nonconstant meromorphic functions sharing value 1IM. Let z_0 be common one point of f and g with multiplicity p and q, respectively. We denote by $N_{k}(r,1/(f - 1))$ ($N_{k}(r,1/(g - 1))$) the counting function of those 1-points of f where $p > q$; by $N_{k}^{(1)}(r,1/(f - 1))$ the counting function of those 1-points of f where $p = q = 1$; by $N_{k}^{(2)}(r,1/(f - 1))$ the counting function of those 1-points of f where $p = q \geq 2$. In the same way, we can define $N_{k}(r,1/(g - 1))$, $N_{k}^{(1)}(r,1/(g - 1))$ and $N_{k}^{(2)}(r,1/(g - 1))$ (see [2]).

Conjecture 1. Let f be a nonconstant entire function such that the hyper-order $\sigma_{2}(f)$ of f is not a positive integer and $\sigma_{2}(f) < \infty$. If f and $f^{(k)}$ share a finite value a CM, then $(f^{(k)} - a)/(f - a) = c$, where c is a nonzero constant.

Many people extended this theorem and obtained many results. In 2003, Yu [4] proved the following theorem.

Theorem B. Let $k \geq 1$. Let f be a nonconstant meromorphic function and $a(z)$ a meromorphic function such that $a(z) \neq 0, \infty$, f and a do not have any common pole and $T(r,a) = \sigma(T(r,f))$ as $r \to \infty$. If $f - a$ and $f^{(k)} - a$ share the value 0 CM and

$$4\delta(0,f) + 2(8 + k)\Theta(\infty,f) > 19 + 2k,$$

then $f \equiv f^{(k)}$.

In [3], under an additional hypothesis, Brück proved that the conjecture holds when $a = 1$.

Theorem A. Let f be a nonconstant entire function. If f and $f^{(k)}$ share the value 1 CM and $N(r,1/(f^{(k)})) = S(r,f)$, then $(f^{(k)} - 1)/(f - 1) = c$, for some constant $c \in \mathbb{C} \setminus \{0\}$.

Many people extended this theorem and obtained many results. In 2003, Yu [4] proved the following theorem.

Theorem B. Let $k \geq 1$. Let f be a nonconstant meromorphic function and $a(z)$ a meromorphic function such that $a(z) \neq 0, \infty$, f and a do not have any common pole and $T(r,a) = \sigma(T(r,f))$ as $r \to \infty$. If $f - a$ and $f^{(k)} - a$ share the value 0 CM and

$$4\delta(0,f) + 2(8 + k)\Theta(\infty,f) > 19 + 2k,$$

then $f \equiv f^{(k)}$.

In this paper, we use the standard notations of Nevanlinna theory (see [1]). A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ if $T(r,a) = S(r,f)$, that is, $T(r,a) = o(T(r,f))$ as $r \to \infty$ possibly outside a set of finite linear measure. If $f(z) - a(z)$ and $g(z) - a(z)$ have the same zeros with same multiplicities (ignoring multiplicities), then we say that $f(z)$ and $g(z)$ share $a(z)$ CM(IM).
Theorem C. Let $k \geq 1$. Let f be a nonconstant entire function and $a(z)$ be a meromorphic function such that $a(z) \neq 0, \infty$ and $T(r, a) = o(T(r, f))$ as $r \to \infty$. If $f - a$ and $f^{(k)} - a$ share the value 0 CM and
\[
\delta(0, f) > \frac{3}{4},
\]
then $f \equiv f^{(k)}$.

In the same paper, the author posed the following questions.

Question 1. Can a CM shared value be replaced by an IM shared value in Theorem C?

Question 2. Is the condition $\delta(0, f) > 3/4$ sharp in Theorem C?

Question 3. Is the condition $4\delta(0, f) + 2(8 + k)\Theta(\infty, f) > 19 + 2k$ sharp in Theorem B?

In 2004, Liu and Gu [5] applied different method and obtained the following theorem which answers some questions.

Theorem D. Let $k \geq 1$. Let f be a nonconstant meromorphic function and $a(z)$ a meromorphic function such that $a(z) \neq 0, \infty$ and $T(r, a) = S(r, f)$ as $r \to \infty$. If $f - a$ and $f^{(k)} - a$ share the value 0 CM and $f^{(k)}$ and $a(z)$ do not have any common poles of same multiplicity and
\[
2\delta(0, f) + 4\Theta(\infty, f) > 5,
\]
then $f \equiv f^{(k)}$.

Theorem E. Let $k \geq 1$. Let f be a nonconstant entire function and $a(z)$ a meromorphic function such that $a(z) \neq 0, \infty$ and $T(r, a) = S(r, f)$ as $r \to \infty$. If $f - a$ and $f^{(k)} - a$ share the value 0 CM and
\[
\delta(0, f) > \frac{1}{2},
\]
then $f \equiv f^{(k)}$.

Recently, Zhang and Lü [6] considered the problem of meromorphic functions sharing one small function with its kth derivative and proved the following theorem.

Theorem F. Let $k(\geq 1), n(\geq 1)$ be integers and f a nonconstant meromorphic function. Also let $a(z) \neq 0, \infty$ be a small meromorphic function with respect to f. If f^n and $f^{(k)}$ share the value $a(z)$ IM and
\[
(2k + 6)\Theta(\infty, f) + 4\Theta(0, f) + 2\delta_{k+2}(0, f) > 2k + 12 - n,
\]
then $f \equiv f^{(k)}$.

or f^n and $f^{(k)}$ share the value $a(z)$ CM and
\[
(k + 3)\Theta(\infty, f) + 2\Theta(0, f) + \delta_{k+2}(0, f) > k + 6 - n,
\]
then $f \equiv f^{(k)}$.

Regarding these results, a natural question is what can be said when a nonconstant meromorphic function f shares one nonzero small meromorphic function $a(z)$ with $P[f]$, where $P[f]$ is a differential polynomial in f.

Definition 2. Any expression of the type
\[
P[f] = \sum_{j=0}^{n} a_j(z) f^{n_j}(f^{(ij)})^{n_{ij}} \cdots (f^{(mj)})^{n_{mj}}
\]
is called differential polynomial in f of degree $\overline{d}(P)$, lower degree $\underline{d}(P)$, and weight Γ_p, where n_0, n_1, \ldots, n_m are non-negative integers, $a_i = a_i(z)$ are meromorphic functions satisfying $T(r, a_i) = S(r, f)$ and
\[
\overline{d}(P) = \max \left\{ \sum_{j=0}^{m} n_{ij} : 1 \leq i \leq n \right\},
\]
\[
\underline{d}(P) = \min \left\{ \sum_{j=0}^{m} n_{ij} : 1 \leq i \leq n \right\},
\]
\[
\Gamma_p = \max \left\{ \sum_{j=0}^{m} (j + 1) n_{ij} : 1 \leq i \leq n \right\}.
\]

Further, if $\overline{d}(P) = \underline{d}(P) = n$ (say), then the differential polynomial $P[f]$ is called a homogeneous differential polynomial in f of degree n.

Correspond to the above question, we obtain the following results, which extend and improve Theorems A–F and give answers to the questions posed by Yu [4] for more general differential polynomial.

Theorem 3. Let f be a nonconstant meromorphic function and $a(z)$ be a small meromorphic function such that $a(z) \neq 0, \infty$. If f and $P[f]$ be a nonconstant differential polynomial in f as defined in (7). If f and $P[f]$ share the value a IM and
\[
(2Q + 6)\Theta(\infty, f) + (2 + 3\overline{d}(P))\delta(0, f) > 2Q + 2\underline{d}(P) + \overline{d}(P) + 7,
\]
then $f \equiv P[f]$.

Remark 4. Taking $P[f] = f^{(k)}$, that is, $Q = k$, $\overline{d}(P) = \underline{d}(P) = 1$ in (9), we get $(2k + 6)\Theta(\infty, f) + 5\delta(0, f) > 2k + 10$, which improves (3) and extends the theorem to more general differential polynomial $P[f]$ as defined in (7).

Theorem 5. Let f be a nonconstant meromorphic function and $a(z)$ be a small meromorphic function such that $a(z) \neq 0, \infty$. Let $P[f]$ a nonconstant differential polynomial in f as defined in (7). If f and $P[f]$ share the value a CM and
\[
3\Theta(\infty, f) + (\underline{d}(P) + 1)\delta(0, f) > 4,
\]
then $f \equiv P[f]$.

Remark 6. Taking \(P[f] = f^{(k)} \), that is, \(Q = k, \widetilde{d}(P) = d(P) = 1 \) in (10), we get \(3\Theta(\infty, f) + 2\delta(0, f) > 4 \), which improves (6) and extends the theorem to more general differential polynomial \(P[f] \) as defined in (7).

Remark 6 gives answer to Question 3 of [4].

Theorem 7. Let \(f \) be a nonconstant entire function and \(a(z) \) a small meromorphic function such that \(a(z) \not\equiv 0, \infty \). Let \(P[f] \) be a nonconstant differential polynomial in \(f \) as defined in (7) If \(f \) and \(P[f] \) share the value \(a \) IM and

\[
(3\delta(P) + 2) \delta(0, f) > 2\delta(P) + 2, \tag{11}
\]

then \(f \equiv P[f] \).

Remark 8 gives answer to Question 1 of Yu [4].

Theorem 9. Let \(f \) be a nonconstant entire function and \(a(z) \) be a small meromorphic function such that \(a(z) \not\equiv 0, \infty \). Let \(P[f] \) be a nonconstant differential polynomial in \(f \) as defined in (7) If \(f \) and \(P[f] \) share the value \(a \) CM and

\[
(\delta(P) + 1) \delta(0, f) > 1, \tag{13}
\]

then \(f \equiv P[f] \).

Remark 10. Taking \(P[f] = f^{(k)} \), that is, \(Q = k, \widetilde{d}(P) = d(P) = 1 \) in (13), we get \(\delta(0, f) > 1/2 \), which improves Theorem C and extends the theorem to more general differential polynomial \(P[f] \) as defined in (7).

Remark 10 gives answer to Question 2 of Yu [4].

Remark 11. By proving Remarks 6, 8, and 10 we have answered Questions 3, 1, and 2 (of [4]), respectively, for the case \(f^{(k)} \). Theorems 3–9 improve and generalize Theorems A–F for more general differential polynomial \(P[f] \).
Lemma 15. Let \(f \) be a transcendental meromorphic function. Let \(P[f] \) be defined as in (7). If \(P[f] \not\equiv 0 \), we have
\[
N\left(r, \frac{1}{P[f]}\right) \leq T(r, P[f]) + \left(\overline{d}(P) - \underline{d}(P)\right) m\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f}\right) + S(r, f),
\]
where
\[
N(\overline{d}(P)) = \overline{N}(r, f) + Q\overline{N}(r, f) + S(r, f).
\]

Proof. By the first fundamental theorem, we have
\[
N\left(r, \frac{1}{P[f]}\right) = T(r, P[f]) - m\left(r, \frac{1}{P[f]}\right) + O(1).
\]

We have
\[
m\left(r, \frac{1}{\overline{d}(P)}\right) = m\left(r, \frac{P[f]}{\overline{d}(P)}\right) + m\left(r, \frac{1}{P[f]}\right)
\]
and
\[
m\left(r, \frac{1}{\underline{d}(P)}\right) = m\left(r, \frac{P[f]}{\underline{d}(P)}\right) \leq m\left(r, \frac{1}{P[f]}\right)
\]
or
\[
m\left(r, \frac{1}{P[f]}\right) \leq -m\left(r, \frac{1}{\overline{d}(P)}\right) + m\left(r, \frac{P[f]}{\overline{d}(P)}\right).
\]

By (21), (23) and Lemma 12, we obtain (19). Since
\[
T(r, P[f]) = m\left(r, \frac{P[f]}{\overline{d}(P)}\right) + m\left(r, \frac{P[f]}{\overline{d}(P)}\right) + \overline{d}(P) N\left(r, \frac{1}{f}\right) + Q\overline{N}(r, f) + S(r, f)
\]
we get
\[
T(r, P[f]) \leq \overline{d}(P) T(r, f) + Q\overline{N}(r, f) + S(r, f).
\]
Substituting (25) in (19), we obtain (20).

Lemma 16 (see [10]). Let \(f \) be a transcendental meromorphic function, \(P[f] \) a differential polynomial in \(f \) of degree \(\overline{d}(P) \) and weight \(\Gamma_{P} \). Then \(T(r, P) = O(T(r, f)) \), \(S(r, P) = S(r, f) \).

3. Proof of Theorems

Proof of Theorem 3. Let
\[
F = \frac{P[f]}{a}, \quad G = \frac{f}{a}.
\]
From the conditions of Theorem 3, we know that \(F \) and \(G \) share 1IM. From (26), we have
\[
T(r, F) = O(T(r, f)) + S(r, f), T(r, G) \leq T(r, f) + S(r, f),
\]
\[
\overline{N}(r, F) = \overline{N}(r, G) + S(r, f),
\]
\[
\overline{N}(r, F) = \overline{N}(r, f) + S(r, f), \overline{N}(r, G)
\]
\[
= \overline{N}(r) + S(r, f),
\]
\[
N_{E}^{1}\left(r, \frac{1}{F - 1}\right) + N_{E}^{2}\left(r, \frac{1}{G - 1}\right) + S(r, f)\]
\[
N_{L}\left(r, \frac{1}{F - 1}\right) \leq N_{E}^{1}\left(r, \frac{1}{F - 1}\right) + N_{E}^{2}\left(r, \frac{1}{G - 1}\right) + S(r, f)\]
\[
N_{L}\left(r, \frac{1}{F - 1}\right) = \overline{N}\left(r, \frac{1}{F - 1}\right) + S(r, f)\]
\[
\leq N_{E}^{1}\left(r, \frac{1}{F - 1}\right) + N_{E}^{2}\left(r, \frac{1}{G - 1}\right) + S(r, f)\]
\[
\leq N_{E}^{1}\left(r, \frac{1}{F - 1}\right) + N_{E}^{2}\left(r, \frac{1}{G - 1}\right) + S(r, f)\]
\[
N_{L}\left(r, \frac{1}{F - 1}\right) + N_{L}\left(r, \frac{1}{G - 1}\right) + S(r, f)\]
\[
\leq N_{E}^{1}\left(r, \frac{1}{F - 1}\right) + N_{E}^{2}\left(r, \frac{1}{G - 1}\right) + S(r, f)\]

Let \(H \) be defined by (17). Suppose that \(H \not\equiv 0 \). By Lemma 14, (18) holds.

From (17) and (28), we have
\[
N(r, H) \leq N_{E}^{1}\left(r, \frac{1}{G - 1}\right) + N_{E}^{2}\left(r, \frac{1}{G - 1}\right) + \overline{N}(r, G)
\]
\[
+ N_{L}\left(r, \frac{1}{F - 1}\right) + N_{L}\left(r, \frac{1}{G - 1}\right)
\]
where \(N_{E}(r, 1/F') \) denotes the counting function corresponding to the zeros of \(F' \) which are not the zeros of \(F \) and \(F - 1 \).

Similarly, \(N_{0}(r, 1/G') \) is defined.
From the second fundamental theorem, we have

\[T(r, F) + T(r, G) \leq \mathcal{N}(r, F) + \mathcal{N}(r, G) \]

\[+ \mathcal{N}\left(r, \frac{1}{F-1}\right) + \mathcal{N}\left(r, \frac{1}{G-1}\right) \]

\[- N_0(r, \frac{1}{F}) - N_0(r, \frac{1}{G}) + S(r, f). \]

(35)

Since \(F \) and \(G \) share 1IM, we get from (33):

\[\mathcal{N}\left(r, \frac{1}{F-1}\right) + \mathcal{N}\left(r, \frac{1}{G-1}\right) \]

\[= 2N^1_E\left(r, \frac{1}{F-1}\right) + 2N_L\left(r, \frac{1}{G-1}\right) \]

\[+ 2N_L\left(r, \frac{1}{G-1}\right) + 2N^{(2)}_E\left(r, \frac{1}{F-1}\right). \]

(36)

From this, (18), and (34), we have

\[\mathcal{N}\left(r, \frac{1}{F-1}\right) + \mathcal{N}\left(r, \frac{1}{G-1}\right) \]

\[\leq N_2\left(r, \frac{1}{F}\right) + N_2\left(r, \frac{1}{G}\right) + \mathcal{N}(r, G) + N_0\left(r, \frac{1}{F'}\right) \]

\[+ 3N_L\left(r, \frac{1}{G-1}\right) + 3N_L\left(r, \frac{1}{F-1}\right) + \mathcal{N}^{(2)}_E\left(r, \frac{1}{F-1}\right) \]

\[+ 2N^{12}_E\left(r, \frac{1}{G-1}\right) + N_0\left(r, \frac{1}{G'}\right) + S(r, f). \]

(37)

It is clear that

\[N_L\left(r, \frac{1}{F-1}\right) + 2N_L\left(r, \frac{1}{G-1}\right) \]

\[+ 2N^2_E\left(r, \frac{1}{G-1}\right) + N^{(1)}_E\left(r, \frac{1}{F-1}\right) \]

\[\leq N\left(r, \frac{1}{G-1}\right) \]

\[\leq T(r, G) + O(1). \]

(38)

Combining (37), and (38), we obtain

\[\mathcal{N}\left(r, \frac{1}{F-1}\right) + \mathcal{N}\left(r, \frac{1}{G-1}\right) \]

\[\leq N_2\left(r, \frac{1}{F}\right) + N_2\left(r, \frac{1}{G}\right) + \mathcal{N}(r, G) \]

\[+ 2N_L\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{G-1}\right) + T(r, G) \]

\[+ N_0\left(r, \frac{1}{F'}\right) + N_0\left(r, \frac{1}{G'}\right) + S(r, f). \]

(39)

Substituting (39) in (35) and using (28), we obtain

\[T(r, F) \leq 3\mathcal{N}(r, G) + N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{G}\right) \]

\[+ 2N_L\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{G-1}\right) + S(r, f). \]

(40)

Using (26) and (19), we get

\[\overline{d}(P)T(r, f) \]

\[\leq 3\mathcal{N}(r, G) + \left(\overline{d}(P) - \overline{d}(P)\right)m\left(r, \frac{1}{f}\right) \]

\[+ N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f^\overline{d}(P)}\right) \]

\[+ 2N_L\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{G-1}\right) + S(r, f). \]

(41)

From (16), (20), and (26) we have

\[2N_L\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{G-1}\right) \]

\[\leq 2N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{G}\right) \]

\[\leq 2\left[N\left(r, \frac{1}{F}\right) + \mathcal{N}(r, F)\right] + N\left(r, \frac{1}{f}\right) \]

\[+ \mathcal{N}(r, f) + S(r, f) \]

\[\leq 2N\left(r, \frac{1}{P[f]}\right) + 3\mathcal{N}(r, f) \]

\[+ N\left(r, \frac{1}{f}\right) + S(r, f) \]

\[\leq 2Q\mathcal{N}(r, f) + 2N\left(r, \frac{1}{\overline{d}(P)}\right) \]

\[+ 2\left(\overline{d}(P) - \overline{d}(P)\right)m\left(r, \frac{1}{f}\right) \]

\[\leq 2Q\mathcal{N}(r, f) + 2N\left(r, \frac{1}{\overline{d}(P)}\right) \]

\[\leq 2\left(\overline{d}(P) - \overline{d}(P)\right)m\left(r, \frac{1}{f}\right) \]

\[+ 3\mathcal{N}(r, f) + S(r, f) \]

\[\leq 2Q\mathcal{N}(r, f) + 2\mathcal{N}\left(r, \frac{1}{P[f]}\right) \]

\[+ 2\left(\overline{d}(P) - \overline{d}(P)\right)m\left(r, \frac{1}{f}\right) \]

\[\leq 2Q\mathcal{N}(r, f) + 2\mathcal{N}\left(r, \frac{1}{P[f]}\right) \]

\[+ 2\left(\overline{d}(P) - \overline{d}(P)\right)m\left(r, \frac{1}{f}\right) + S(r, f). \]

(42)
From (41) and (42), we get
\[
\bar{d}(P) T(r, f) \\
\leq (2Q + 6) N(r, f) + (2 + 3\bar{d}(P)) N\left(r, \frac{1}{f}\right) \\
+ 3 \left(\bar{d}(P) - \bar{d}(P)\right) m\left(r, \frac{1}{f}\right) + S(r, f) \\
\leq (2Q + 6) N(r, f) + (2 + 3\bar{d}(P)) N\left(r, \frac{1}{f}\right) \\
+ 3 \left(\bar{d}(P) - \bar{d}(P)\right) T\left(r, \frac{1}{f}\right) + S(r, f) \\
+ (3\bar{d}(P) - 2\bar{d}(P)) T(r, f) \\
\leq (2Q + 6) N(r, f) + (2 + 3\bar{d}(P)) N\left(r, \frac{1}{f}\right) \\
+ (2 + 3\bar{d}(P)) N\left(r, \frac{1}{f}\right) + S(r, f) \\
\leq \{2Q + 3\bar{d}(P) + 8\} - \left[(2Q + 6) \Theta(\infty, f) + (2 + 3\bar{d}(P)) \delta(0, f)\right] T(r, f) + S(R, f).
\]
(43)

Therefore, we have
\[
\{2Q + 6\} \Theta(\infty, f) + (2 + 3\bar{d}(P)) \delta(0, f) \\
- \left[(2Q + 3\bar{d}(P) + 8)\right] T(r, f) \leq S(r, f),
\]
(44)

which is a contradiction to our hypothesis (9). Thus \(H \equiv 0\). By integration, we get from (17) that
\[
\frac{1}{G - 1} = \frac{A}{F - 1} + B,
\]
(45)

where \((A \neq 0)\) and \(B\) are constants. Thus
\[
G = \frac{G}{B} + \frac{(A - B - 1)}{A}, \\
F = \frac{G}{B} + \frac{(A - B - 1)}{A}.
\]
(46)

We discuss the following three cases.

Case 1. Suppose that \(B \neq 0, -1\). From (46), we have
\[
N\left(r, \frac{1}{G - (B + 1)/B}\right) = N(r, F).
\]
(47)

From this and second fundamental theorem, we have
\[
T(r, f) \leq T(r, G) + S(r, f) \\
\leq \overline{N}(r, G) + \overline{N}\left(r, \frac{1}{G}\right) \\
+ \overline{N}\left(r, \frac{1}{G - (B + 1)/B}\right) + S(r, f) \\
\leq \overline{N}(r, G) + \overline{N}\left(r, \frac{1}{G}\right) + \overline{N}(r, F) + S(r, f) \\
\leq 2\overline{N}(r, f) + \overline{N}\left(r, \frac{1}{G}\right) + S(r, f) \\
\leq (2Q + 6) N(r, f) + (2 + 3\bar{d}(P)) N\left(r, \frac{1}{f}\right) \\
+ (2 + 3\bar{d}(P)) N\left(r, \frac{1}{f}\right) + S(r, f) \\
\leq \{2Q + 3\bar{d}(P) + 8\} - \left[(2Q + 6) \Theta(\infty, f) + (2 + 3\bar{d}(P)) \delta(0, f)\right] T(r, f) + S(R, f).
\]
(48)

Therefore, we have
\[
\{2Q + 6\} \Theta(\infty, f) + (2 + 3\bar{d}(P)) \delta(0, f) \\
- \left[(2Q + 3\bar{d}(P) + 7)\right] T(r, f) \leq S(r, f),
\]
(49)

which is a contradiction to our hypothesis (9).

Case 2. Suppose that \(B = 0\). From (46), we get
\[
G = \frac{F + (A - 1)}{A}, \\
F = AG - (A - 1),
\]
(50)

we claim \(A = 1\).

If \(A \neq 1\) from (50), we obtain
\[
N\left(r, \frac{1}{G - (A - 1)/A}\right) = N\left(r, \frac{1}{F}\right).
\]
(51)
From this, second fundamental theorem, and (20), we have
\[T(r, f) \leq T(r, G) + S(r, f) \]
\[\leq N(r, G) + N(r, \frac{1}{G}) + S(r, f) \]
\[\leq N(r, G) + N(r, \frac{1}{G}) + N(r, \frac{1}{f}) + S(r, f) \]
\[\leq N(r, G) + N(r, \frac{1}{f}) + QN(r, f) \]
\[+ (\overline{d}(P) - \overline{d}(P)) m\left(r, \frac{1}{f}\right) \]
\[+ N\left(r, \frac{1}{f \overline{d}(P)}\right) + S(r, f) \]
\[\leq (Q + 1) N(r, f) + (1 + \overline{d}(P)) N\left(r, \frac{1}{f}\right) \]
\[+ (\overline{d}(P) - \overline{d}(P)) T\left(r, \frac{1}{f}\right) + S(r, f) \]
\[\leq (2Q + 6) N(r, f) + (2 + 3\overline{d}(P)) N\left(r, \frac{1}{f}\right) \]
\[+ S(r, f) \]
\[\leq \left[(2Q + 6) \Theta(\infty, f) + (2 + 3\overline{d}(P)) \delta(0, f)\right] T(r, f) + S(R, f). \]
(52)

Hence, we have
\[\left[(2Q + 6) \Theta(\infty, f) + (2 + 3\overline{d}(P)) \delta(0, f)\right] T(r, f) + S(r, f), \]
which is a contradiction to our hypothesis (9)

Thus, \(A = 1 \).

From (50) we have \(F \equiv G \).

Therefore, we have \(f \equiv P[f] \).

Case 3. Suppose that \(B = -1 \), from (46) we have
\[G = \frac{A}{-F + A + 1}, \quad F = \frac{1 + A}{G}. \]
(54)

If \(A \neq -1 \), we obtain from (54) that
\[N\left(r, \frac{1}{G - A/(A + 1)}\right) = N\left(r, \frac{1}{F}\right). \]
(55)

By the same argument as in Case 2, we obtain a contradiction.

Hence, \(A = -1 \).

From (54), we get
\[FG \equiv 1, \]
that is,
\[f \cdot P[f] \equiv a^2. \]
(57)

From (57), we have
\[N(r, f) + N\left(r, \frac{1}{f}\right) = S(r, f). \]
(58)

Using (54), (57), Lemma 12, and first fundamental theorem, we get
\[(\overline{d}(P) + 1) T(r, f) \]
\[= T\left(r, \frac{1}{f \overline{d}(P) + 1}\right) \]
\[= T\left(r, \frac{1}{f \overline{d}(P)}\right) \]
\[= T\left(r, \frac{P[f]}{f \overline{d}(P)a^2}\right) + S(r, f) \]
\[= m\left(r, \frac{P[f]}{f \overline{d}(P)}\right) + N\left(r, \frac{P[f]}{f \overline{d}(P)}\right) + S(r, f) \]
\[\leq (\overline{d}(P) - \overline{d}(P)) m\left(r, \frac{1}{f}\right) + (\overline{d}(P) - \overline{d}(P)) N\left(r, \frac{1}{f}\right) \]
\[+ Q \left[N(r, f) + N\left(r, \frac{1}{f}\right)\right] + S(r, f) \]
\[\leq (\overline{d}(P) - \overline{d}(P)) m\left(r, \frac{1}{f}\right) + S(r, f) \]
\[\leq (\overline{d}(P) - \overline{d}(P)) T\left(r, \frac{1}{f}\right) + S(r, f). \]
(59)

From this, we have
\[(\overline{d}(P) + 1) T(r, f) \leq S(r, f), \]
(60)

which is a contradiction. This completes the proof of Theorem 3.

Proof of Theorem 5. Let \(F \) and \(G \) be given by (26). From the assumption of Theorem 5, we know that \(F \) and \(G \) share 1 CM:
\[N_L\left(r, \frac{1}{F - 1}\right) = N_L\left(r, \frac{1}{G - 1}\right) = 0. \]
(61)

Proceeding as in Theorem 3, we obtain (41).
Using (61) in (41), we get
\[
\overline{d}(P) T(r, f)
\leq 3 N(r, G) + (\overline{d}(P) - d(P)) m\left(r, \frac{1}{f}\right)
+ N\left(r, \frac{1}{\overline{d}(P)}\right) + S(r, f)
\leq 3 N(r, f) + \left((\overline{d}(P) - d(P))\right) \left(T(r, f) - N\left(r, \frac{1}{f}\right)\right)
+ (\overline{d}(P) + 1) N\left(r, \frac{1}{f}\right) + S(r, f),
\]
\[
\overline{d}(P) T(r, f)
\leq 3 N(r, f) + (\overline{d}(P) + 1) N\left(r, \frac{1}{f}\right) + S(r, f)
\leq \left(\overline{d}(P) + 4\right)
- \left[3\Theta(\infty, f) + (\overline{d}(P) + 1) \delta(0, f)\right] T(r, f) + S(r, f),
\]
(62)

We have
\[
\left[3\Theta(\infty, f) + (\overline{d}(P) + 1) \delta(0, f) - 4\right] T(r, f) \leq S(r, f),
\]
(63)

which contradicts (10).

Thus, \(H \equiv 0 \). Proceeding as in Theorem 3, we prove Theorem 5.

Proof of Theorem 7. \(f \) is a nonconstant entire function. Taking \(N(r, f) = 0 \) in proof of Theorem 3, we obtain Theorem 7.

Proof of Theorem 9. \(f \) is a nonconstant entire function. Taking \(N(r, f) = 0 \) in proof of Theorem 5, we obtain Theorem 9.

Acknowledgments

The authors thank the referee for his/her valuable suggestions. This research work is supported by the Department of Science and Technology Government of India, Ministry of Science and Technology, Technology Bhavan, New Delhi, India, under the sanction Letter no. (SR/S4/MS: 520/08).

References
