Sharp Large Deviation for the Energy of α-Brownian Bridge

Shoujiang Zhao,1 Qiaojing Liu,1 Fuxiang Liu,1 and Hong Yin2

1 School of Science, China Three Gorges University, Yichang 443002, China
2 School of Information, Renmin University of China, Beijing 100872, China

Correspondence should be addressed to Qiaojing Liu; qjliu2002@163.com

Received 26 April 2013; Accepted 23 October 2013

Academic Editor: Yaozhong Hu

Copyright © 2013 Shoujiang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the sharp large deviation for the energy of α-Brownian bridge. The full expansion of the tail probability for energy is obtained by the change of measure.

1. Introduction

We consider the following α-Brownian bridge:

$$dX_t = -\frac{\alpha}{T-t}X_t dt + dW_t, \quad X_0 = 0,$$

where W is a standard Brownian motion, $t \in [0, T)$, $T \in (0, \infty)$, and the constant $\alpha > 1/2$. Let P_α denote the probability distribution of the solution $\{X_t, t \in [0, T]\}$ of (1). The α-Brownian bridge is first used to study the arbitrage profit associated with a given future contract in the absence of transaction costs by Brennan and Schwartz [1].

α-Brownian bridge is a time inhomogeneous diffusion process which has been studied by Barczy and Pap [2, 3], Jiang and Zhao [4], and Zhao and Liu [5]. They studied the central limit theorem and the large deviations for parameter estimators and hypothesis testing problem of α-Brownian bridge. While the large deviation is not so helpful in some statistics problems since it only gives a logarithmic equivalent for the deviation probability, Bahadur and Ranga Rao [6] overcame this difficulty by the sharp large deviation principle for the empirical mean. Recently, the sharp large deviation principle is widely used in the study of Gaussian quadratic forms, Ornstein-Uhlenbeck model, and fractional Ornstein-Uhlenbeck (cf. Bercu and Rouault [7], Bercu et al. [8], and Bercu et al. [9, 10]).

In this paper we consider the sharp large deviation principle (SLDP) of energy S_t, where

$$S_t = \int_0^t \frac{X_s^2}{(s-T)^2} ds.$$ \hspace{1cm} (2)

Our main results are the following.

Theorem 1. Let $\{X_t, t \in [0, T]\}$ be the process given by the stochastic differential equation (1). Then $\{S_t/\lambda_t, t \in [0, T]\}$ satisfies the large deviation principle with speed λ_t and good rate function $I(\cdot)$ defined by the following:

$$I(x) = \begin{cases}
\frac{1}{8x}((2\alpha_0 - 1)x - 1)^2, & \text{if } x > 0; \\
+\infty, & \text{if } x \leq 0,
\end{cases}$$ \hspace{1cm} (3)

where $\lambda_t = \log(T/(T-t)).$

Theorem 2. $\{S_t/\lambda_t, t \in [0, T]\}$ satisfies SLDP; that is, for any $c > 1/(2\alpha - 1)$, there exists a sequence $b_{c,k}$ such that, for any $p > 0$, when t approaches T enough,

$$P(S_t \geq c\lambda_t) = \exp\left[-I(c)\lambda_t + H(a_t)\right] \sqrt{2\pi a_t}\beta_t \times \left(1 + \sum_{k=1}^L \frac{b_{c,k}}{\lambda_t} + O\left(\frac{1}{\lambda_t^{p+1}}\right)\right),$$ \hspace{1cm} (4)
where
\[\sigma_c^2 = 4c^2, \quad \beta_c = \sigma_c \sqrt{\lambda_t},\]
\[a_c = \frac{(1 - 2\alpha)c^2 - 1}{8c^2},\]
\[H(a_c) = -\frac{1}{2} \log \left(1 - \frac{1 - 2\alpha}{2}\right)\].

The coefficients \(b_{c,k}\) may be explicitly computed as functions of the derivatives of \(L\) and \(H\) (defined in Lemma 3) at point \(a_c\).

For example, \(b_{c,1}\) is given by
\[b_{c,1} = \frac{1}{\sigma_c} \left(\frac{h_2 - h_1^2}{2} + \frac{l_4}{8\sigma_c^2} + \frac{l_2h_1}{2\sigma_c^2} \right) - \frac{5l_2^2}{24\sigma_c^4} \frac{h_1}{a_c} - \frac{l_3}{2a_c} \left(\frac{1}{a_c^2} - \frac{1}{a_c^2} \right),\]
with \(l_k = L^{(k)}(a_c)\), and \(h_k = H^{(k)}(a_c)\).

2. Large Deviation for Energy

Given \(\alpha > 1/2\), we first consider the following logarithmic moment generating function of \(S_t\); that is,
\[L_t(u) := \log E_\alpha \exp \left(u \int_0^t \frac{X_s^2}{(s - T)^2} ds \right), \quad \forall \lambda \in \mathbb{R}.\]

And let
\[\mathcal{D}_L := \{ u \in \mathbb{R}, L_t(u) < +\infty \}\]
be the effective domain of \(L_t\). By the same method as in Zhao and Liu [5], we have the following lemma.

Lemma 3. Let \(\mathcal{D}_L\) be the effective domain of the limit of \(L_t\); then for all \(u \in \mathcal{D}_L\), one has
\[\frac{L_t(u)}{\lambda_t} = L(u) + \frac{H(u)}{\lambda_t} + \frac{R(u)}{\lambda_t},\]
with
\[L(u) = -\frac{1 - 2\alpha - \varphi(u)}{4},\]
\[H(\lambda) = -\frac{1}{2} \log \left\{ \frac{1}{2} (1 + h(u)) \right\},\]
\[R(u) = -\frac{1}{2} \log \left\{ 1 + \frac{1 - h(u)}{1 + h(u)} \exp \left[2\varphi(u) \right] \lambda_t \right\},\]
where \(\varphi(u) = \sqrt{(1 - 2\alpha)^2 - 8u}\) and \(h(u) = (1 - 2\alpha)/\varphi(u)\). Furthermore, the remainder \(R(u)\) satisfies
\[R(u) = O_{1-T} \left(\exp \left[2\varphi(u) \lambda_t \right] \right).\]

Proof. By Itô’s formula and Girsanov’s formula (see Jacob and Shiryaev [11]), for all \(u \in \mathcal{D}_L\) and \(t \in [0, T]\),
\[\log \frac{dP_u}{dP_\beta} = (\alpha - \beta) \int_0^t \frac{X_s^2}{s - T} dX_s - \frac{\alpha^2 - \beta^2}{2} \int_0^t \frac{X_s^2}{(s - T)^2} ds,\]
\[+ \frac{1}{2} (\beta^2 - \alpha^2 + \alpha - \beta + 2u) \times \int_0^t \frac{X_s^2}{(s - T)^2} ds.\]

Therefore,
\[L_t(u) = \log E_\beta \exp \left\{ u \int_0^t \frac{X_s^2}{(s - T)^2} ds \right\} \log \left(1 - \frac{t}{T} \right) + \frac{1}{2} (\beta^2 - \alpha^2 + \alpha - \beta + 2u) \times \int_0^t \frac{X_s^2}{(s - T)^2} ds.\]

If \(4u \leq (1 - 2\alpha)^2\), we can choose \(\beta\) such that \((\beta - 1/2)^2 - (\alpha - 1/2)^2 + 2u = 0\). Then
\[L_t(u) = \frac{1 - 2\alpha - \varphi(u)}{4} \lambda_t - \frac{1}{2} \log \left\{ \frac{1}{2} (1 + h(u)) \right\} - \frac{1}{2} \log \left\{ 1 + \frac{1 - h(u)}{1 + h(u)} \exp \left[2\varphi(u) \lambda_t \right] \right\},\]
where \(\varphi(u) = \sqrt{(1 - 2\alpha)^2 - 8u}\) and \(h(u) = (1 - 2\alpha)/\varphi(u)\). Therefore,
\[L_t(u) = \frac{1 - 2\alpha - \varphi(u)}{4} \lambda_t - \frac{1}{2} \log \left\{ \frac{1}{2} (1 + h(u)) \right\} - \frac{1}{2} \log \left\{ 1 + \frac{1 - h(u)}{1 + h(u)} \exp \left[2\varphi(u) \lambda_t \right] \right\}\]
\[= L(u) + \frac{H(u)}{\lambda_t} + \frac{R(u)}{\lambda_t}.\]

Proof of Theorem 1. From Lemma 3, we have
\[L(u) = \lim_{t \to T} \frac{L_t(u)}{\lambda_t} = \frac{1 - 2\alpha - \varphi(u)}{4}.\]
and \(L(\cdot) \) is steep; by the Gärtner-Ellis theorem (Dembo and Zeitouni [12]), \(S_t/\lambda_t \) satisfies the large deviation principle with speed \(\lambda_t \) and good rate function \(I(\cdot) \) defined by the following:

\[
I(x) = \begin{cases}
\frac{1}{8x}((2\alpha - 1)x - 1)^2, & \text{if } x > 0; \\
+\infty, & \text{if } x \leq 0.
\end{cases}
\]

(17)

\[\begin{align*}
\Phi_{\lambda}(u) = & \frac{1}{2\pi \sigma_c} \int_{-\infty}^{\infty} \exp \left\{ -\frac{\tau u^2}{2\sigma_c^2} \right\} \exp \left\{ \frac{\tau u^2}{2\sigma_c^2} - \frac{\tau u^2}{2\sigma_c^2} \right\} du \\
& \times \exp \left\{ \frac{\tau u^2}{2\sigma_c^2} - \frac{\tau u^2}{2\sigma_c^2} \right\}
\end{align*}\]

(23)

Moreover,

\[B_t = \mathbb{E}_Q \exp \left(-a_\beta U_t 1_{\{U_t \geq 0\}} \right) = C_t + D_t,
\]

(24)

with

\[
C_t = \frac{1}{2\pi a_\beta^2} \int_{|u| \leq s_t} \left(1 + \frac{iu}{a_\beta} \right) \Phi_t(u)\, du,
\]

(25)

\[
D_t = \frac{1}{2\pi a_\beta^2} \int_{|u| > s_t} \left(1 + \frac{iu}{a_\beta} \right) \Phi_t(u)\, du,
\]

(26)

where \([D_t] = O(\exp \{-D\lambda_t^{1/3}\}) \),

for some positive constant \(s \), and \(D \) is some positive constant.

\begin{proof}

For any \(u \in \mathbb{R} \),

\[
\Phi_t(u) = \mathbb{E} \left(\exp \{iuS_t\} \exp \{a_\beta L_t(\sigma_t)\} \right)
\]

(27)

\[
= \exp \left\{ -\frac{iu\sqrt{\lambda_t}}{\sigma_c} \right\}
\]

By the same method as in the proof of Lemma 2.2 in [7] by Bercu and Rouault, there exist two positive constants \(\tau \) and \(\kappa \) such that

\[
|\Phi_t(u)|^2 \leq \left(1 + \frac{\tau u^2}{\lambda_t} \right)^{-(\kappa/2)\lambda_t},
\]

(28)

therefore, \(\Phi_t(\cdot) \) belongs to \(L^2(\mathbb{R}) \), and by Parseval's formula, for some positive constant \(s \), let

\[
s_t = s \left(\log \left(\frac{T}{T - t} \right) \right)^{1/6},
\]

(29)

we get

\[
B_t = \frac{1}{2\pi a_\beta^2} \int_{|u| \leq s_t} \left(1 + \frac{iu}{a_\beta} \right) \Phi_t(u)\, du + \frac{1}{2\pi a_\beta^2} \int_{|u| > s_t} \left(1 + \frac{iu}{a_\beta} \right) \Phi_t(u)\, du
\]

(30)

\[
|D_t| = O(\exp \{-D\lambda_t^{1/3}\}),
\]

(32)

where \(D \) is some positive constant.
\end{proof}
Proof of Lemma 6. By Lemma 3, we have
\[\frac{L^{(k)}(\alpha_t)}{\lambda_t} = L^{(k)}(\alpha_t) + \frac{H^{(k)}(\alpha_t)}{\lambda_t} + O\left(\frac{\lambda_t^2(T-t)^2}{\lambda_t}\right). \] (33)
Noting that \(L'(\alpha_t) = 0 \), \(L''(\alpha_t) = \sigma_t^2 \) and
\[\frac{L''(\alpha_t)}{2\beta_t} \frac{u}{\beta_t} = -\frac{u^2}{2}, \] (34)
for any \(p > 0 \), by Taylor expansion, we obtain
\[\log \Phi_t(u) = -\frac{u^2}{2} + \lambda_t \sum_{k=0}^{2p+3} \frac{(iu)^k}{k!} L^{(k)}(\alpha_t) \]
\[+ \sum_{k=1}^{2p+1} \left(\frac{iu}{\beta_t} \right)^k H^{(k)}(\alpha_t) \]
\[+ O\left(\max\left(1, \left|u\right|^{2p+4}\right) \right); \] (35)
therefore, there exist integers \(q(p), r(p) \) and a sequence \(\varphi_{k,l} \) independent of \(p \); when \(t \) approaches \(T \), we get
\[\Phi_t(u) = \exp \left\{ -\frac{u^2}{2} \left(1 + \frac{1}{\sqrt{\lambda_t}} \sum_{k=0}^{2p} \sum_{l=0}^{q(p)} \varphi_{k,l} u^l \right) \right\} \]
\[+ O\left(\max\left(1, \left|u\right|^{r(p)} \right) \right) \] (36)
where \(O \) is uniform as soon as \(|u| \leq s \).

Finally, we get the proof of Lemma 6 by Lemma 7 together with standard calculations on the \(N(0,1) \) distribution.

Acknowledgment
This research was supported by the National Natural Science of Tianyuan Foundation under Grant 11226202.

References
Submit your manuscripts at http://www.hindawi.com